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Fig-1 Comparative Analysis of CDKN2A and Prognostic Factors

In univariate analysis, high expression of CDKN2A was a protective factor for overall survival
(OS) with statistical significance (HR=0.703, 95% CI 0.532-0.93, P=0.014). In multivariate
analysis, after adjustment for multiple factors, high expression of CDKN2A (HR=0.698, 95% CI
0.517-0.943, P=0.019) remained a significant protective factor for OS. In subgroup analysis, for
the female subgroup, elevated CDKN2A was a protective factor for OS (HR=0.889, 95% CI
0.543-1.456, P=0.64), although this was not statistically significant. Conversely, in the male
subgroup, an increase in CDKN2A was also a protective factor for OS (HR=0.679, 95% CI 0.484-
0.953, P=0.025), which was statistically significant. The interaction test yielded a P-value of 0.36,
indicating no significant interaction between CDKN2A and the different gender subgroups,
suggesting that the effect of CDKN2A on OS is consistent across gender subgroups.



Description about mRMR_RFE feature
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Fig-2 The mRMR method selected the top 20 features, and then RFE was used to select four
features.

The mRMR algorithm (Maximum Relevance, Minimum Redundancy)[!! is used to select features,
considering not only the correlation between features and the target variable to be predicted, but
also the correlation between features themselves. The metric used is Mutual Information. For the
mRMR method, the relevance of a feature subset to the class is calculated by the mean of the
information gain of each feature with respect to the class, while the redundancy between features is
measured by the sum of the mutual information between each feature and all other features in the
subset, divided by the square of the number of features in the subset.RFE (Recursive Feature
Elimination) [?lis a feature selection method that ranks the predictor variables before modeling and
sequentially eliminates the least important ones. Its goal is to find the subset of predictors that can
generate an accurate model. The model is repeatedly trained, with the n least important features
being eliminated after each training. Then, the new feature subset is re-trained, and the feature
importance is reassessed. The n least important features are again eliminated, until an optimal

feature subset is obtained.



Description about built GBM Model
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Fig-3 The importance of the selected features in the GBM algorithm.

Gradient Boosting Machine (GBM) algorithm!3l uses a set of weak classifiers (usually decision trees)
to train new weak classifiers based on the negative gradient information of the current model's loss
function. Then, the trained weak classifiers are combined with the existing model in an additive
manner to build a predictive model. By using GBM to model the selected pathological features, it

can predict gene expression.

Table-1 Comparison of parameters between training set and validation set

ACC SEN SPE Brier score
Training set 0.775 0.762 0.789 0.196
Validation set 0.650 0.690 0.605 0.223

PS: Accuracy (ACC), Specificity (SPE), Sensitivity (SEN)
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