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Abstract 

Due to an increasing life expectance,
osteoarthritis (OA) is one of the most common
chronic diseases. Although strong efforts have
been made to regenerate degenerated joint
cartilage, OA is a progressive and irreversible
disease up to date. Among other factors the
dysbalance between free radical burden and
cellular scavenging mechanisms defined as
oxidative stress is a relevant part of OA patho-
genesis. Here, only little data are available
about the mediation and interaction between
different joint compartments. The article pro-
vides a review of the current literature regard-
ing the influence of oxidative stress on cellular
aging, senescence and apoptosis in different
joint compartments (cartilage, synovial tissue
and subchondral bone). Free radical exposure
is known to promote cellular senescence and
apoptosis. Radical oxygen species (ROS)
involvement in inflammation, fibrosis control
and pain nociception has been proven. The
data from literature indicates a link between
free radical burden and OA pathogenesis medi-
ating local tissue reactions between the joint
compartments. Hence, oxidative stress is like-
ly not only to promote cartilage destruction but
also to be involved in inflammative transfor-
mation, promoting the transition from clinical-
ly silent cartilage destruction to apparent OA.
ROS induced by exogenous factors such as
overload, trauma, local intraarticular lesion
and consecutive synovial inflammation cause
cartilage degradation. In the affected joint,
free radicals mediate disease progression. The
interrelationship between oxidative stress and
OA etiology might provide a novel approach to
the comprehension and therefore modification
of disease progression and symptom control.

Introduction

Osteoarthritis (OA) is a common and pro-
gressive chronic disease leading to impaired
joint function and can result in immobility
mostly in elderly people.1 The prevalence of OA
increases significantly in advanced age.
Radiographic evaluation of knee x-ray images
taken from the Framingham osteoarthritis
study showed alterations in K/L (Kellgren/
Lawrence Grade)> or =2 in 44% of parents
(mean age 72 years) and 22% of offspring
(mean age 54 years).2 Although several risk
factors like overweight or the family history of
OA are well known, the mechanisms on the
cellular level leading from the presence of risk
factors to cartilage degeneration are not com-
pletely understood in detail. Besides other
agents, recent data focus on oxidative and
nitrosative stress as one aspect involved in the
pathogenesis of OA.3 In the course of the grow-
ing knowledge about the relevance of free rad-
icals for cellular ageing, their involvement in
degenerative diseases of the joint came into
focus of more detailed investigations.4

Method of data selection

We present a review of the current literature
over the relevance of free radicals in OA patho-
genesis. Here, all relevant original publica-
tions in this topic documented in the USA
National Library of Medicine and the library of
the National Institutes of Health, USA were
considered. Reviews and single case reports
were excluded. The online search was conduct-
ed by use of the terms oxidative stress, oxida-
tive damage and radical oxygen species, each of
them combined with the search term
osteoarthritis. This yielded a cumulative num-
ber of 203 studies. Of these results, 33 were
identified as review or case report, leaving 170
relevant studies for this review. The relevance
of the studies cited herein was considered by
actuality, included sample size and methods as
well as by the number of being cited evaluated
by use of ISI Web of Science®. Finally, the
selected studies are discussed critically and
new insights were given to this innovative
research field.

Lessons from actual studies

The silent way of osteoarthritis
OA is not limited to articular cartilage only,

but also affects the subchondral bone, as well
as the adjacent connective tissue and the syn-
ovial membrane resulting in pain, swelling,
progressive deformity and instability. Although

OA occurs in many joints, the knee, hip, hand
and facet joints are mostly affected.5

Yet, patients suffering from OA often show a
discrepancy between objective findings gath-
ered in x-ray or magnetic resonance imaging
(MRI) examinations and patient-reported pain
and functional restrictions.6 The sudden onset
of disabling joint pain and articular effusion is
one typical clinical feature of decompensation
indicating the term activated OA. On a cellular
and subcellular level, proinflammatory agents
such as nitric oxide, interleukin 1 (IL-1), and
tumor necrosis factor (TNF) α are overex-
pressed in chondrocytes and joint stromal cells
in OA.7,8

The influence of free radicals on
osteoarthritis development
Many studies focused on damaging effects

of oxidative and nitrosative agents,9-11 whereas
in the following the differential role of Radical
oxygen species (ROS) and radical nitric
species (RNS) in osteoarthritis came into
focus. A study comparing the effects of nitric
oxide and oxidative dysbalance in OA and
rheumatoid arthritis postulated a major role of
nitric oxide (NO) to modulate chondrocyte
function in OA.12 In contrast to the uncoupling
effect of ROS on synovium inflammation,13

ROS have been shown to downregulate the
expression of pro- inflammatory genes in
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chondrocytes.14 The involvement of free radi-
cals in signal transduction highlighted that
within evolution higher life forms took advan-
tage of the ability of ROS to mediate signals
over cell margins in a system consisting of dis-
crete compartments like joint.15,16

Regarding radical nitrosative species nitric
oxide is subject to extensive research. It is pro-
duced by the closely regulated nitric oxide syn-
thase (NOS) using the substrate L-arginine.
Several isoforms of NOS have been identified
in OA joint tissue. Functional relevance of con-
stitutional neuronal NOS (nNOS)17 and
inducible NOS (iNOS)18 in OA pathogenesis
has been shown. Furthermore, osteoarthritis-
affected NOS (OA-NOS) only detectable in OA
cartilage was described,19 showing properties
similar to nNOS and iNOS. Evidence for NOS
mediated signaling in OA was found in carti-
lage20 and synovium.21 Here, a relative deficit in
the production of natural antagonists of the IL-
1 receptor has been demonstrated, and could
possibly be related to an excess production of
nitric oxide in OA tissues.22 In cartilage tissue,
chondrocyte interleukin-1-converting enzyme
and interleukin-18 levels are shown to be
mediated by nitric oxide.23,24 Another study
demonstrated that proinflammatory mediators
such as IL-1 give in turn rise to NO formation
in inflammative joints.25 The upregulation of
iNOS related NO production is a well known
feature of IL-1.26 Nitric oxide was suspected to
play a major role in the influence of mitochon-
drial function in OA (Figure 1). Furthermore,
NO dependent intracellular signaling in OA
nociception is subject of recent investigation.27

The role of nitrosative and oxidative
stress in the three compartments 
of joint
There is evidence that alterations of sub-

chondral bone28 and synovial cells/fluid  are
crucial for OA pathogenesis, which stands in
contrast to the classic focus on cartilage degra-
dation in OA development. The joint is hence
to be considered as a dynamic system consist-
ing of three discrete but permanently interact-
ing compartments.29

Cartilage tissue is classified with conjunc-
tive tissue, deriving from mesenchymal stem
cells during embryonic development. Oxidative
dysbalance in cartilage is an effect of two
major mechanisms. First, it occurs when
antioxidative capacity is depleted. A more
oxidative intracellular state is a cause for
pathologic alterations in osteoarthritic carti-
lage.13

Second, nutrition of articular cartilage as
avascular tissue containing chondrocytes
embedded into a large amount of extracellular
matrix is dependent on diffusion from synovial
- and subchondral bone compartment.30

Oxygen and metabolic end products have to

diffuse over relative long distances, resulting
in low O2 tension in cartilage tissue.31 A rise of
O2 tension in cartilage tissue as is typical for
inflammation in turn enhances free radical
formation, an interesting finding in the con-
text of cartilage degeneration in chronically
irritated joints. 
Furthermore, radical oxygen species pro-

duced by the oxidative metabolic turnover of
cartilage tissue are a substantial factor for the
maintenance of intracellular signaling.16,32

The hyaline cartilage of the joint provides
profoundly elastic properties under pressure
and shear stress. These biomechanical charac-
teristics are based on the cartilage matrix com-
position which consists mostly of collagen type
II and a large aggregating proteoglycan, aggre-
can.33,34 Articular cartilage is not only firm
under permanent movement and shear stress,
a condition that would be hostile for nearly all
other tissues.35 Evidence was found, that nor-
mal cartilage function is maintained only in
tissue being exposed to moderate movement
and pressure.36-39 A very recent study is one of
the first to demonstrate that physical exercise
can reduce oxidative stress in joints with
experimental OA on an animal model.40

In contrast, excessive repetitive load was
proven to induce chondrocyte apoptosis, a fact
which points out the relevance of injurious
cartilage compression for OA pathogenesis.41,42

Mechanical loading that exceeds the tolerance
of the articular surface was indirectly identi-
fied to cause oxidative stress by the decrease
of cell death after submission of antioxi-
dants.43,44 A study on cartilage explants showed
an increase of ROS synthesis after admission
of mechanical load.45 Furthermore, some data
indicate that radical nitrogen species act as
mediators of cell death after mechanical over-
use and injury to cartilage.46 These findings are
in accordance to the fact that also excessive
shear stress is able to induce chondrocyte
death mediated by ROS.47

Once produced as a response to mechanical
overload, free radical diffusion into all joint
compartments is promoted by cyclic compres-
sion during gait. Fluctuation of synovial fluid
and squeezing of fluid from cartilage tissue in
static pressure phases causes a constant inter-
change of fluid between cartilage tissue and
synovial compartment.48 It is very likely that in
joint inflammation this mechanism increases
the exposure of cartilage against radical oxy-
gen species. 
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Figure 1. A major source structure of reactive oxidative molecules is the mitochondrion.
The energy metabolism produces in oxidative phosphorylation ROS as side product of
normal cellular metabolism. Disruption of chondrocyte respiration by nitric oxide
induced inhibition of electron transport has been discussed to be centrally involved in
chondrocyte functional compromise.99 In contrast a very recent study showed that the
mitochondrion is a target of oxidative damage, mainly by NO related TNF-α and IL-1
induction damage of mitochondrial DNA.100 Mitochondrial damage by ROS/RNS has
been addressed to be an important factor for chondrocyte functional compromise and
apoptosis induction. Nitric oxide is released with several proinflammative factors by syn-
ovial cells as a result of inflammative transition.101 Nuclear transcription factor kB (NF- k
B), which is involved in the upregulation of several inflammatory genes,58 is an important
factor for ROS/RNS induced inflammatory transition of synovial membrane. The figure
shows in addition to mitochondrial damage by nitric oxide the directly damaging effects
of ROS on nuclear DNA, intracellular structures and extracellular matrix.
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The synovial compartment consists of the
synovial membrane and the synovial fluid. The
implications of this joint compartment for OA
development, also in relationship with ROS,
were extensively investigated during the last
decade. The synovial cells are involved in the
synthesis of the synovial fluid, an ultrafiltrate
of the serum enriched with products of the
cells.49 It forms a capillary layer in the healthy
joint and provides the minimization of fric-
tion.50 Here, a large amount of cross linked
hyaluronan, an anionic non-sulfated gly-
cosaminoglycan, contributes substantially to
the rheologic properties of joint fluid.51

Oxidative stress, namely peroxynitrit, has
been shown in vitro to depolymerise gly-
cosaminoglycans,52,53 whereas hyaluronan
degradation can be prevented by antioxidative
agents.54 In conclusion, hyaluronan acts as a
ROS scavenger in the joint by a competition
with other substrates suitable for the reaction
with radical oxygen molecules.
A reduced antioxidative capacity in synovial

fluid of osteoarthritic joints has been found,55

investigating mainly extracellular superoxide
dismutase (EC-SOD or SOD3) in irritated ver-
sus late stage OA joints. Here, the reduced
antioxidative capacity was described as a dis-
ability of the joint to adapt to increased oxida-
tive stress in late stage OA. Finally, the ques-
tion if oxidative stress is an initial cause or
secondary consequence of OA remains unan-
swered.
The inflammatory transformation of syn-

ovial membrane in OA is observed frequently
in arthroscopic examination. Distinct synovitis
involving infiltration of activated B cells and T
lymphocytes and overexpression of proinflam-
matory mediators is a common finding in his-
tological and arthroscopic examination of
patients suffering from OA.56 Increased levels
of IL-1α, IL-1β, and TNF-α could be found in
synovial membranes from patients with OA.57

Radical oxygen species play a major role in
inflammatory intracellular signaling mecha-
nisms of synovia.13 The activation of nuclear
transcription factor (NF)-k B that is implicat-
ed in the inflammatory response in vascular
endothelium and type A synovial lining cells is
a feature of synovial tissue from both RA and
OA patients.58 Furthermore, synovitis is sec-
ondary to a local increase of the pro-inflamma-
tory enzymes cyclooxygenase-2 and iNOS.56 NO
mediates the effects of a number of proinflam-
matory cytokines, including interleukin-1 (IL-
1) and tumor necrosis factor (TNF)-α.22 A
canine in vivo model demonstrated a NO
dependent up-regulation of IL-1-converting
enzyme in chondrocytes, providing another
interrelationship between synovial inflamma-
tion and cartilage degradation by paracrine
free radical signaling.23

One possible mechanism leading from
inflammatory transition of the synovial mem-

brane to joint degeneration is ROS/RNS pro-
duction by synovial cells59 (Figure 2). Synovial
inflammation was discussed to impair the abil-
ity of chondrocytes to balance anabolic and
catabolic activities in extracellular matrix for-
mation.60 A transgenic mouse model yielded
evidence that increased ROS production is a
relevant cause for chondrocytic death and acti-
vation of matrix metalloproteinases in an
inflammatory joint disease.61

At third the subchondral bone is involved in
ROS mediated OA pathogenesis. In advanced
stages of OA, first hypertrophic alterations of
the bone presented by subchondral sclerosis
and osteophytes occur; later on osteoclast acti-
vation leads to local bone resorption (bone
cysts) affecting the peri-articular bone.62 The
subchondral bone together with articular carti-
lage is considered as a unit, playing an impor-
tant role in OA disease development63 particu-
larly on the bounding surface between bone
and cartilage. Only few studies have focused
on the action of radical oxygen species in the
context of subchondral bone remodeling.31 One
study demonstrates the effect of total fraction
of avocado/soybean unsaponifiables on bone
remodeling in experimental canine
osteoarthritis.64 Here, after drug admission a
significantly reduced expression of inducible
nitric oxide synthase in cartilage together with
decreased bone remodeling is reported. Yet,
the exact mechanisms of bone remodeling in
relationship with ROS action are only partially
understood.

The implication of cellular 
senescence, apoptosis and ageing
in osteoarthritis  
The heterogeneity of OA leads to a huge

variety of known etiopathogenic factors. Yet, in

literature review there is a common thread
regarding the uniform presentation of end
stage OA.65,66 There are mainly three pathologic
alterations in joint that represent OA disease
development on the cellular level. Cellular
senescence, apoptosis and the effects of age-
ing show a relationship with OA disease pro-
gression in all joint compartments. Here,
ROS/RNS have been proven to be involved in
the regulation of each of these factors.
Preterm cellular senescence has been

addressed to play an important role in OA. The
phenomenon of cellular senescence has been
described for the first time by Hayflick in the
60’s of the last century as the inability of
matured cells to divide indefinitely.67 This
Hayflick limit is mainly an effect of telomere
shortening. Linear chromosomes are capped
by repetitive nucleoprotein structures, called
telomeres. Each cell division results in a pro-
gressive shortening of telomeres that, below a
certain threshold, promotes genome instabili-
ty, senescence, and apoptosis. Telomeres are
highly sensitive against ROS induced instabil-
ity due to their high content of guanines.
Therefore, telomere length is reducing at a
faster rate during oxidative stress.68 There is
evidence that senescence can be induced by
extrinsic factors in chondrocytes by so called
free radical induced stress senescence.69

Searching a specific marker for chronic expo-
sure to oxidative stress, irreversible telomere
length shortening was discussed.70,71 These
facts imply a connection between oxidative
stress and OA development. Yet, to date the
amount of data on the impact of telomere
length shortening under in vivo conditions in
tissues other than the hematopoietic system is
limited. 
There are two clinical presentations of OA

that are possibly associated with free radical

Article

Figure 2. Depicts the diagrammed hypothesized interrelationship between the clinical
symptoms of osteoarthritis and oxidative dysbalance, attributed to the relevant compart-
ments of the joint.
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induced cellular senescence:
First, there is few data on the exact mecha-

nisms that promote joint capsule thickening by
fibrosis and consecutive stiffness. The cellular
mechanism of fibrosis control is regulated by
cellular senescence in at least one tissue.72

Since fibrosis is a common feature of OA,
intraarticular paracrine ROS/NOS messaging
might be beneficial for limitation of capsule
fibrosis by promoting senescence of proliferat-
ing fibroid cells.

Second, joint inflammation is another char-
acteristic finding in OA with often acute
insert, leading to pain and swelling of the
affected joint. Beside immunogenic cells a
huge number of other cell types are involved in
inflammation, in the context of OA pathogene-
sis particularily fibroblasts.73 The first study
showing an inflammatory response by mes-
enchymal cells was performed on skin fibrob-
lasts. The inflammation involved the transcrip-
tional upregulation of cytokines, such as inter-
leukins (IL-1, IL-15), their receptors and
chemotactic secreted factors.74 This coordinat-
ed secretion of proinflammatory molecules is a
result of cellular senescence.75 It is likely that
ROS induced senescence of synovial and carti-
lage cells can promote the inflammatory tran-
sition of the osteoarthritic joint.
Free radical damage induced cell apoptosis

provides a strategy to ensure the survival of
the organism by scavenge of damaged cells.
The process of apoptosis is initiated by activa-
tion of caspases (cysteine-aspartic-acid-pro-
teases), a process that what was long time
considered to be is irreversible once started.
Free radical species have been shown to pro-
mote apoptosis76 by activation of c-Jun N-ter-
minal kinases (JNK) and p38 Mitogen-acti-
vated protein (MAP) kinases via apoptosis
signal-regulating kinase (ASK) 1.77 Inter -
estingly, within this pathway free radicals are
formed as a second messenger amplifying
ASK1 activation leading to cell death even
within ROS concentrations that are not suffi-
cient to initiate apoptosis.78

Today, chondrocytic death in OA has been
examined in various studies, most of which
report an increased amount of apoptotic cell
death.79 Besides other stimuli, exogenous and
endogenous NO has been proven to induce
chondrocyte apoptosis by intracellular induc-
tion of ROS.80 The cytotoxic effect is a result of
increased ROS load and formation of cytotoxic
peroxynitrit by direct reaction of NO and
ROS.81,82 Vice versa, chondrocyte apoptosis
induced by toxins can be suppressed by hypox-
ia shifting chondrocytes to a less oxidative
intracellular state.83 An accumulation of carti-
lage matrix proteins in the endoplasmic retic-
ulum and Golgi apparatus of chondrocytes
modified by oxidant stress during aging has
been discussed as a cause for decreased syn-
thesis of cartilage matrix proteins and eventu-

al chondrocyte apoptosis.84

Most studies on apoptosis and OA are
focused on cartilage tissue, only few data exist
about the relevance of cell death in the other
joint compartments. Furthermore, most stud-
ies are performed in advanced OA stages on
cartilage explants obtained during total joint
replacement surgery. In contrast, little is
known about the function of apoptosis in early
stage OA.
Aging leads to impaired extracellular matrix

composition. A dysbalance of chondrocyte
function in favor of catabolic action against
extracellular matrix synthesis increases with-
in aging. Studies measuring changes in joint
cartilage using MRI gathered evidence that its
thickness decreases with significant age
dependency.85 Also hydration, decline of cellu-
larity and a gradual loss of cartilage matrix are
reported in aged cartilage leading to a weaken-
ing of tissue.86

Interestingly, the joint is capable of adapting
to oxidative stress induced by extrinsic factors
if it is not subject to pathologic alterations.
Repetitive and cyclic mechanical stress, e.g. in
long distance running does not induce pro-
gressive knee OA.87 The crucial biomechanical
cause seems to be excessive load within over-
weight or joint malalignement, or the combi-
nation of such factors.88,89

As a result of the slow metabolism and low
proliferation rate of cartilage tissue chondro-
cytes and cartilage extracellular matrix colla-
gens lack the turnover most tissues show. A
theory of aging with relevance for cartilage
degeneration is the assumption that cells
gather damage by free radicals produced by
the electron transport chain in mitochon-
dria.90 Cartilage tissue is highly sensitive
against cumulative effects of extrinsic factors
like oxidative stress.91 There is evidence of
the accumulation of nonenzymatic glycated
and oxidized proteins, so called advanced gly-
cation endproducts (AGEs) in joint carti-
lage.92,93 The production of AGEs is increased
in diabetic individuals.94 The influence of AGE
accumulation on chondrocyte function is
mediated by specific receptors for advanced
glycation endproducts (RAGE) located on the
membrane of chondrocytes. They show an
increased expression in aging and during OA
development.95 Stimulation of these receptors
leads to an increased expression of matrix
metalloproteinases followed by increased
catabolic function of chondrocytes.96 The
intracellular messaging of RAGE has early
been proven to be ROS dependent. RAGE acti-
vation in turn induces oxidative stress,97

showing one more involvement of oxidative
stress in pathologic alterations leading to
joint degradation.
Resulting from the clearly demonstrated

age dependency of disease development, bio-
chemical factors influencing chondrocyte

function and survival may play a central role
in the pathophysiological cascade leading to
OA98 and provide therefore therapeutic
options on long-term.

Discussion

The progression of OA from silent cartilage
destruction to painful clinical presentation is
an important subject to further investigation.
The novel approach to OA considers the joint
as a dynamic system of three different tissues
interacting by fluid diffusion and paracrine
factors. Because of their chemical properties,
free radicals meet the requirements to medi-
ate and amplify the characteristic sequence of
joint degeneration in all tissues affected, mak-
ing them as well a crucial factor for the
involvement of all three joint compartments in
disease development as for the sudden break-
down of compensation leading to inflammato-
ry transformation of osteoarthritic joints.
Therapeutic modifications of these mecha-
nisms may be promising area of further
research to achieve comprehension and there-
fore approach to modification of disease pro-
gression.
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