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ABSTRACT
A newmodel-free method has been developed and termed the landscape dynamic network biomarker
(l-DNB) methodology.Themethod is based on bifurcation theory, which can identify tipping points prior
to serious disease deterioration using only single-sample omics data. Here, we show that l-DNB provides
early-warning signals of disease deterioration on a single-sample basis and also detects critical genes or
network biomarkers (i.e. DNBmembers) that promote the transition from normal to disease states. As a
case study, l-DNB was used to predict severe influenza symptoms prior to the actual symptomatic
appearance in influenza virus infections.The l-DNB approach was then also applied to three tumor disease
datasets from the TCGA and was used to detect critical stages prior to tumor deterioration using an
individual DNB for each patient.The individual DNBs were further used as individual biomarkers in the
analysis of physiological data, which led to the identification of two biomarker types that were surprisingly
effective in predicting the prognosis of tumors.The biomarkers can be considered as common biomarkers
for cancer, wherein one indicates a poor prognosis and the other indicates a good prognosis.
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INTRODUCTION
Disease progression is a dynamic process that
typically occurs non-linearly from a normal state
via the gradual accumulation of small or quantita-
tive changes that eventually result in a drastic or
qualitative phenotypic transition to a disease state.
Considerable evidence indicates the presence of
critical states, or tipping points, just prior to the
drastic transition between normal and disease states
for many diseases [1–3]. The tipping point (or
pre-disease state) during disease progression is the
critical state, wherein reversion to the normal state
is still possible and predictive information can be
gathered for early-warning signals of imminent dis-
ease states (Fig. 1A). The identification of a tipping
point for pre-cancerous states has recently garnered
considerable attention [4].However, identifying the
critical state is difficult due to phenotypic andmolec-
ular expression similarities to the normal state that
contrast with the stark differences observed between
the disease and normal states. In particular, there are

generally no significant differences in these prop-
erties between normal and critical states (Fig. 1A)
[1–3]. Most traditional biomarkers of disease states
are identified based on the differential expression of
molecules between disease and normal states, rather
than diagnosing critical states.Therefore, identifying
tipping points or pre-disease states is an important
challenge inmedicine or biology that informs under-
standing of early-warning signals for the prevention
and preemptive treatments of diseases in addition to
the molecular mechanisms of complex diseases at a
network level [1–3]. In particular, dynamic network
biomarkers (DNBs) have been proposed to detect
the critical states of many diseases using non-linear
dynamic theory [1–3,5–7].

DNBs are a group ofmolecules (i.e. genes or pro-
teins) or amolecule module that can signal the pres-
ence of a tipping point or critical state just prior
to the drastic deterioration associated with com-
plex diseases. There are three necessary prerequi-
sites to discern DNB modules from data and iden-
tify tippingpoints (seeMethods). Inotherwords, if a
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Figure 1. (A) Schematic diagram for disease progression of a complex disease in a subject. There are three states during
disease progression comprising a normal state, a critical state (or pre-disease state or tipping point) and the final disease
state. Generally, the phenotypic and molecular expressions of the disease state are significantly different from those of the
normal state, but there are no significant differences observed between the critical and the normal states. Thus, detection of
the critical state is difficult. However, there are strong collective fluctuations in processes at the critical state, which differs
from the other states. (B) The l-DNB flowchart for identifying DNBs from a single sample. The individual data of sample d
are used to construct the SSN for sample d. For every gene x, its local module comprises gene x and its first-order neighbors.
The local module score for gene x can indicate the local DNB score for the gene. After ranking the scores for all genes, the
top-k genes can be regarded as the potential DNB for the sample d. The sEDn, sPCCin and sPCCout values for each individual
sample are defined in the Methods.
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physiological system approaches a critical state, then
a DNB module appears and satisfies the three criti-
cality conditions shown inMethods.Theappearance
of such a DNBmodule implies the imminent transi-
tion from a normal state to a disease state.TheDNB
module [1–3] can be obtained by maximizing the
DNB score, IDNB in Equation (1):

IDNB = SDin
P CCin

P CCout
, (1)

where SDin is the standard deviation of gene expres-
sion in the DNBmodule, PCCin is the average of ab-
solute Pearson correlation coefficients among genes
in the DNBmodule and PCCout is the average of ab-
solute Pearson correlation coefficients among genes
compared within and outside of the DNBmodule.

The three components in Equation (1) repre-
sent the three criteria for determining criticality (see
Methods) during disease progression [1–3,5,6].
Generally speaking, strongly collective fluctuations
of a group of variables imply the presence of an im-
minent transition (Fig. 1A). The DNB method de-
scribed above has been applied in the analysis of
complexdiseases andphysiological processes by sev-
eral research groups [1–3,5–8]. However, the DNB
method requires multiple samples, which are gen-
erally unavailable for individual patients in clinical
practices. In addition, despite the solid theoretical
basis for the DNBmethodology that is derived from
non-linear dynamical theory and statistics, there
are problems with computationally detecting DNB
members and determining DNB module size, fur-
ther limiting the application of the method. Here,
a new method is proposed, termed the landscape
DNB (l-DNB), that can be used to detect critical
states of diseases via accurate and reliable identifica-
tion ofDNBs froma single sample.Themethod eval-
uates the local criticality or local DNB score Is using
Equation (1) gene by gene and then compiles the
overall localDNBscores into a landscape.Theglobal
criticality score, IDNB, can then be calculated from
the landscape of the sample (or patient) by choos-
ing those genes as DNB members with the highest
local DNB scores.

Applying the l-DNB method to a dataset of
influenza virus infection [9] as a case study, l-
DNBs, as individual biomarkers, can reliably detect
early-warning signals of disease state transition and
accurately predict severe influenza symptoms in
each individual at least 8 hours earlier than by con-
ventional methods. The l-DNB method was further
applied in the analysis of three different tumors,
including lung adenocarcinoma (LUAD), kidney
renal clear cell carcinoma (KIRC) and thyroid car-
cinoma (THCA). From these analyses, the critical

states prior to the severe disease deterioration were
identified among the different stages of the three
tumors. In particular, the critical state for LUAD
was identified in stage IIB, that of THCA in stage III
and that of KIRC in stage II. In addition, we found
that DNB members were effective in predicting
prognoses when DNBs common across population
samples were further applied to physiological data
as common biomarkers. Moreover, the analyses
indicated that DNB members can be categorized
into two types of molecules to predict prognoses
for the three tumors: one for samples with poor
prognosis (i.e. pessimistic biomarkers) and another
for samples with good prognosis (i.e. optimistic
biomarkers). Taken together, these results indicate
that l-DNB can reliably identify critical state of
diseases using DNB modules on a single-sample
basis. Importantly, the method quantifies early-
warning signals before disease deterioration, and
also provides real network biomarkers for disease
prediction within each individual.

RESULTS
Identifying DNB modules in a single
sample using the l-DNB method
Using n samples as the reference samples or data
[10] that represent the expression data form genes,
the identification of DNBs within a single sample by
l-DNB can be performed with the following three
steps (Fig. 1B, Supplementary Fig. 19, available as
Supplementary Data atNSR online, andMethods).

Step-1: Construction of a single-sample network
(SSN) for the given sample (see Methods).

Step-2:Calculationof the localDNBscore for ev-
ery gene in the dataset. Using the three criteria for
criticality [1,3,11], the local DNB score, Is (x), is cal-
culated usingEquation (8) (seeMethods) for the lo-
cal module centered at gene x, where the local mod-
ule is gene x and its first-order network from the SSN
[10], with x= 1, . . . , m.

Step-3: Identification of theDNBmodule for the
single sample. Overall, local DNB scores are used
to form a landscape, from which DNB genes (or
the DNB module) and the global DNB score, IDNB,
can be obtained for the sample or subject. Here, the
DNB genes or DNB module are those genes with
the highest-k local DNB scores, Is(x), and the global
DNB score, IDNB, is defined as

IDNB =
k∑

x=1

Is (x)/k.

The SSN can then be constructed by collect-
ing the edges with significant sPCCs [10] for each
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sample (see Methods and Supplementary Fig. 1,
available as Supplementary Data at NSR online). In
each SSN, a gene and its first-order neighbors com-
prise a local module around the gene and the local
DNB, Is, of the module is calculated using Equation
(8) (Fig. 1B), where x= 1, . . . , m. Since amodule has
a central gene in the SSN, the module is considered
the local module for this gene in the single sample
(Fig. 1B). Hence, Is is used as the local DNB score
for the local module centered at this gene in the sin-
gle sample.

After the Is(x) of every gene x is obtained from
its corresponding module in SSN, all of the genes
are ranked in descending order by scores (Fig. 1B),
which provides a landscape of local DNB scores
(Supplementary Fig. 2, available as Supplementary
Data at NSR online). The top-k genes in the ranked
list can be regarded as the potential DNB members
for the single sample and the corresponding global
DNB score can be simply estimated by averaging Is
over these top-k genes.Thus, the tipping point of the
disease state can be quantified with the correspond-
ingDNB in a reliable and systematicmannerwithout
clustering algorithms or other heuristic procedures
(Supplementary Fig. 19, available as Supplementary
Data at NSR online). The sample with the highest
IDNB score among all of the samples is considered to
be in the critical state or otherwise near the tipping
point.

Detecting early-warning signals of
influenza virus infection with l-DNBs
The GSE30550 dataset comprises time series data
for the influenza virus infection process [9] and
was obtained from the GEO database to vali-
date the detection of early-warning signals prior
to disease onset using l-DNB (see Supplemen-
tary Methods, available as Supplementary Data at
NSR online). Within the dataset, 17 healthy hu-
man volunteers were inoculated with H3N2 in-
fluenza virus and gene-expression profiles in host pe-
ripheral blood samples were examined at 16 time
points for each individual (Supplementary Fig. 3,
available as Supplementary Data at NSR online).
Nine of the 17 volunteers (subjects) developed se-
vere influenza symptoms, while the remaining 8 did
not [9].

SSNs were constructed and the Is values were
calculated for every gene (Fig. 1B) at each time
point within each sample using reference data
representing gene-expression data from all of the
volunteers at the –24-hour time point (24 hours
before viral inoculation, Supplementary Fig. 3,
available as Supplementary Data at NSR online).

The 20 highest-ranked genes by Is values were
considered the DNB for each subject (i.e. individual
biomarkers or individual DNBs for the sample)
in each time point. Subsequently, the average Is
value for the 20 top ranked genes (i.e. the IDNB)
was defined as the global DNB score. The high
score corresponds to an early-warning signal for
disease state (Fig. 2).The l-DNB scores for the nine
symptomatic subjects drastically increased before
the appearance of influenza symptoms (Fig. 2A) and
the scores for the eight non-symptomatic subjects
remained stable and low throughout the experiment
(Fig. 2B). Thus, the early-warning disease signals
for the respective DNBs for influenza symptoms
were detected in the nine symptomatic subjects at
least 8 hours before the appearance of influenza
symptoms, while no significant signal was observed
in the eight non-symptomatic subjects (Fig. 2B
and C). Note that the DNB genes of each subject
were generally dissimilar (Supplementary Table 1,
available as Supplementary Data at NSR online),
indicating the presence of individual biomarkers
for each subject rather than biomarkers that are
common across all of the subjects. Enrichment
analysis of high-frequency genes appearing in
at least four DNBs (or subjects) indicated that
the high-frequency genes were associated with
some immunity-related biological processes an-
notated in the gene ontology database (http://
www.ebi.ac.uk/QuickGO) including ‘immune re-
sponse’ (GO:0006955), ‘regulation of lymphocyte
mediated immunity’ (GO:0002706) and ‘regula-
tion of adaptive immune response’ (GO:0002819).
These observations are consistent with the process
of viral infection. Critical states can certainly be
detected in more than one time point for a sample,
as was observed for volunteers s6, s12 and s13
(Fig. 2C). Similar results were obtained when using
the 30 highest-ranked genes in the Is list as the DNB
(Supplementary Fig. 4, available as Supplementary
Data at NSR online), implying that l-DNBs can
robustly identify pre-disease states and accurately
detect early-warning signals for influenza viral infec-
tions. Therefore, the l-DNB method can be used to
identify the critical states of diseases in a reliable and
systematic manner using individual DNBs based on
expression data from one sample taken in a clinic.

Identifying critical states in tumors with
l-DNB
The l-DNB methodology was further applied to
investigate three tumor-associated gene-expression
data sets for LUAD, KIRC and THCA that
were obtained from the TCGA database (see

http://www.ebi.ac.uk/QuickGO
http://www.ebi.ac.uk/QuickGO
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(A) (B)

(C)

Figure 2. Identification of critical states for influenza viral infection data. (A) Line charts showing global DNB scores as early-warning signals in all
symptomatic subjects; (B) line charts showing global DNB scores for all asymptomatic subjects; (C) l-DNB diagnoses and clinical diagnoses for all of
the samples.

Supplementary Methods, available as Supplemen-
tary Data at NSR online). SSNs were constructed
for every tumor sample and the Is values for every
gene were also calculated and ranked for each.
The 20 highest-ranked genes in the Is list were
chosen as the DNB module for each sample and
global DNB scores, IDNB, were obtained for every
tumor sample. The reference samples for each
tumor were taken from tumor-adjacent samples
and are described in further detail within the Sup-
plementary Methods, available as Supplementary
Data at NSR online. The average DNB scores were
calculated for samples in each tumor stage against
the respective reference samples and the resultant
score curves are shown in Fig. 3A–C. According
to DNB theory, the tipping point suggested by
the DNB score is the critical state during disease
progression [1–3,11]. The tipping point for LUAD
was identified in stage IIB (Fig. 3A), after which the
tumor state significantly deteriorated in patients,
with LUAD-like disease phase transitions. Survival
analysis was evaluated from the obtained DNBs
for LUAD samples and compared against survival
curves for samples before and after the critical state
(stage IIB) using log-rank tests. The survival curves
before and after stage IIB in LUAD samples were
significantly different (p ∼ 0) (Fig. 3D). Moreover,
the survival times of samples after the critical

state were significantly shorter than for samples
before the critical state (Fig. 3D). There were no
significant differences in survival curves among
samples in stages IA, IB and IIA (the stages prior to
the critical state) (P = 0.7561; Supplementary Fig.
6a, available as Supplementary Data atNSR online).
In addition, there were also no significant differ-
ences in survival curves among samples in stages
IIIA, IIIB and IV (the stages after the critical state)
(P = 0.47515; Supplementary Fig. 6b, available as
Supplementary Data at NSR online). The survival
times of samples in stage IIIA were significantly
shorter than for samples in stage IIB (P = 0.0087;
Supplementary Fig. 7, available as Supplementary
Data at NSR online). These results indicate the
sudden deterioration of survival times in patients
with LUAD after the IIB stage, strongly implying
that the IIB stage is the disease state tipping point.

l-DNB analyses also identified the tipping
point/critical state for THCA disease states as
stage III (Fig. 3B), after which significant tumor
deterioration occurred. The survival curves for
samples before and after the critical state of THCA
were significantly different (P= 5× 10−5; Fig. 3E).
Accordingly, the survival times of samples after
the critical state were significantly shorter than
for samples prior to the critical state (Fig. 3E). In
addition, the critical state/tipping point for tumor
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Figure 3. Identification of critical states for tumor deterioration in three cancers: (A) LUAD; (B) THCA; (C) KIRC. Comparison of survival curves before
and after critical state for three cancers: (D) LUAD; (E) THCA; (F) KIRC.

deterioration in KIRC was identified in stage II
(Fig. 3C). The survival curves for samples before
and after the KIRC critical state were significantly
different (P ∼ 0; Fig. 3F). Accordingly, survival
times of samples after the critical state were signif-
icantly shorter than for samples before the critical
state (Fig. 3F). Taken together, the results provided
here demonstrate that l-DNB can identify the
critical states associated with disease deterioration
in cancers.

Prognostic prediction of tumors using
l-DNB
In addition to identifying critical states, l-DNB
is effective in predicting prognoses. Indeed, DNB
members could be categorized into two types of
molecules for prognostic prediction as common
biomarkers for all of the samples: those for samples
withpoorprognosis, termedpessimistic biomarkers;
and those with good prognosis, termed optimistic
biomarkers. Additional details for these identifica-
tions are provided in the Supplementary Methods,
available as Supplementary Data atNSR online.

If pessimistic biomarkers appeared in a sample’s
DNB, then the prognosis for the sample would be
more pessimistic than for other samples. Likewise, if

optimistic biomarkerswere detected in theDNBof a
sample, the prognosis for the sample would bemore
optimistic than for others.

A total of 11 genes were identified as pessimistic
biomarkers for LUAD (Fig. 4G and Supplementary
Fig. 8, available as Supplementary Data at NSR on-
line), while 3 were identified as optimistic biomark-
ers (Fig. 4G and Supplementary Fig. 9, available
as Supplementary Data at NSR online). The sur-
vival times of the samples identified with pessimistic
biomarkers for LUAD were significantly shorter
than for other samples (P ∼ 0; Fig. 4A). Further,
significantly longer survival times were observed
for samples identified with optimistic biomarkers
for LUAD than for other samples (P = 0.01008;
Fig. 4B).Thus, if one or more pessimistic biomarker
genes were present in the DNB of the subject’s sam-
ple, they would have a shorter survival time, while
the converse was true for those samples with opti-
mistic biomarkers.

To test the predictive power of DNB members,
we separated samples identified with pessimistic
biomarkers into three groups. The three groups ex-
hibited with only one, at least two and at least three
pessimistic biomarkers in their DNBs, respectively.
The survival times of group-2 were shorter than
those for group-1 (Supplementary Fig. 10a, available
as Supplementary Data at NSR online), although
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Figure 4. Comparison of survival curves for pessimistic and optimistic biomarkers identified for three cancers: (A) pessimistic biomarkers for LUAD;
(B) optimistic biomarkers for LUAD; (C) pessimistic biomarkers for THCA; (D) optimistic biomarkers for THCA; (E) pessimistic biomarkers for KIRC; (F)
optimistic biomarkers for KIRC. Pessimistic or optimistic biomarkers in the DNB are indicated by ‘Identified sample’, while ‘Unidentified sample’ refers
to other samples. (G) Genes representing pessimistic and optimistic biomarkers for LUAD, THCA and KIRC disease states.

the difference was not statistically significant (P =
0.0513). In addition, the survival times for group-3
were shorter than those of group-1 (Supplemen-
tary Fig. 10b, available as Supplementary Data at
NSR online) and this difference was statistically
significant (P = 0.00768). These results indicate
that, when more pessimistic biomarker genes were
present in the DNB of a patient, shorter survival
times would be expected for the patient. Hence, the
pessimistic and optimistic biomarkers for LUAD
can be used to provide accurate prognosis or predict
survival times in patients with LUAD.

In addition, six pessimistic biomarker genes
(Fig. 4G and Supplementary Fig. 11, available as
Supplementary Data at NSR online) and two opti-
mistic biomarker genes (Fig. 4G and Supplementary
Fig. 12, available as Supplementary Data atNSR on-
line) were identified for THCA. The survival times
of samples identified with pessimistic biomarkers
for THCA were significantly shorter than those
for other samples (P ∼ 0; Fig. 4C). Conversely,
significantly longer survival times were observed
for samples identified with optimistic biomarkers
for THCA than for other samples (P = 0.00028;
Fig. 4D). Thus, the pessimistic and optimistic
biomarkers for THCA can be used tomake accurate
prognoses and estimate survival times for patients
with THCA.

Lastly, eight pessimistic biomarker genes
(Fig. 4G and Supplementary Fig. 13, available as
Supplementary Data atNSR online) and seven opti-
mistic biomarker genes (Fig. 4G and Supplementary
Fig. 14, available as Supplementary Data at NSR
online) were identified for KIRC. As in the above
analyses, pessimistic biomarkers for KIRC can be
used to identify potentially shorter survival times
in patients with KIRC, while optimistic biomark-
ers for KIRC can be used to identify potentially
longer survival times. The samples with pessimistic
biomarkers exhibited shorter survival times than
did other samples (P ∼ 0; Fig. 4E) and samples
with optimistic biomarkers exhibited longer survival
times than did other samples (P∼ 0; Fig. 4F).

DISCUSSION
The l-DNB methodology described here represents
a novel approach to reliably and accurately iden-
tify critical states and detect early-warning signals
of complex diseases on a single-sample basis. In
this study, the l-DNB algorithm was developed to
identify individual DNBs from single samples and
the ability of l-DNB to detect early-warning signals
for four different diseases, namely influenza, LUAD,
THCA and KIRC, was validated. The l-DNB ap-
proach described here can be used to detect local
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criticality score or local DNB score for every gene
within a sample, and the 20–50 top ranked genes are
empirically considered as the suitable DNB size in
a sample. Consequently, DNB can be robustly ob-
tained using l-DNB for any single sample, wherein
higher DNB scores indicate a higher risk for health
deterioration or an imminent disease status for the
subject.

Application of individual DNBs to clinical data
indicated that DNB members are effective for
prognostic analyses, as evinced by the identification
of pessimistic and optimistic biomarkers for LUAD,
THCA and KIRC disease states that can be used
to evaluate patient prognosis for each of the three
diseases. Accordingly, if a patient’s DNB included
pessimistic biomarkers, the patient was likely to
have shorter survival times. Moreover, greater
numbers of pessimistic biomarkers in patient DNBs
correlated with shorter patient survival times.
Conversely, if a patient’s DNB included optimistic
biomarkers, the patient would be expected to have
longer survival times. Importantly, some biomarkers
indicated in Fig. 4G have been previously associated
with their corresponding tumors. For example,
down-regulation of insulin-like growth factor 4
(INSL4) appeared to contribute to a slower growth
rate and loss of tumorigenic properties in a cell line
of LUAD [12]. Likewise, down-regulation of Alpha-
fetoprotein (AFP) has been reported to result in
LUAD [13,14]. Some of the biomarkers identified
here were related to other cancers and have not
been previously reported to be associated with
LUAD, THCA or KIRC. For example, SOX15 is
related to pancreatic tumors, esophagus tumors and
embryonal cell carcinoma [15–17], while CXCL5 is
related to laryngeal cancer and glioma [18,19] and
TLX1 is related to leukemia [20,21]. Nevertheless,
most of the biomarkers indicated in Fig. 4G have
not been previously reported in association with
any tumor disease state. Thus, the pessimistic and
optimistic biomarkers identified here could be
important targets for future research into themolec-
ular mechanisms underlying tumor onset or disease
state deterioration. Four genes (PSG3, AFP and
ADH4 in LUAD, in addition to SPANXN3 inKIRC)
were identified as pessimistic biomarkers, but were
actually not differentially expressed between the
identified and unidentified samples (Supplementary
Table 2, available as Supplementary Data at NSR
online), and thus they cannot be detected by tradi-
tional methods that rely on differential expression
patterns. This result implies that the l-DNB method
can reveal ‘Dark Matter’ [22,23] genes (i.e. those
without differential expressions) that are usually
ignored by traditional analyses.

Importantly, the method proposed here is
model-free and does not require learning processes
to identify biomarkers, which represents an ad-
vantage over traditional classification or machine
learning methods that require a large number of
case/control samples for supervised or unsuper-
vised learning, in order to avoid overlearning issues.
Specifically, the l-DNB method is constructed
from three model-free DNB conditions for each
sample that are based on the essential dynamical
features of critical states for general biological
systems. Consequently, the method inherently
identifies individual biomarkers rather than com-
mon biomarkers without overlearning problems.
It should be noted, however, that the identification
of common biomarkers or identifying a common
threshold of criticality across all of the individuals for
each diseasemay require data forwhole populations.

The l-DNBmethod is also robust with respect to
reference samples owing to the mechanisms under-
lying SSN construction, which has been discussed
in detail previously [10]. Specifically, similar l-DNB
rankings can be obtained from SSNs for a single
sample with different reference samples. Thus, sim-
ilar l-DNB rankings can be obtained from different
samples with similar network structures. Moreover,
the differential network (differential Pearson corre-
lation coefficient (PCC)) between any two samples
eliminates common components, including those of
the reference samples, thereby further reducing the
influence of reference samples on outcomes. How-
ever, when reference sample sizes are small (e.g.
<10), they may significantly impact rankings. Addi-
tional details of validation from other independent
datasets and other SSN methods are provided in
the Supplementary Information, available as Supple-
mentary Data atNSR online.

CONCLUSION
The l-DNB method proposed here can quantify
early-warning signals for disease states on a single-
sample basis prior to disease onset or disease states
deterioration. Moreover, the method can be used
to identify effective network biomarkers that can
predict the prognosis of each cancer patient. Con-
sequently, the methodology has great potential for
direct application in preventive and personalized
medicine [24–27]. Specifically, the l-DNB method
can detect DNBs systematically without clustering
algorithms or other heuristic procedures that have
previously been used. Hence, it can be directly ap-
plied to personalized pre-disease diagnosis and also
the analysis of molecular mechanisms associated
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with disease progression at the network level. Sim-
ilarly, the l-DNB method could also be used to de-
tect critical states of many non-linear biological pro-
cesses, including cellular differentiation and cellular
proliferation [1–3,5–6].

METHODS
The three criteria for DNB identification
The DNB theory is provided in Supplementary
Methods, available as Supplementary Data at NSR
online, and is based on the premise that, when a bio-
logical or physiological system approaches a critical
state from a stable normal state, a DNBmodule or a
group of molecules (i.e. variables) appears and satis-
fies the following three statistical conditions [2,4]:
[Condition1]deviation for eachmolecule inside the

module (SDin: standard deviation) drastically in-
creases;

[Condition 2] correlation betweenmolecules inside
the module (PCCin: Pearson correlation coeffi-
cients in absolute values) rapidly increase; and

[Condition 3] correlation betweenmolecules inside
andoutside of themodules (PCCout: Pearson cor-
relation coefficients in absolute values) rapidly
decrease.

Construction of SSNs
Given n reference samples, the PCC between genes
x and y in the reference sample data canbe calculated
as

PCCn(x, y) =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

n∑
i=1

(yi − ȳ)2
,

(2)
where xi and yi are the expression values for genes x
and y for the ith sample in the reference samples, re-
spectively. x̄ and ȳ are the average gene-expression
values of genes x and y in the reference samples, re-
spectively.

PCCn(x, y) is the correlationbetweengenesx and
y in the n reference samples. After a new sample is
added to the reference sample set (Supplementary
Fig. 1, available as Supplementary Data at NSR on-
line), a new PCC is calculated for the two genes us-
ing Equation (2) based on the total n+1 samples
(i.e. n reference samples and the one new sample
d) as PCCn+1(x, y).The difference between PCCn+1
and PCCn for the two genes is due to the new sam-
ple addition to the reference data (Supplementary
Fig. 1, available as Supplementary Data at NSR on-
line) and hence characterizes the correlation be-

tween this sample and the n reference samples.Thus,
the single-sample PCC (sPCC) of the two genes x
and y against the n reference sample is defined as
follows [10]:

s P CCn(x, y) = PCCn+1(x, y) − PCCn(x, y),
(3)

which actually represents a differentialPCC or a per-
turbedPCCof this sample against the reference sam-
ples. Since PCCs follow a t-distribution, sPCCn in
Equation (3) follows the differential PCC distribu-
tion with consecutive samples.The statistical signifi-
cance of sPCCn can be accurately evaluated using the
volcano distribution derived from the distribution of
then reference samplesor via SSNtheory [10].Thus,
the distribution of sPCCn depends on both thePCCn
and n values.

To reduce computational complexity, an approx-
imation scheme can be used to estimate the signifi-
cance of sPCCn of Equation (3). Specifically, by as-
suming a Gaussian distribution with a sufficiently
large n, a ‘Z’ score can be calculated for each sPCC
and the p-value of each sPCC can be approximated
from the standard normal cumulative distribution
[28] based on the ‘Z’ scores [10].

SSNs can then be identified based on significant
sPCCs among all of the pairs of genes or molecules
that are perturbed by the single sample, while this
network also characterizes the single sample [10].
Further, the sPCCn for the SSN can be directly used
as an approximation without significance tests. In
addition to using the differential sPCC values of
Equation (3), SSNs can also be constructed using
correlation-like edge of each sample (Supplemen-
tary Methods, available as Supplementary Data at
NSR online) [29,30].

Estimating deviation in a single sample
Given n reference samples (i.e. the normal or con-
trol sample dataset), the distribution of each gene’s
expression can be obtained as its reference distribu-
tion.The expression of a gene in a new sample d (e.g.
a case sample for statistical testing) can be compared
with its reference distribution to estimate the devia-
tion of its expression from the reference samples (n
samples).The standard deviation of gene expression
in the new sample can be expressed as the deviation
from expectation based on its reference distribution
(Supplementary Fig. 1, available as Supplementary
Data at NSR online). According to Condition 1 of
the DNB identification, the deviation of gene x ex-
pression in a single sample against its expression in
the n reference samples, namely the single-sample
Expression Deviation (sED), can be defined as:

s E D(xd ) = |xd − x̄| , (4)
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where xd is the expression of gene x in the new sam-
ple d and x̄ is the average expression of gene x in the
n reference samples, namely

x̄ = 1
n

n∑
i=1

xi .

Hence, sED can be regarded as Condition 1 of
DNB for the l-DNBmethod.Then, we have

s E Din = 1
1 + nxd

[
s E D(xd ) +

∑
yd∈Nxd

s E D(yd )

]
,

(5)
which represents the average deviation in expression
of all of the (1+nxd) genes in the local module of
gene x for sample d relative to the reference sam-
ples. Here, the local module is gene x and its first-
order neighbors, Nxd (where Nxd is a gene set with
nxd genes), which are based on the SSN.

Estimating correlation in a single sample
If n is sufficiently large, |PCCn| is considered to be
larger than |sPCCn| (i.e. |PCCn| > |sPCCn|). Here,
PCCn of Equation (2) and sPCCn of Equation (3)
are used to evaluate Conditions 2 and 3 and esti-
mate local DNBs. Specifically, PCCin is proportional
to sPCCin and is defined as

s P CCin = 1
nxd

∑
yd∈Nxd

|s P CCn(xd , yd )|,

(6)
where sPCCin for the local module of gene x is the
average value of sPCCn between gene x and its first-
order neighbors,Nxd, in the SSN.Thus, if the correla-
tion forPCCn+1 (in absolute values) increasesdue to
the additional sample d (Condition 2), then sPCCin
increases.

PCCout (Condition 3) is defined as the average
correlation between the inner and outer genes of the
local DNBmodule for gene x. Since the neighbors of
gene xmay ormay not beDNBmembers, sPCCout is
heuristically defined as

s P CCout = 1
nxd mxd

∑
xd ∈Nxd ,
yd ∈Mxd

|s P CCn(xd , yd )|. (7)

Here, sPCCout for the local module of gene x is
proportional to the average value of sPCCn between
the first-order neighbors,Nxd, and the second-order
neighbors, Mxd (Mxd is a gene set with mxd genes),
for gene x in the SSN (Fig. 1B). Note that Equations
(6) and (7) approximate PCCin and PCCout of the
sample d and there may be other ways to effectively
and accurately estimate these values.

Calculation of local DNB scores for each
gene in a single sample
The local DNB score, Is(x), of each gene (x = 1, 2,
. . . , m) can be obtained via Equation (8) for its lo-
cal module, which is based on the SSN and the three
statistical conditions for DNBs, similar to Equation
(1):

Is (x) = s E Din
s P CCin

s P CCout
, (8)

where Is(x) is the score for the local module of gene
x based on the single sample. In addition, the local
DNB score Is(x) for each gene x can be considered
as the criticality score for the gene and can thus be
used to rank the importance of genes contributing
to the criticality of the whole dynamic physiological
system.

The detailed algorithm used to identify DNB
modules and tipping points for a single sample are
provided in the Supplementary Methods, available
as Supplementary Data atNSR online.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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