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Epigenetic reprogramming driving successful and failed 
repair in acute kidney injury
Yoshiharu Muto1, Eryn E. Dixon1, Yasuhiro Yoshimura1, Nicolas Ledru1, Yuhei Kirita1,  
Haojia Wu1, Benjamin D. Humphreys1,2*

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores 
kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called 
failed repair. To better understand the epigenetic reprogramming driving this AKI- to- CKD transition, we generated 
a single- nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single- nucleus tran-
scriptomes and epigenomes. We reveal cell- specific dynamic alterations in gene regulatory landscapes reflecting, 
especially, activation of proinflammatory pathways. We further generated single- nucleus multiomic data from 
four human AKI samples including validation by genome- wide identification of nuclear factor κB binding sites. A 
regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, 
identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also 
drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation 
to comprehensively understand cell states in AKI.

INTRODUCTION
Acute kidney injury (AKI) is characterized by a sudden decrease in 
renal function, usually from ischemic or toxic insults (1, 2). AKI is 
very common especially among hospitalized patients with an inci-
dence up to ~15% and approaching ~50% among critically ill elderly 
patients (2). AKI causes short- term morbidity and mortality, but it 
also presents substantial risk of the development of future chronic 
kidney diseases (CKDs), termed the AKI- to- CKD transition (1–3). 
Several lines of evidence have demonstrated that the AKI- to- CKD 
transition involves inflammation driving subsequent interstitial fibro-
sis (3). Tubular cell injury causes proinflammatory changes that pro-
motes an innate immune response through recruitment and activation 
of immune cells, further promoting local inflammation (3). Both 
resident macrophages and infiltrating monocytes differentiate into 
distinct proinflammatory or profibrotic subsets depending on micro-
environmental cues and contribute to remodeling in the microenvi-
ronment (4, 5). Proinflammatory and profibrotic mediators activate 
other interstitial cell types, leading to loss of parenchyma and irre-
versible interstitial fibrosis, the final and common pathway in CKD 
(6). The molecular mechanisms underlying both successful kidney 
repair and the AKI- to- CKD transition remain incompletely under-
stood. During AKI and subsequent repair, the epigenetic dynamics 
across diverse kidney cell types are especially poorly described be-
cause, until recently, methods to characterize these cell- specific 
changes were unavailable. Deciphering epigenetic changes during in-
jury and repair will be important to identify previously unrecognized 
therapeutic targets for intervention (7).

We and others have generated single- nucleus transcriptomic at-
lases from mouse kidneys after ischemia- reperfusion injury (IRI) 
and identified a Vcam1- expressing subset of proximal tubular cells 
(PTCs) that emerges and persists after kidney injury (8–10). This 
cell state is characterized by a unique proinflammatory gene 

expression signature, and it persists later after injury, leading us to 
name it failed repair PTCs (FR- PTCs) (8, 9, 11). Furthermore, similar 
PTC subtype expressing vascular cell adhesion molecule 1 (VCAM1) 
was also observed in healthy and CKD human kidneys (12–14). The 
frequency of FR- PTCs in advanced human CKD due to autosomal 
dominant polycystic kidney disease (ADPKD) was also markedly 
increased, replacing normal PTCs (13). The increase in FR- PTCs in 
CKD suggests a potential causative role in the AKI- to- CKD transi-
tion and CKD progression broadly. However, the molecular mecha-
nisms driving a failed repair gene expression signature and a role 
in  interstitial fibrosis driving CKD progression are incompletely 
 understood.

Epigenomic alterations have recently gained attention as drivers 
of the AKI- to- CKD transition (15–17). Previously, we have defined 
cell type–specific epigenetic signatures in healthy (12) and ADPKD 
and CKD (13, 14) human kidneys, highlighting the enrichment of 
nuclear factor κB (NF- κB) transcription factor (TF) binding sites on 
accessible chromatin regions in FR- PTCs. We have interpreted in-
creased chromatin accessibility for NF- κB binding motifs in the FR- 
PTC state as reflecting a central role for this proinflammatory TF in 
promoting inflammation, fibrosis, and the AKI- to- CKD transition. 
Consistent with this, Gerhardt et  al. (11) recently performed a 
single- nucleus multiomic analysis on genetically labeled Ki67+ cells 
at two time points after IRI (4 weeks and 6 months), describing pro-
inflammatory transcriptomic and epigenetic alterations in Vcam1+ 
FR- PTCs even 6 months after the insult, suggesting persistent epig-
enomic alterations after tubular injury. The lack of comprehensive, 
cell type–specific epigenomic analysis along multiple time points 
from the acute to chronic phase of AKI hampers our understanding 
of the epigenetic mechanisms driving the FR- PTC state.

Here, we performed single- nucleus ATAC sequencing (snATAC- 
seq) on mouse kidneys following IRI to comprehensively describe 
the cell- specific epigenetic states and temporal dynamics in the AKI- 
to- CKD transition. This single- nucleus epigenetic atlas was integra-
tively analyzed with single- nucleus RNA sequencing (snRNA- seq) 
data from the same samples (8), and we describe the cis- regulatory 
epigenetic network driving failed repair cell states. To validate our 
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findings for mouse kidneys with IRI, we further generated paired 
multimodal single- nucleus multiomic datasets from four human 
AKI kidney samples. Interspecies multimodal analysis identified cy-
clic adenosine monophosphate (cAMP) response element–binding 
protein 5 (CREB5) as a critical TF potentially involved in both the 
recovery and failed repair processes in PTCs. We also generated an 
interactive data visualization tool for single- nucleus epigenomic data 
(http://humphreyslab.com/SingleCell/). This detailed temporal 
single- nucleus multiomic atlas mouse kidney IRI reveals the com-
prehensive cell- specific epigenetic landscape during the IRI disease 
course and provides a foundation to better understand disease 
mechanisms.

RESULTS
Single- nucleus chromatin accessibility atlas for mouse 
kidneys with IRI
We performed snATAC- seq on a total of 19 male mouse kidney 
samples collected along six time points (sham, 4 and 12 hours, and 
2, 14, and 42 days after bilateral IRI; n = 3 to 4 per time point) with 
10X Genomics Chromium Single Cell ATAC v1 (Fig.  1A). The 
snRNA- seq for these samples was previously reported (8). After 
batch quality control (QC) filtering and preprocessing (see also Ma-
terials and Methods), label transfer (Seurat) was performed on the 
snATAC- seq dataset using the snRNA- seq dataset (18, 19). The 
snATAC- seq datasets were filtered using a 60% confidence thresh-
old for cell type assignment to remove heterotypic doublets 
(fig. S1A). Nuclei with inconsistent annotations between label trans-
fer and manual annotation based on known cell type marker gene 
activities were further removed as remaining doublets and low- 
quality nuclei (fig. S1, B to F; see also Materials and Methods). The 
resultant datasets with high- quality nuclei were integrated with 
Harmony (20) and visualized in Uniform Manifold Approximation 
and Projection (UMAP) space (Fig. 1B). We detected 193,731 acces-
sible chromatin regions (7906 ± 4286 regions per nucleus) among 
157,000 nuclei in the final dataset. The differentially accessible re-
gions (DARs) in each cluster include the transcription start site 
(TSS) of known cell type marker genes (Fig. 1C and data S1), con-
firming our cell type annotations. Gene activities were predicted by 
accessibility of a gene body and promoter and used to further con-
firm our cell type annotations (fig. S2). The QC metrics of snATAC- 
seq fragments in each time point indicated that the quality of 
samples during the time course following ischemic injury was main-
tained (fig. S3, A to C). The QC metrics among cell types indicate 
that proximal convoluted and straight tubules (PCTs/PSTs) have the 
best quality (fig. S3, D to F), although other cell types also showed 
sufficient quality to evaluate the DARs (Fig. 1C and data S1) and TF 
motif enrichment in accessible regions (data S2).

Mouse PTC heterogeneity after IRI
We have previously identified FR- PTCs that emerge after IRI, adopt 
a proinflammatory and profibrotic phenotype, and persist in mouse 
kidneys (8). To better understand the epigenetic mechanism driving 
successful and failed repair of PTCs, we subclustered PCT/PST clus-
ters (Fig. 2A), identifying PTC subtypes with mild- to- severe injury 
and the FR- PTC state, which, as expected, had specifically increased 
accessibility to the Vcam1 gene promoter (Fig. 2B and data S3). The 
injured PTC subtypes display accessibility to the promoter of Krt20, 
previously found to be expressed in injured PTCs in mouse kidneys 

(21). Gene expression signatures in the snRNA- seq dataset (fig. S4A) 
(8) were similar to gene activities predicted from accessibility of a 
promoter and gene body (fig. S4B) among PTC subtypes, confirm-
ing our PTC subtype annotation. TF motif enrichment analysis with 
chromVAR (22) identified PTC subtype–specific TF motif enrich-
ment on open chromatin regions (Fig. 2C and data S4). The Hepato-
cyte nuclear factor 4α (HNF4A) binding motif was enriched in 
healthy PTC subtypes, and this was lost in injured and failed repair 
cell states, consistent with previous findings in human kidneys (12). 
In contrast, motif enrichment for an activating protein 1 (AP- 1) 
family TF JUN/FOS and nuclear factor erythroid 2- related factor 2 
(NFE2L2) was observed widely among injured PTC states along the 
time course (Fig. 2D and fig. S5A). NFE2L2 regulates the expression 
of a cohort of antioxidant genes, protecting against oxidative stress 
induced by IRI and other renal insults (23). FR- PTCs had enhanced 
NFE2L2 motif availability compared to healthy PTCs, suggesting a 
sustained oxidative stress response in FR- PTCs (fig. S5A). However, 
the similar pattern of motif enrichment between JUN/FOS and 
NFE2L2 may simply reflect their indistinguishable consensus se-
quences (24) on the open chromatin regions rather than true bind-
ing of the TFs, warranting a future validation study. The binding 
motifs for NF- κB family TFs were most enriched in FR- PTCs 
(Fig. 2D), in agreement with previous findings in mouse and human 
kidneys (8, 11, 12). Together, these findings reveal distinct epigene-
tic programs between different PTC states after injury, likely reflect-
ing separate gene regulatory networks.

The S3 segment is the most vulnerable to IRI among PTCs in 
most animal models of ischemia (25). To further characterize epi-
genetic response following acute tubular injury, we evaluated the 
motif enrichment signature of the injured S3 segment over time 
(Fig. 2E) (8). Of note, in healthy S3 PTCs, the TF motif enrichment 
signatures were not completely recovered 6 weeks after IRI, consis-
tent with the recent finding that transcriptional and epigenetic al-
teration in adaptive PTCs persists for a long period, even 6 months 
after IRI (11). The S3 segment at day 2 was specifically enriched in 
NF- κB TF motif availability and the Hippo pathway effector TEA 
domain family member (TEAD) molecules and the CCCTC- 
binding factor (CTCF) motif. The specific enrichment of the NF- 
κB motif is consistent with our previous observation that PTCs 
expressing VCAM1 emerge in the Hepatitis A virus cellular recep-
tor 1 (HAVCR1)- positive injured tubules in a scattered manner at 
day 2 following IRI (8). CTCF is a multifunctional TF serving as an 
architectural protein to create boundaries between topologically 
associating domains in chromosomes, regulating interactions be-
tween cis- regulatory regions (CREs) and promoters (26). A previ-
ous study has shown that ~60% of CTCF binding sites are cell 
type–specific (26), suggesting that reorganization of CTCF avail-
ability may reflect global epigenomic remodeling in the injured S3 
segment. To assess the cell fate of the injured S3 segment at day 2, 
we constructed a pseudotemporal trajectory (27) on the S3 seg-
ment population with injury (Injured S3: days 2 and 14) and recov-
ery (Healthy S3: days 14 and 42) and PTCs with failed recovery 
(FR- PTCs: days 14 and 42) (Fig. 2F). The injured S3 segment at day 
2 has two separate fates—either to healthy PTCs or to the failed 
repair cell state. Given the transient activation of the NF- κB bind-
ing motif in the injured S3 segment at day 2 (Fig. 2E) and following 
its persistent activation in FR- PTCs (Fig.  2D), NF- κB activation 
may initiate and promote the failed repair branch of the trajectory 
(Fig. 2F).

http://humphreyslab.com/SingleCell/
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Fig. 1. Single- nucleus epigenetic profiling for mouse kidneys with IRI along the time course. (A) Overview of experimental methodology. Single- nucleus chromatin 
accessibility atlas was generated from mouse kidneys along the time course after bilateral iRi (n = 3 to 4 for each time point) and analyzed together with the previously 
generated snRnA- seq dataset. (B) UMAP plot of the previously generated snRnA- seq dataset (left) and newly sequenced snAtAc- seq dataset with annotation by label 
transfer from the snRnA- seq dataset (middle) and clustering- based annotation (right). Pt, proximal tubule; Pct, proximal convoluted tubule; PSt, proximal straight tubule; 
Pec, parietal epithelial cells; dtl/Atl, descending/ascending thin limb of henle’s loop; ctAl/mtAl; cortical/medullary thick ascending limb of henle’s loop; dct, distal 
convoluted tubule; cnt, connecting tubule; Pc, principal cells; icA, type A intercalated cells; icB, type B intercalated cells; POdO, podocytes; endO, endothelial cells; FiB 
(Fib), fibroblasts; Per, pericytes; immune, immune cells; URO, uroepithelium. clustering for snRnA- seq data was performed in our previous study (8). (C) Fragment coverage 
(frequency of tn5 insertion) around the dARs around each cell type at lineage marker gene tSSs. Scale bar, 2 kbp.
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Fig. 2. Heterogeneity of mouse PTCs following IRI. (A) Subclustering of snAtAc- seq Pcts/PSts on the UMAP plot with annotations by subtypes. (B) Fragment coverage 
around the tSS of dARs in each subtype. Scale bar, 2 kbp. (C) heatmap showing relative tF motif enrichment in each Ptc subtype. the most enriched motifs in each subtype 
are shown. (D) UMAP plot showing the chromvAR motif enrichment score in Ptcs for hnF4A (MA0114.4, top), JUn::FOS (MA0099.3, middle), and RelA (MA0107.1, bottom). 
the color scale for each plot represents a normalized log(fold change) (lFc) for the respective assay. (E) heatmap showing the relative motif enrichment for healthy S3 in 
sham and 42 days after iRi, injured S3 at 4 and 12 hours, and 2 and 14 days after iRi. the most enriched motifs among injured S3 time points (4 and 12 hours and 2 and 
14 days after iRi) are shown. (F) Pseudotemporal trajectory to model the successful and failed recovery of injured Ptc S3 segment cells, constructed with injured S3 cluster 
at day 2/day 14, healthy S3 cluster day 14/day 42 (successful recovery), and FR- Ptcs at day 14/day 42 (failed recovery) following iRi. colored by the subtypes (left) or pseu-
dotime (right). (G) heatmap showing the relative motif enrichment for FR- Ptcs at 2/14/42 days after iRi. the most enriched motifs in each time point are shown.
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NF- κB activation in FR- PTCs was most prominent at day 14 and 
decreased at day 42 (Fig. 2G), although NF- κB activation was still 
prominent compared to other cell states at day 42 (fig. S6). AP- 1 TF 
motif enrichment observed at day 14 was also diminished at day 42 
(Fig. 2G), indicating resolution of acute inflammation. In contrast, 
paired- box (PAX) family TF motif enrichment was increased in FR- 
PTCs at day 42 compared to day 14 (Fig. 2G). Among PAX family 
genes, Pax8 expression was relatively abundant in FR- PTCs com-
pared to healthy subtypes at day 42 after IRI in snRNA- seq (fig. S7), 
although the Pax8 expression level was the highest among injured 
PTC S3 segments in the whole dataset (fig. S7). PAX8 was recently 
found to promote renal cell carcinoma (28, 29), which was also 
shown to differentiate from VCAM1+ PTCs (30). This finding sug-
gests that PAX8 may contribute to an FR- PTC gene expression sig-
nature at the later stage of the time course after IRI. These analyses 
on PTCs collectively indicate that temporal dynamics of cell type–
specific TF activation is associated with tubular injury and recovery 
after IRI and that NF- κB is potentially involved in the determination 
of PTC fate after injury.

Genome- wide proximal tubular RELA binding sites
Our motif enrichment analysis on mouse PTCs following IRI 
(Fig. 2) and previous findings (8, 11–14) indicates activation of the 
NF- κB pathway in FR- PTCs. The accessibility of TF binding motifs 
allows for prediction of TF activity (22), but it represents an infer-
ence and not an actual measurement of TF- DNA interaction. To 
validate these predictions, we used cleavage under targets and re-
lease using nuclease (CUT&RUN) to directly identify genome- wide 
v- rel avian reticuloendotheliosis viral oncogene homolog A (RELA) 
binding sites in primary human PTCs (31). To authenticate primary 
human PTCs to study the AKI- to- CKD transition, we performed 
deconvolution analysis on the bulk RNA- seq data for primary hu-
man PTCs with the mouse IRI data using CIBERSORTx, a machine 
learning method that imputes gene expression profiles and estimates 
the frequency of cell types in a mixed cell population (32). The de-
convolution analysis predicted that a large part (~50%) of primary 
renal proximal tubular epithelial cells (RPTECs) showed the gene 
expression signature of injured PTCs (fig.  S8A), consistent with 
their proliferative capacity. A total of ~30% of primary culture cells 
were predicted to demonstrate the FR- PTC gene expression signa-
ture (fig. S8A), and the predicted FR- PTC frequency decreased after 
small interfering RNA (siRNA) knockdown of NFAT5—one of the 
regulators for the failed repair cell state identified in our previous 
study (fig. S8, B and C) (33). These analyses indicate that the human 
primary PTC culture can be a model of injured PTCs potentially 
transitioning to FR- PTCs.

We detected RELA binding to genomic DNA in primary human 
PTCs after tumor necrosis factor–α (TNFα) treatment (Fig.  3A), 
which activates the canonical NF- κB pathway (34). We identified 
2004 RELA binding peaks (data S5), which include both genomic 
regions with the H3K4me3+ promoter mark and those with H3K-
4me3−/H3K27ac+ enhancer marks (Fig. 3A). Genes whose TSS was 
located close to RELA binding sites (within 2 kbp from the TSS) 
were enriched with the genes of I- κB/NF- κB complex [fold enrich-
ment: 64.55 and false discovery rate (FDR) = 0.00088; Fig. 3B and 
data S6] among cellular component gene ontology (GO) terms and 
NIK (NF- κB–inducing kinase)–NF- κB signaling (fold enrichment: 
12.01 and FDR =  0.00017; data S7) among biological process GO 

terms. The RELA binding peaks were located in promoter regions 
within 2 kbp from the TSS (20.8%), introns (44.5%), and distal inter-
genic regions (28.7%; Fig. 3C), broadly covering both promoters and 
enhancers. Next, we asked which mouse FR- PTC DARs contain con-
served RELA binding sites. We lifted human RELA binding peaks to 
the mm10 mouse genome (minimum ratio of bases that must remap: 
0.1, 1438 peaks, and recovery rate: 71.7%) (35). The lifted RELA 
binding sites were intersected with mouse FR- PTC DARs (Fig. 3D 
and data S3), identifying 103 conserved RELA binding sites in FR- 
PTC DARs (data S8). The nearby genes of those DARs were enriched 
with chemokine activity (fold enrichment: 28.4 and FDR = 0.034) 
(Fig. 3E and data S9), suggesting that NF- κB activation in FR- PTCs 
may promote local inflammation through chemokine secretion.

Among secretory molecules expressed in FR- PTCs, Ccl2 expres-
sion is prominently up- regulated (Fig. 4A) (9, 11). C- C motif chemo-
kine ligand 2 (CCL2) is a proinflammatory cytokine that has been 
implicated in AKI pathogenesis by recruiting immune cells to the lo-
cal injured tubules (36, 37). To characterize epigenetic mechanisms 
driving Ccl2 up- regulation in FR- PTCs, we constructed a cis- 
coaccessibility network (CCAN) (27) in FR- PTCs around the Ccl2 
locus (Fig. 4, B and C). A DAR with a conserved RELA binding site 
located at ~2 kbp upstream of the Ccl2 TSS (Fig. 4B) was predicted to 
interact with the TSS, suggesting that this CRE may activate Ccl2 ex-
pression in a RELA- dependent manner in FR- PTCs. Similarly, a total 
of five DARs with RELA binding sites were observed in the intron and 
5′ distal region (within 100 kbp) of the Csf1 gene. Among them, the 
DAR at 30 kbp upstream was predicted to strongly interact with the 
TSS of Csf1 (Fig. 4D). Csf1 encodes macrophage colony- stimulating 
factor (M- CSF or CSF1), a growth factor for monocyte/macrophage 
lineage and a major regulator of their proliferation and differentiation 
(38). Previous lines of evidence have shown the roles of CSF1 in tubu-
lar epithelial regeneration by expansion and M2 polarization of resi-
dent macrophages in the short term after renal injury (39–41), 
although, in other contexts, CSF1 expression can be detrimental, pro-
moting tissue fibrosis (42, 43). Csf1 was up- regulated in injured PTCs 
and FR- PTCs (Fig. 4A), in agreement with the previous literature (39, 
41). These results are consistent with the notion that RELA regulates 
the expression of proinflammatory molecules through CREs.

Genes up- regulated in FR- PTCs with conserved RELA binding 
sites in DARs also included nonsecretory, membrane- bound signal-
ing molecules involved in local inflammation. For example, Cd47, 
which encodes a membrane protein suppressing macrophage- 
mediated phagocytosis by sending a “do not eat me” signal through 
interaction with signal regulatory protein α (SIRPα) (44). Cd47 ex-
pression was up- regulated in FR- PTCs (fig. S9A), suggesting a po-
tential mechanism for the persistence of the FR- PTCs for a prolonged 
period after the injury. The RELA binding DAR located 3′ distal to 
the Cd47 gene was predicted to interact with accessible regions near 
the TSS (fig. S9B).

We overlaid CTCF chromatin immunoprecipitation sequencing 
(ChIP- seq) track for an adult mouse kidney (35, 45) onto the CCAN 
(fig.  S10, A to C). The nearest CTCF peaks to the potential CRE 
(fig. S10A) demarcated the CCAN (Fig. 4C) in the Ccl2 gene. We 
also observed that the coaccessibilities were often modeled beyond 
CTCF peaks. For example, a few coaccessibilities from 5′ distal CRE 
to 3′ distal CRE around Csf1 were predicted beyond the intronic 
CTCF peak (fig. S10B). The CTCF binding sites we used were for a 
bulk mouse kidney, and CTCF may not bind this intronic region in 
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FR- PTCs. CTCF motif availability was dynamically altered in PTCs 
during a time course after IRI (Fig. 2E).

We next investigated if the TNFα- induced expression of a subset 
of these genes was directly regulated by either RELA or v- rel avian 
reticuloendotheliosis viral oncogene homolog B (RELB) by siRNA 
knockdown in human PTCs. The expression of these genes (CCL2, 
CSF1, and CD47) predicted to interact with RELA in mouse FR- 
PTCs was up- regulated by TNFα treatment (Fig. 4E and fig. S9, C to 
E), although the extent to which RELA contributes to their gene 
expression level was variable (Fig. 4E and fig. S9E). CCL2 expression 
was highly dependent on RELA regardless of TNFα treatment. The 
noncanonical NF- κB regulator RELB also regulated CCL2 expres-
sion, although its regulation is more dependent on RELA. Of note, 
RELB expression was also regulated by RELA in TNFα- treated cells 
(fig. S9D). CSF1 expression is also regulated by RELA in a TNFα- 
dependent manner. In contrast, the role of RELA in CD47 expression 
was limited in human primary PTCs (fig. S9E). Concurrent binding 
of other transcriptions may be needed for RELA to fully activate 
CD47 expression. These findings collectively suggest that the FR- PTC 
proinflammatory gene expression signature is shaped by numerous 
CREs; many but not all of which require NF- κB signaling.

Immune cells potentially regulated by FR- PTCs
Given epigenetic alterations driving the expression of various cyto-
kines and other membrane- bound signaling molecules interacting 
with immune cells in injured and FR- PTCs (Fig. 4 and fig. S9), tran-
scriptional and epigenetic remodeling of immune cells may be coor-
dinately regulated by PTCs during AKI. Immune cells clustered into 
six cell types in our snRNA- seq dataset (fig. S11, A and B), as de-
scribed in our previous work (8). Three subtypes are macrophages 
expressing Mrc1 (fig.  S11, A and B), which encodes a mannose 
receptor protein and marks alternatively activated macrophages 
(M2 macrophage) in both humans and mice (4, 5). We also observed 
Flt3- expressing dendritic cells (DCs), T cells with themis expres-
sion, and B cells with Cd19 expression. Each of the three Mrc1+ 
macrophage subtypes expressed unique markers (Itga9, Plcb1, and 
Gpnmb). Among them, CCL2 receptor gene Ccr2 was mainly ex-
pressed in Plcb1+ macrophage (Plcb1+Mac), and CSF1 receptor 
gene Csf1r was mainly detected in Itga9+Mac, suggesting that FR- 
PTCs may interact with heterogeneous macrophage subtypes 
(fig.  S11C) through distinct subsets of secretory molecules. Sirpa 
coding SIRPα protein, which receives the signal from CD47 to pre-
vent phagocytosis, is expressed in Plcb1+Mac (fig. S11D). FR- PTCs 

A B

C D E

Fig. 3. Genome- wide proximal tubular RELA binding sites. (A) RelA binding sites with or without tnFα treatment (100 ng/ml, top) and histone methylation and 
acetylation (without tnFα treatment, bottom) around the VCAM1 gene in human primary Ptcs determined by the cUt&RUn assay. Scale bar, 20 kbp. (B) cellular compo-
nent GO term enrichment analysis for the human genes with the tSS close to RelA binding sites (<2 kbp). the six most enriched terms are shown. the color scale for each 
bar represents a P value. (C) Pie chart of annotated RelA binding site locations. 5′UtR, 5′ untranslated region; 3′UtR, 3′ untranslated region. (D) RelA binding peaks lifted 
to the mm10 mouse genome were intersected with murine FR- Ptc dARs, identifying 103 conserved RelA binding sites in FR- Ptc dARs. (E) Molecular function GO term 
enrichment analysis for the nearby mouse genes of conserved RelA binding sites in the murine FR- Ptc dARs. the color scale for each bar represents a P value.



Muto et al., Sci. Adv. 10, eado2849 (2024)     7 August 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

7 of 19

A C

D

E

B

Fig. 4. Cis- regulatory network driving inflammation by NF- κB signaling in failed repair cells. (A) UMAP plot showing cell annotations (top) and a gene expression 
level of Ccl2 (middle) and Csf1 (bottom) among mouse Ptc subtypes. the color scale for each plot represents a normalized lFc for the respective assay. Subclustering and 
cell type annotation were performed and shown in our previous study (8). (B) RelA binding site near the CCL2 gene identified by the cUt&RUn assay for primary RPtecs 
treated with or without tnFα treatment (100 ng/ml, top). cUt&RUn assay peaks for h3K4me3 and h3K27ac in primary RPtecs without tnFα treatment (middle) and RelA 
binding peaks (bottom) are also shown. Scale bar, 2 kbp. (C) ccAn predicts interactions (gray arcs) of a cRe with a conserved RelA binding site (chr11:82032734- 82033526) 
and other accessible regions (red boxes) near the Ccl2 gene in the mouse FR- Ptcs are shown (top). coverage plot showing accessible regions in each Ptc subtypes are 
also shown (bottom). the y axis is the cis- coaccessibility score, and a higher number indicates higher coaccessibility. Scale bar, 5 kbp. (D) Predicted interactions of a cRe 
with a conserved RelA binding site (chr3: 107,775,891 to 107,776,242) and other accessible regions in the mouse FR- Ptcs (top) around the Csf1 gene in the mouse kidneys. 
chromatin accessibility in FR- Ptcs determined by snAtAc- seq is also shown (bottom). Scale bar, 5 kbp. (E) qPcR for CCL2 or CSF1 expression levels in primary human Ptcs 
with siRnA knockdown of RELA or RELB treated with or without tnFα (100 ng/ml) treatment. nt, no treatment. n = 3 biological replicates. Bar graphs represent the mean, 
and error bars are the Sd. One- way AnOvA with post hoc tukey test.
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recruit and activate Plcb1+Mac by CCL2, although they may inhibit 
their phagocytosis through CD47- SIRPα interaction.

To better understand macrophage heterogeneity in mouse kid-
ney IRI, we subclustered immune cell clusters (Immune1 and Im-
mune2) from our snATAC- seq data, identifying eight subtypes 
(fig. S12, A to C, and data S10). The number and composition of 
these immune cell subtypes were dynamically increased immedi-
ately after IRI (fig. S12B), and this increase persisted at 6 weeks after 
IRI, suggesting potential roles in the long- term tissue remodeling 
and the AKI- to- CKD transition. Integration and label transfer from 
snRNA- seq data suggested robust identification of T cells, B cells, 
DCs, and Itga9+Mac (fig.  S12D, E). In contrast, Plcb1+Mac and 
Gpnmb+Mac prediction was weak, likely reflecting low numbers of 
immune cell nuclei. Nevertheless, the TSS of Plcb1 was specifically 
accessible in Mac5 subtypes (fig. S12C), suggesting that Mac5 is the 
Plcb1- expressing macrophage. We observed M1 macrophage with 
specific accessibility to the Cd80 TSS without Mrc1 accessibility 
only in snATAC- seq (fig. S12C), potentially due to a low Cd80 ex-
pression level. Mac2, 3, and 4 subtypes displayed accessibility of the 
TSS in Itga9 and Mrc1 genes, suggesting that they are Itga9+ macro-
phage (fig. S12C). The accessibility of the Ccr2 TSS was observed 
broadly among immune cells except B cells, although the accessibil-
ity was most notable in Mac4, consistent with a high Ccr2 expres-
sion level in Plcb1+Mac in snRNA- seq data. The gene activities 
predicted by snATAC- seq also suggested that Mac1 as M1 macro-
phage (Il1b, Cd80, and Nos2) and that Mac2–5 subtypes were with 
M2 activation (Mrc1 and Cd86; fig. S12F). M2 macrophage was pre-
viously shown to contribute to tissue repair and tissue fibrosis 
through transforming growth factor–β (TGFβ) signaling (5). Tgfb1 
gene activity was predicted to be increased in Mac2–5 (fig. S12F). 
We next performed TF motif enrichment analysis in macrophage 
subtypes (fig. S13A and data S11). The resident macrophage sub-
type (Mac2) showed increased availability of the mineral corticoid 
receptor NR3C2 binding motif compared to other macrophage sub-
types (fig. S13A) after renal injury (4 hours and 2 days; fig. S13B), 
consistent with the previous literature implicating mineral corticoid 
activity on the myeloid cells in renal fibrosis following kidney IRI 
(46, 47). The most enriched motifs in Ccr2+ macrophage (Mac5) 
were AP- 1 family TFs FOSL1 and JUN (fig. S13A) that were acti-
vated immediately following IRI (fig. S13C), likely reflecting numer-
ous proinflammatory microenvironmental signals. These findings 
collectively suggest that FR- PTCs interact with various immune cell 
subsets by sending molecular cues, contributing to the macrophage 
heterogeneity following IRI.

PTC heterogeneity in human AKI
To extend our multiomic atlas of mouse IRI, we next generated 
paired snRNA- seq and snATAC- seq datasets on the four kidney 
cortex samples of the patients with AKI due to ischemic acute tubu-
lar necrosis (ATN; n = 3) or undetermined cause (n = 1, associated 
with pneumonia) (data S12). The diagnosis of ischemic ATN came 
from the fact that the patients were all found down, and they under-
went a variable length (25 to 45 min) of cardiopulmonary resuscita-
tion. The AKI kidney samples were procured postmortem, so the 
kidneys were exposed to an additional hypoperfusion- hypoxic 
 period, which might further induce and deteriorate ischemic 
ATN. Although we adopted different protocols of procurement be-
tween two groups (healthy: nephrectomy and AKI: postmortem), 
we expect that the influence of the postmortem procurement on our 

AKI samples is in line with our aim to evaluate the molecular altera-
tions at acute tubular injury.

After sequencing, the AKI datasets were integrated with previ-
ously published healthy kidney datasets (Fig.  5A) (13). Following 
low- QC nuclei filtering and preprocessing, cell types in the snRNA- 
seq dataset were identified by cell type–specific marker gene expres-
sion (Fig. 5A and fig. S14A). For snATAC- seq, we performed label 
transfer with Seurat using this snRNA- seq dataset (18, 19). The 
snATAC- seq datasets were filtered using a 60% confidence thresh-
old for cell type assignment. After the remaining preprocessing (see 
also Materials and Methods; fig. S15), integration of datasets with 
Harmony (20), and unsupervised clustering, we identified all the 
major cell types in snATAC- seq (Fig.  5A and fig.  S14B). The QC 
metrics for both snRNA- seq and snATAC- seq datasets were variable 
compared to control (fig. S16), and those do not correlate with pre-
sumed causes of AKI and postmortem periods (data S12). This QC 
variability might potentially reflect numerous, complicated clinical 
and technical factors in AKI.

VCAM1+ PTCs (FR- PTCs) in healthy kidneys and HAVCR1+ 
injured PTCs in AKI kidneys were assigned to the same cluster af-
ter unsupervised clustering in both snRNA- seq and snATAC- seq 
(Fig. 5A), reflecting relative transcriptional and epigenetic similari-
ties. We annotated this cluster as injury- related PTCs (iPTCs; 
Fig. 5A) containing both acutely injured PTCs of AKI kidneys and 
FR- PTCs of control kidneys. VCAM1 expression was more abun-
dant in iPTCs of control kidneys (FR- PTCs) compared to iPTCs of 
AKI (acutely injured PTCs; Fig. 5B and fig. S17A). We subset the 
injured PTCs to compare with the same number of FR- PTCs for the 
VCAM1 expression level (fig. S18A), confirming that VCAM1 was 
still highly expressed in FR- PTCs. The frequency of cells expressing 
VCAM1 was also smaller in injured PTCs (~20%) compared to FR- 
PTCs (~30%) (fig.  S18B). The VCAM1 promoter was accessible 
among iPTCs in both healthy and AKI kidneys, although it was 
more prominent among iPTCs of healthy kidneys (FR- PTCs; 
fig. S17B), consistent with transcriptional data (figs. S17A and S18). 
Next, we evaluated the differential gene expression between injured 
PTCs in AKI and FR- PTCs in healthy kidneys (data S13 and S14). 
The most differentially expressed genes included KCNIP4, AJAP1, 
SLC17A3 (up- regulated in injured PTCs), DCC, FKBP5, and PDK4 
(up- regulated in FR- PTCs) (Fig.  5B). VCAM1 and HAVCR1 were 
highly expressed in FR- PTCs in healthy kidneys and injured PTCs 
in AKI, respectively. (Fig. 5, B and C). In AKI, HAVCR1 expression 
was also broadly up- regulated in the PTC cluster to a less extent 
compared to injured PTCs (Fig. 5C), suggesting mild injury or stress 
to all the segments in PTCs during ischemia. We also observed a 
higher expression of the NF- κB target genes (CCL2, CSF1, and 
CD47) in FR- PTCs in healthy kidneys (fig. S19A) compared to in-
jured PTCs, consistent with mouse kidney data (Fig. 4). These find-
ings suggested that the injured PTCs and FR- PTCs demonstrated a 
distinct gene expression signature, although they were clustered to-
gether in the integrated dataset. CCL2 expression was highly spe-
cific to FR- PTCs in healthy kidneys, while its expression was rather 
up- regulated in parenchymal cells including endothelium, fibro-
blasts, and immune cells, in addition to distal nephron (distal con-
voluted tubules and principal cells) in AKI (fig.  S19B). Similarly, 
CSF1 expression was also up- regulated in parenchymal cells in AKI 
(fig. S19C). These findings indicate that the major source of these 
molecules may be different between healthy and AKI kidneys. 
CD47 expression was the highest in FR- PTCs among PTC lineages, 
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Fig. 5. Heterogeneity of PTCs in the human kidneys with AKI. (A) UMAP plot of snRnA- seq (left) or snAtAc- seq (right) data for human kidneys with AKi (n = 4) and 
controls (n = 5). (B) dot plot showing differential gene expressions in iPtcs between healthy (FR- Ptcs) and AKi (injured Ptcs). (C) UMAP plot showing gene expression 
levels of HAVCR1 (left) or VCAM1 (right), separately for healthy and AKi kidneys. the color scale represents a normalized lFc. (D) heatmap showing the relative enrichment 
of hallmark gene sets among Ptc lineages in snRnA- seq. (E) the iPtc cluster from the AKi dataset (top left) was merged with the iPtc (Pt_vcAM1) cluster from our previ-
ously published dataset for human dKd and healthy kidneys (bottom left). Following integration with harmony, four subpopulations were identified on the UMAP (right). 
(F) dot plot showing the marker gene expression among integrated iPtc subtypes. (G) UMAP plot of integrated iPtc subclustering separately shown for AKi, dKd, or 
healthy kidneys with the same number of cells (right). the frequencies of subtypes are also shown for each group (left). For dot plots, the diameter of the dot corresponds 
to the proportion of cells expressing the indicated gene and the density of the dot corresponds to average expression [(B) and (F)].
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although CD47 was broadly expressed in other cell types in both 
healthy and AKI kidneys (fig.  S19D). This finding may be in line 
with the known role of CD47 to avoid unnecessary phagocytosis 
(44) in healthy and AKI kidneys.

Gene set enrichment analysis (GSEA) (48) with hallmark gene 
sets using the Molecular Signatures Database (MsigDB) suggested 
differential activation of molecular pathways between acutely in-
jured PTCs (iPTCs in AKI) and FR- PTCs (iPTCs in control kidney) 
(Fig. 5D). The gene set associated with TNF signaling via the NF- κB 
pathway was enriched in FR- PTCs, consistent with specific enrich-
ment of the RELA binding motif in mouse FR- PTCs (Fig. 2C). In 
contrast, the gene set was related to proliferation such as G2- M 
checkpoint, Early region 2 binding factor (E2F) target, and DNA 
repair gene set, reflecting proliferation and regeneration of PTCs in 
injured PTCs.

We have previously performed single- cell multimodal analysis 
on diabetic kidney disease (DKD), elucidating heterogeneity of tu-
bular epithelia in DKD. We found a greater proportion of VCAM1+ 
iPTCs in DKD samples compared to control samples (14). The DKD 
snRNA- seq dataset we have generated are from the samples with 
increased global glomerulosclerosis with interstitial fibrosis in his-
tological evaluation (14), suggesting CKD. To interrogate the inter-
relationship between iPTCs of CKD and AKI, we integrated the 
iPTCs from our AKI datasets and those from DKD datasets. After 
subclustering, we identified four subtypes (Fig. 5E): injured PTCs 
(HAVCR1+), FR- PTCs (VCAM1+/DCC+), proliferating (MKI67+), 
and PROM1+PTCs (Fig.  5F). PROM1+PTCs were described as 
atypical PTCs expressing high PROM1 in DKD, although their bio-
logical significance has remained elusive. In contrast, the prolifera-
tive PTCs were mainly derived from AKI samples (Fig.  5G). The 
healthy control datasets for AKI and those for DKD are from the 
same patients but generated by different chemistry (5′ versus 3′ v3 
chemistry of the 10X Genomics platform). We confirmed that these 
healthy control datasets with different strategies merged well after 
integration with Harmony, validating our strategy (fig.  S20). The 
iPTCs in DKD are a mixture of injured PTCs (~60%) and FR- PTCs 
(~30%) (Fig. 5G), indicating that iPTCs in DKD were composed of 
actively injured PTCs and accumulating FR- PTCs rather than a 
DKD- specific iPTC state. Collectively, these findings suggest a mod-
el of CKD progression whereby ongoing injury to PTCs drives their 
transition to an FR- PTC state.

TF motif enrichment analysis for PTCs in the snATAC- seq data-
set (Fig. 6A and data S15 and S16) indicated HNF4A inactivation in 
both acutely injured PTCs and FR- PTCs (Fig. 6B). JUN::FOS and 
NFE2L2 binding motifs were most enriched among acutely injured 
PTCs (Fig. 6C and fig. S5B). These findings were in agreement with 
the findings in mouse kidneys (Fig.  2D and fig.  S5). RELA motif 
enrichment was observed among both acutely injured PTCs and 
FR- PTCs (Fig. 6D), although GSEA indicated that the NF- κB target 
genes were more abundantly expressed in FR- PTCs (Fig. 5D). We 
also observed transient enrichment of the RELA binding motif 
among acutely injured PTCs (day 2) following mouse IRI (Fig. 2E). 
Increased RELA binding motif availability in acutely injured PTCs 
may precede the activation of RELA and subsequent up- regulation 
of its target genes in FR- PTCs. Our multimodal single- nucleus anal-
ysis in human AKI kidneys is limited because each is a snapshot in 
time. Nevertheless, our analyses of both human and mouse PTCs 
collectively suggest that the PTC epigenetic alterations following 
AKI are largely conserved between humans and mice.

CREB5 driving proliferative recovery of PTCs after IRI
Next, we asked if an interspecies approach might be useful to iden-
tify a novel molecular mechanism and potential therapeutic target 
in AKI. We recently developed regulatory network inference (RE-
NIN), a regularized regression approach to predict gene regulatory 
networks using multimodal single- cell datasets (33). We applied 
RENIN to predict shared molecular mechanisms of PTC state regu-
lation shared between mouse and human. Several TFs were predicted 
to drive maladaptive cell states in human kidneys. NFAT5, GLIS3, 
KLF6, and CREB5 were identified as top- ranked accelerators of 
failed repair cell states in both mouse and human kidneys (Fig. 7A). 
These TFs were also top ranked as the TFs associated with injured 
cell states (Fig. 7A), suggesting that they are involved in both suc-
cessful versus failed repair in acute PTC injury. NFAT5 was previ-
ously described to be up- regulated following IRI (9) and predicted 
to promote failed repair in healthy human kidneys using RENIN 
(33). KLF6 was found to be induced after IRI, contributing to kidney 
injury in mice and humans (49). GLIS3 is broadly expressed in renal 
tubules and localized in primary cilia. GLIS3 deficiency was shown 
to induce polycystic kidney disease in both humans and mice (50, 
51), although it has no known role in AKI. Of note, PAX8 was top 
ranked for promotion of both acute injury and failed repair in 
mouse PTCs (data S17 and S18). In contrast, PAX8 was predicted to 
promote only the injured state but not the failed repair state in hu-
man PTCs (Fig. 7A and data S19 and S20), indicating potential dif-
ferences in PAX8 function during the AKI- to- CKD transition 
between human and mouse.

CREB5, a member of the CREB family, was recently found to be 
highly expressed in various types of cancers including colorectal 
(52), ovarian (53), hepatocellular (54), and prostate (55) and plays a 
promoting role in the development of cancers. Moreover, a recent 
line of evidence suggested the CREB5 activation in PTCs in the kid-
neys of the patients with DKD (56). CREB5 expression was also up- 
regulated broadly in PTCs in AKI (Fig. 7B and fig. S21, A and B), 
while its expression was localized in FR- PTCs in control kidneys 
(fig.  S21, A and B). CREB5 expression levels were further up- 
regulated in FR- PTCs in DKD (fig. S21C), suggesting that CREB5 
may play a more prominent role in FR- PTCs in CKD. In agreement 
with this finding, CREB5 motif activity was broadly increased in 
PTCs in human AKI kidneys (Fig. 7C). In the mouse IRI dataset, 
CREB5 binding motif accessibility was enriched in FR- PTCs and 
injured PTCs, especially in the S3 segment, which is the most vul-
nerable site in hypoxic injury (Fig. 7D). Up- regulation of Creb5 ex-
pression was not clear in acutely injured mouse PTCs (fig. S21D), 
suggesting that enrichment of the CREB5 binding motif in PTCs 
during the acute phase of IRI may reflect translocation of preexist-
ing CREB5 proteins to the nucleus from the cytoplasm rather than 
up- regulation of CREB5 protein expression. In contrast, Creb5 ex-
pression was prominently up- regulated in FR- PTCs in snRNA- seq 
(fig. S21D). To interrogate the role of CREB5 in PTC recovery, we 
analyzed RNA- seq data of primary human PTCs targeted CREB5 
with siRNA knockdown. GSEA implicated up- regulation of the P53 
pathway by CREB5 knockdown, which may inhibit proliferation 
and induce cell cycle arrest (Fig.  7E). The primary human PTCs 
with CREB5 knockdown had slower proliferation compared to con-
trol (Fig. 7F), suggesting that CREB5 promotes cell proliferation and 
likely recovery in acutely injured PTC states. Deconvolution of bulk 
transcriptomic profile predicted that CREB5 knockdown decreased 
the predicted frequency of injured PTCs (fig. S8D), in line with the 
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proposed role of CREB5 in proliferative PTC recovery (Fig. 7). This 
finding was consistent with down- regulation of proliferation marker 
PCNA and FOXM1, a master regulator of M phase progression, and 
its target PLK1 by siRNA knockdown of CREB5 in primary human 
PTCs (Fig. 7G). These findings collectively suggest that CREB5 has 
a beneficial role in the recovery from acute injury by promoting pro-
liferation, although persistent activation of CREB5 in FR- PTCs may 
contribute to its unique gene expression signature (Fig. 7H). Togeth-
er, these findings demonstrate the usefulness of interspecies multi-
modal approach to interrogate molecular mechanism of AKI and 
identify novel therapeutic targets.

DISCUSSION
We generated and analyzed single- nucleus chromatin accessibility 
profiles across the spectrum of mouse acute injury and repair and 
compared to human AKI. Our integrative analysis of this atlas with 
our previously generated single- nucleus transcriptomic atlas from 
the same samples (8) allows us to understand the temporal dynam-
ics of gene regulation during injury, repair, and failed repair. We 

elucidated cell type–specific TF activities with an emphasis on the 
NF- κB effector RELA in injured and FR- PTC states along the time 
course. We mapped conserved RELA binding sites onto the mouse 
FR- PTC–specific accessible regions, revealing the cis- regulatory 
landscape driving failed repair defining genes. Furthermore, we 
generated paired snRNA- seq and snATAC- seq datasets from human 
AKI kidneys and compared with mouse IRI, shedding light on con-
served and divergent gene regulatory networks between human and 
murine AKI.

Given that various renal insults drive an increase in VCAM1- 
expressing FR- PTCs along with infiltrating immune cells in both 
mouse and human kidneys (8, 10, 11, 13, 14), understanding the 
mechanism of emergence and maintenance of FR- PTCs and their 
biological roles will be critical to dissect the molecular mechanism 
driving AKI and the AKI- to- CKD transition. Here, we confirm and 
extend evidence implicating NF- κB activity as an important puta-
tive mediator of this cell state. A previous study in mice has shown 
that suppression of the NF- κB pathway reduced tubular apoptosis 
and chemokine- induced immune cell infiltration after IRI (57). 
Furthermore, phagocytosis of apoptotic cells by renal epithelial 
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Fig. 6. Single- nucleus chromatin accessibility profiling in human AKI. (A) heatmap showing the relative motif enrichment among Ptc lineages in human snAtAc- seq 
data. the most enriched motifs in each group are shown. (B to D) UMAP (left) and violin plot (right) displaying the relative motif enrichment (chromvAR score) among Ptcs 
for hnF4A (MA0114.4 (B)], JUn::FOS (MA0099.3 (c)], or RelA (MA0107.1 (d)].
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Fig. 7. CREB5 driving the proliferative recovery of PTCs after IRI. (A) Renin regulatory scores to predict tF activities in the FR- Ptc state (left) or injured Ptc state (right) 
compared to normal Ptcs in human (x axis) and mouse (y axis) multiomics datasets. A higher regulatory score indicates more activation. (B) UMAP plot showing the CREB5 
expression level in human AKi. the color scale represents a normalized lFc. (C) violin plot displaying the relative motif enrichment among Ptc subtypes for cReB5 
(MA0840.1) in the human snAtAc- seq dataset. (D) violin plot (left) and UMAP plot (right) displaying the relative motif enrichment for cReB5 (MA0840.1) among Ptc sub-
types in mouse kidneys. the color scale for the UMAP plot represents a normalized lFc. (E) GSeA with the hallmark gene sets on published bulk RnA- seq data of primary 
human Ptcs with siRnA CREB5 knockdown or control. the top- ranked gene sets with FdR < 0.05 (left) and enrichment of P53 pathway genes in human primary Ptcs with 
CREB5 knockdown (right) are shown. neS, normalized enrichment score. (F) MtS assay in primary human Ptcs showing decreased proliferation by CREB5 knockdown 
compared with control. each time point (1 to 4 days after siRnA transfection) consists of n = 4 biological replicates. Student’s t test for each time point. Od, optical density. 
(G) qPcR for CREB5, PCNA, FOXM1, and PLK1 gene expression levels in primary Ptcs with CREB5 knockdown compared with control (n = 3 biological replicates). Bar graphs 
represent the mean, and error bars are the Sd. Student’s t test. (H) Proposed role of cReB5 in Ptcs. Activation of cReB5 in acute injury may promote Ptc proliferation and 
recovery from the injury. Persistent up- regulation of cReB5 in FR- Ptcs may contribute to the Ft- Ptc gene expression signature. Schematic was created with BioRender.



Muto et al., Sci. Adv. 10, eado2849 (2024)     7 August 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

13 of 19

cells mediated by HAVCR1 recruits p85 and inactivates NF- κB, sup-
pressing the inflammatory pathway and protecting from IRI (58). 
These findings suggest that proximal tubular NF- κB activity may 
promote inflammation and exacerbate tubular injury during 
AKI. We confirmed enriched NF- κB motif availability among FR- 
PTCs in mouse kidneys with IRI (Fig. 2D), consistent with previous 
studies (8, 9, 11, 12). Furthermore, the NF- κB pathway was activated 
in injured PTCs as early as 2 days after injury before the FR- PTCs 
increased (Fig. 2E). We identified mouse FR- PTC DARs with con-
served RELA binding sites identified by CUT&RUN on primary hu-
man PTCs (Fig. 3D). Given the previous line of evidence that TNFα 
alters the chromatin landscape to broadly reprogram the response to 
lipopolysaccharide in immune cells (59), ΤNFα treatment and NF- 
κB activation may alter the histone methylation and, subsequently, 
chromatin accessibility of PTCs around NF- κB binding sites, lead-
ing to transition to the failed repair cell state. The nearby genes of 
those DARs with conserved RELA binding sites were enriched with 
the genes for chemokines (Fig. 3E), which may allow FR- PTCs to 
interact with surrounding other cell types, including immune cells. 
For instance, we demonstrated the CCAN connecting the conserved 
NF- κB binding DAR and TSS of signaling molecules like Ccl2, Csf1, 
and Cd47 as the potential modulators of the local immune cell land-
scape (Fig. 4 and figs. S9 to S13). Our findings highlight that NF- κB 
activation in FR- PTCs may have a role in shaping the local immune 
cell landscape during the AKI- to- CKD transition. Nevertheless, di-
rect targeting of a TF is generally difficult. Alternative approaches 
may be to block its downstream targets or upstream stimulators. For 
example, anti- TNFα antibody has been applied in various autoim-
mune diseases. Several anti- inflammatory agents including aspirin, 
salicylate, and corticosteroids have been also proved to suppress 
NF- κB activation in vivo (60). We recently identified Traf2 and Nck 
interacting kinase (TNIK) as one of the exclusively up- regulated 
molecules in FR- PTCs. TNIK has been implicated in the NF- κB sig-
naling pathway, and its depletion promotes inflammation and apop-
tosis (61). Although its mechanistic role in FR- PTCs has been 
elusive, modulating TNIK activity may represent a pro- repair thera-
peutic strategy potentially through modifying the NF- κB pathway. 
Thus, although direct targeting of RELA is difficult, there will be still 
opportunities to leverage our finding to develop a strategy to halt 
the AKI- to- CKD transition.

Injury- induced expression of proinflammatory mediators in 
PTCs includes CCL2, which was previously shown to promote in-
flammation and interstitial fibrosis after ischemic renal injury (36, 
37). Ccl2 expression was up- regulated in FR- PTCs likely in a RELA- 
dependent manner (Fig. 4). We identified myeloid lineage subsets 
including five macrophage subtypes as well as T cells and B cells 
after subclustering of immune cells in our dataset (figs. S11 to S13). 
Among them, Plcb1+Mac (Mac5) displayed the highest mRNA ex-
pression level (fig.  S11C) and chromatin accessibility around the 
TSS of the Ccr2 gene (fig. S12C), which encodes the CCL2 receptor. 
The number of the macrophages was increased and maintained at 
least until 6 weeks after IRI (fig.  S12B). In contrast, Itga9+Mac 
(Mac2) subtype exists in the mouse kidneys without IRI (fig. S12B), 
suggesting that they are resident immune cells in the kidney. All the 
macrophage subtypes express Csf1r coding for the receptor for 
CSF1, which was also up- regulated in FR- PTCs (Fig.  4A). CSF1 
may be also a stimulatory signal from PTCs to activate macro-
phages in IRI. FR- PTCs also express the gene encoding CD47 
(fig.  S9A), which protects cells from being phagocytosed by 

immune cells and is often overexpressed in various cancers to avoid 
phagocytosis by tumor- associated macrophages (44). CD47 is a li-
gand for SIRPα on macrophages (fig. S11D), and binding CD47 to 
SIRPα initiates a molecular signaling to inhibit phagocytosis. Ac-
cumulated MRC1+ M2 macrophage initiates tissue fibrosis through 
TGFB1 expression, an irreversible hallmark of CKD (4). These 
findings suggest that the altered immune landscape by FR- PTCs 
contributes to the AKI- to- CKD transition.

To leverage our mouse dataset to identify a novel mechanism in-
volved in the AKI- to- CKD transition, we also generated single- 
nucleus multimodal datasets for human AKI and intersected the 
gene regulatory networks between humans and mice. The gene reg-
ulatory network was constructed with RENIN, which we recently 
developed as a regularized regression approach (33) for multiomics 
datasets. Most of the TFs that were predicted to contribute to the 
injured state were also top ranked for promoting factors of the failed 
repair state, suggesting considerable overlap of the TFs being acti-
vated between acutely injured PTCs and FR- PTCs (Fig. 7A). Such 
TFs included CREB5, whose motif activity and mRNA expression 
were up- regulated in PTCs in human AKI (Fig. 7). CREB5 knock-
down by siRNA in primary human PTCs up- regulated the genes 
associated with the P53 pathway, which may induce cell cycle arrest. 
Consistent with activation of the P53 pathway, CREB5 knockdown 
decreased proliferation of primary human PTCs (Fig. 7E), suggest-
ing a pro- proliferation and pro- recovery role of CREB5 after PTC 
injury. We also found that CREB5 knockdown partly reduced the 
failed repair gene expression signature (33), implicating that sus-
tained activation of CREB5 may also contribute to the failed repair 
state in the AKI- to- CKD transition.

In summary, we performed multimodal single- nucleus analysis 
of a mouse kidney IRI time course to define cell type–specific, tem-
porally dynamic gene regulations. We also generated human AKI 
multiomics datasets to validate our mouse findings and leverage our 
mouse time- course dataset to understand the shared AKI mecha-
nism and identify potential therapeutic targets. Our study is limited 
by the lack of spatial information of transcriptomic and epigenomic 
alteration. In the future, application of spatially resolved transcrip-
tomics to the samples of kidneys with IRI will contribute to further 
dissection of intercellular communication in the AKI- to- CKD tran-
sition. Our single- nucleus multimodal analysis of mouse IRI kid-
neys provides a foundation on which to base future efforts to develop 
better diagnostic and therapeutic approaches for AKI.

MATERIALS AND METHODS
Experimental design
To comprehensively describe the cell- specific epigenomic perturba-
tion in human and mouse AKI, we generated and sequenced 
snATAC- seq libraries from the frozen mouse kidney samples previ-
ously sequenced for snRNA- seq and previously published (8). Brief-
ly, bilateral IRI on the kidney (18 min) was performed on male mice 
at 8 to 10 weeks of age, and control mice underwent sham surgery. 
Mice were euthanized with designated time points, and the kidneys 
were collected and frozen with liquid nitrogen. All mouse samples 
were harvested according to the animal experimental guidelines is-
sued by the Animal Care and Use Committee protocol no. 20- 0460 
(Animal Welfare Assurance no. D16- 00245) at Washington Univer-
sity in St. Louis. C57BL/6J mice were purchased from the Jackson 
Laboratory (Bar Harbor, ME).
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Human AKI kidney cortical samples were obtained according 
to the protocol by the Washington University Institutional Review 
Board. Kidneys were discarded human donor kidneys from de-
ceased patients (two male and two female, 55 to 69 years old; data 
S12). Samples were cut out from the outer cortex and frozen in 
liquid nitrogen. The single- cell dataset generated from control 
kidneys (10X Genomics Chromium Single Cell 3′ v3 chemistry 
and 10X Genomics Chromium Single Cell ATAC v1) were already 
published (12).

Nuclear dissociation for library preparation
For snATAC- seq, nuclei were isolated with Nuclei EZ Lysis buffer 
(NUC- 101, Sigma- Aldrich) supplemented with protease inhibitor 
(5892791001, Roche). Samples were cut into <1 mm pieces, homog-
enized using a Dounce homogenizer (885302- 0002, Kimble Chase) 
in 2 ml of ice- cold Nuclei EZ Lysis buffer, and incubated on ice for 
5 min with an additional 2 ml of lysis buffer. The homogenate was 
filtered through a 40- μm cell strainer (43- 50040- 51, pluriSelect) and 
centrifuged at 500g for 5 min at 4°C. The pellet was resuspended, 
washed with 4 ml of buffer, and incubated on ice for 5 min. Follow-
ing centrifugation, the pellet was resuspended in Nuclei Buffer (10× 
Genomics, PN- 2000153), filtered through a 5- μm cell strainer 
(43- 50005- 03, pluriSelect), and counted. For snRNA- seq prepara-
tion, the RNase inhibitors (Promega, N2615 and Life Technologies, 
AM2696) were added to the lysis buffer, and the pellet was ultimate-
ly resuspended in nuclei suspension buffer [1x phosphate- buffered 
saline (PBS), 1% bovine serum albumin (BSA), and 0.1% ribonucle-
ase (RNase) inhibitor]. All these processes were performed in a cold 
room at 4°C. Subsequently, 10X Chromium libraries were prepared 
according to the manufacturer’s protocol.

snATAC- seq for mouse kidneys and bioinformatics workflow
For mouse IRI kidneys, the snATAC- seq libraries were generated us-
ing 10X Genomics Chromium Single Cell ATAC v1 chemistry fol-
lowing nuclear dissociation. Libraries were sequenced on an Illumina 
NovaSeq instrument and counted with CellRanger ATAC v2.0 (10X 
Genomics) using mm10. The read configuration was 2x150–base 
pair (bp) paired- end reads. Sample index polymerase chain reaction 
(PCR) was performed at nine cycles. A mean of 457,383,804 reads 
were sequenced for each snATAC library (SD = 111,816,895) with a 
median of 22,026 fragments per cell (SD = 15,328). The data were 
aggregated with CellRanger ATAC v2.0, and the aggregated dataset 
(filtered_peak_bc_matrix) was processed with Seurat v4.0.2 and its 
companion package Signac v1.4.0 (62). Low- quality cells were re-
moved from the aggregated snATAC- seq library (subset the high- 
quality nuclei with peak region fragments > 2000, peak region 
fragments < 100000, %reads in peaks > 25, blacklist ratio < 0.08, 
nucleosome signal < 4, and TSS enrichment > 2). The barcodes rep-
resenting doublets were determined with AMULET v1.1 (63) run on 
each snATAC- seq library, and those were filtered out from the inte-
grated dataset (fig. S1A). A gene activity matrix was constructed by 
counting ATAC peaks within the gene body and 2 kbp upstream of 
the TSS using protein- coding genes annotated in the Ensembl data-
base (19). FindTransferAnchors and TransferData functions were 
used for label transfer from the snRNA- seq dataset using gene ac-
tivities, according to instructions (62). After label transfer, the 
snATAC- seq datasets were filtered using an 60% confidence thresh-
old for low- resolution cell type assignment to remove low- quality 
nuclei and heterotypic doublets. Latent semantic indexing was 

performed with term frequency inverse document frequency 
(TFIDF) followed by singular value decomposition (SVD). A k- 
nearest neighbors (KNN) graph was constructed to cluster cells with 
the Louvain algorithm. Batch effect was corrected with Harmony 
(20) using the RunHarmony function in Seurat. After clustering and 
cell type annotation based on lineage- specific gene activity (fig. S1, 
B to D), the nuclei with inconsistency between predicted low- 
resolution cell type and annotation based on lineage- specific gene 
activity were further filtered out to remove remaining doublets and 
low- quality nuclei (fig. S1, C and E). After filtering out these artifacts, 
the dataset was processed for batch effect correction with Harmony 
(20), clustering, and cell type annotation based on lineage- specific 
gene activity (fig. S2). The final snATAC- seq library contained a total 
of 193,731 peak regions among 157,000 nuclei. The number of frag-
ments in peaks per nucleus was a mean of 9292 ± 6066, and %Frag-
ments in peaks per nucleus was a mean of 53.1 ± 12.7%. Fraction of 
reads in peaks, number of reads in peaks per cell, and ratio of reads 
in genomic blacklist regions per cell for each patient are shown in 
fig. S3. Differential chromatin accessibility among cell types was as-
sessed with the Seurat FindMarkers function for peaks detected in at 
least 10% of cells with a likelihood ratio test and a log(fold change) 
threshold of 0.25 to identify differential chromatin accessibility. The 
nearby genes were determined by the ClosestFeature function. 
Bonferroni- adjusted P values were used to determine significance at 
an FDR of <0.05.

For subclustering of PTCs (PCTs and PSTs) or immune cells (Im-
mune1 and Immune2) in snATAC- seq data, the target cell types 
were extracted from the integrated dataset (Fig.  1B). Following 
TFIDF/SVD and subclustering, the clusters with marker gene ac-
tivities for other cell types were removed as remaining low- quality 
nuclei and doublets. Subsequently, TFIDF/SVD, processing with 
Harmony and subclustering, was performed with UMAP (Fig. 2 and 
fig. S12).

snRNA- seq for human kidneys and bioinformatics workflow
For human AKI kidneys, snRNA- seq libraries were generated with 
10X Genomics Chromium Single Cell 3′ v3 chemistry following 
nuclear dissociation. A target of 10,000 nuclei were loaded onto each 
lane. The cDNA for snRNA libraries was amplified for 15 cycles. Li-
braries were sequenced on an Illumina NovaSeq instrument and 
counted with CellRanger v6.0.0 with - - include- introns argument 
using GRCh38. The read configuration for the libraries was 2x150- bp 
paired- end reads. A mean of 503,452,820 reads (SD = 18,797,210) 
were sequenced for each snRNA library corresponding to a mean of 
54,336 reads per cell (SD = 26,822). The mean sequencing satura-
tion was 38.8 ± 8.0%. The mean fraction of reads with a valid bar-
code (fraction of reads in cells) was 39.6 ± 15.4%.

The output of CellRanger (filtered_gene_bc_matrix) was pro-
cessed through Seurat v4.0.2 (18). Ambient RNA contamination was 
corrected for each dataset by SoupX v1.5.0 (64) with automatically 
calculated contamination fraction. Each of the datasets was then 
processed to remove low- quality nuclei (nuclei with top 5% and bot-
tom 1% in the distribution of feature count and RNA count and 
those with %Mitochondrial genes > 0.25). Heterotypic doublets 
were identified with DoubletFinder v2.0.3 (65), assuming 8% of bar-
codes represent heterotypic doublets, and resultant estimated dou-
blets were removed after merging the datasets. The datasets were 
integrated in Seurat using the IntegrateData function with anchors 
identified by the FindIntegrationAnchors function. Subsequently, 
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the doublets and low- quality clusters were removed for these datas-
ets. The major cell types were identified in the dataset for AKI kid-
neys (fig. S22). The control datasets (n = 5) were previously published 
(GSE185948) (13). The AKI and control datasets were integrated 
with batch effect correction with Harmony v1.0 (20) using the Run-
Harmony function on assay RNA in Seurat. Then, there was a mean 
of 8127 ± 1692 nuclei in control or 8058 ± 2971 nuclei in AKI per 
the snRNA- seq library. The number of unique molecular identifiers 
per nucleus was a mean of 3536 ± 1914 in control or 3906 ± 2429 in 
AKI. The number of detected genes per nucleus was a mean of 2222 ± 
803 genes in control or 2434 ± 864 genes in AKI. %Mitochondrial 
genes was 0.027 ± 0.050% in control or 0.028 ± 0.048% in AKI 
(fig. S16). Clustering was performed by constructing a KNN graph 
and applying the Louvain algorithm. Dimensional reduction was 
performed with UMAP, and individual clusters were annotated 
based on the expression of lineage- specific markers (fig. S14). Dif-
ferential expressed genes among cell types were assessed with the 
Seurat FindMarkers function for transcripts detected in at least 10 or 
20% (data S13) of cells using a log(fold change) threshold of 0.25. 
Bonferroni- adjusted P values were used to determine significance at 
an FDR of <0.05.

snATAC- seq for human kidneys and bioinformatics workflow
For human AKI kidneys, snATAC- seq libraries were generated 
using 10X Genomics Chromium Single Cell ATAC v1 chemistry 
following nuclear dissociation. Libraries were sequenced on an 
Illumina NovaSeq instrument and counted with CellRanger ATAC 
v2.0 (10X Genomics) using GRCh38. The read configuration was 
2x150- bp paired- end reads. Sample index PCR was performed at 
nine cycles. A mean of 402,063,865 reads were sequenced for each 
snATAC library (SD = 54,544,038) with a median of 16,333 frag-
ments per cell (SD  =  2,033). Five control snATAC- seq libraries 
(controls 1 to 5) were prepared and published in a prior study 
(GSE151302) (12). The libraries from control and AKI kidneys were 
aggregated with CellRanger ATAC v2.0. Subsequently, the aggre-
gated dataset (filtered_peak_bc_matrix) was processed with Seurat 
v4.0.2 and its companion package Signac v1.4.0 (62). Low- quality 
cells were removed from the aggregated snATAC- seq library (subset 
the high- quality nuclei with peak region fragments > 2500, peak 
region fragments < 25,000, %reads in peaks > 15, blacklist ra-
tio < 0.1, nucleosome signal < 4, and TSS enrichment > 2). A gene 
activity matrix was constructed by counting ATAC peaks within the 
gene body and 2 kbp upstream of the TSS using protein- coding 
genes (19) and used for label transfer with FindTransferAnchors 
and TransferData functions using the snRNA- seq dataset for the 
same human AKI samples, according to instructions (19). After la-
bel transfer, the snATAC- seq datasets were filtered using a 50% con-
fidence threshold for low- resolution cell type assignment to remove 
low- quality cells and heterotypic doublets. A low- quality cluster 
with simultaneous marker gene activities with multiple cell types 
was further removed. Following TFIDF/SVD, batch effect was cor-
rected with Harmony (20). After clustering and cell type annotation 
based on lineage- specific gene activity (fig. S15, A to D), the nuclei 
with inconsistency between predicted cell type and annotation 
based on lineage- specific gene activity were further filtered out to 
remove remaining doublets and low- quality nuclei (fig. S15E). The 
barcodes representing doublets determined with AMULET v1.1 
(63) in each library were further filtered out from the integrated da-
taset (fig. S15A). After filtering out these artifacts, the dataset was 

processed with Harmony (20) to remove batch effect. Clustering 
and cell type annotation were based on lineage- specific gene activity 
(fig.  S14B). The final snATAC- seq library contained a total of 
249,164 peak regions among 64,350 nuclei (31,397 nuclei for control 
and 32,953 nuclei for AKI) and represented all major cell types with-
in the kidney cortex (Fig. 5A). The number of fragments in peaks 
per nucleus was a mean of 8629 ± 3575 in control or 8968 ± 3526 in 
AKI, and %Fragments in peaks per nucleus was a mean of 59.4 ± 
10.7% in control or 56.7 ± 12.8% in AKI. Fraction of reads in peaks, 
number of reads in peaks per cell, and ratio of reads in genomic 
blacklist regions per cell for each patient are shown in fig. S16. Dif-
ferential chromatin accessibility among cell types was assessed with 
the Seurat FindMarkers function for peaks detected in at least 10% 
of cells with a likelihood ratio test and a log(fold change) threshold 
of 0.25. The nearby genes were determined by the ClosestFeature 
function. Bonferroni- adjusted P values were used to determine 
significance at an FDR of <0.05.

Integration of AKI and DKD snRNA- seq data
The iPTC cluster from the AKI dataset [n = 5 control and n = 4 AKI; 
generated with 3′ v3 chemistry (10X Genomics)] and the PT_
VCAM1 (iPTC) cluster from the DKD dataset [n = 5 control and 
n = 5 DKD; generated with 5′ chemistry (10X Genomics)] (14) were 
extracted. We excluded one control (control 6) from the DKD data-
set due to increased sclerotic glomeruli (14). These datasets were 
integrated with Harmony (20) [RunHarmony function with group.
by.vars = “chemistry” (10X Genomics; 5′ or 3′ chemistry)]. Subse-
quently, clustering was performed by constructing a KNN graph 
and applying the Louvain algorithm. Dimensional reduction was 
performed with UMAP.

Visualization of single- nucleus dataset features
Gene expressions (snRNA- seq) or gene activities (snATAC- seq) 
were visualized with the FeaturePlot (UMAP), VlnPlot (violin plot), 
or DotPlot (dot plot) function on Seurat. For feature plots of the 
genes with low expression levels (CCL2, CSF1, and CD47), cells were 
plotted in the order of expression (FeaturePlot function with or-
der = T) (fig. S19). The fragment coverage around DARs in each cell 
type was visualized by the CoveragePlot function (Signac).

Estimation of TF activity from snATAC- seq data
TF activity was estimated using the integrated snATAC- seq dataset 
and chromVAR v1.10.0 (22). The positional weight matrix was ob-
tained from the JASPAR2022 database (collection = “CORE”, tax_
group = “vertebrates”, and all_versions = F) (66). Cell type–specific 
chromVAR activities were calculated using the RunChromVAR 
wrapper in Signac v1.4.0. The chromVAR activity in each TF on the 
whole dataset was shown with the FeaturePlot function with max.
cutoff = q99 and min.cutoff = q1 or the VlnPlot function.

Construction of pseudotemporal trajectories
Cicero v1.3.5 (27) was used to generate pseudotemporal trajectories 
for the snATAC- seq dataset. First, the cell dataset (CDS) object was 
constructed from the peak count matrix in the Seurat object for PTC 
subtypes with the “make_atac_cds” function with binarize = F. Next, 
the CDS was preprocessed (num_dim  =  50), aligned to remove 
batch effect, and reduced onto a lower dimensional space with the 
“reduce_dimension” function (reduction_method  =  ‘UMAP’; pre-
process_method = “Aligned”) (67). After filtering potential doublets 
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and low- quality nuclei that express non- PTC type markers, the nu-
clei were clustered (cluster_cells). Subsequently, cell ordering was 
performed with the learn_graph function. The data were visualized 
with plot_cells functions.

Construction of the CCAN
Cicero v1.3.5 (27) was used to construct the CCAN for the snATAC- 
seq FR- PTCs (Fig. 4 and figs. S9 and S10) per instructions provided 
on GitHub (https://cole- trapnell- lab.github.io/cicero- release/docs_
m3/). Briefly, the FR- PTC data were extracted from the integrated 
snATAC- seq dataset and converted to CDS objects using the make_
atac_cds function. The CDS object was processed using the detect_
genes() and estimate_size_factors() functions with default parameters 
prior to dimensional reduction and conversion to a Cicero CDS ob-
ject. The FR- PTC–specific CCAN was generated using the run_cice-
ro function with default parameters. The CCAN was visualized with 
plot_connections function with coaccess_cutoff = 0.2. CTCF binding 
sites (ChIP- seq peak track for 8- week- old male mouse kidney) gener-
ated and processed by ENCODE (45) were retrieved from the UCSC 
Genome Browser (35).

Cell culture
Human primary PTCs (Lonza, CC- 2553) were cultured with a renal 
epithelial cell growth medium kit (Lonza, CC- 3190) in a humidified 
5% CO2 atmosphere at 37°C. Experiments were performed on early 
passages. Cells were plated at a density of 1 × 105 cells per well in a 
12- well plate, incubated overnight, and transfected with 40 pmol of 
siRNA for RELA, RELB, or CREB5 [ON- TARGETplus SMARTpool 
siRNA (Horizon Discovery), L- 003533- 00, L- 004767- 00, and L- 
008436- 00] or negative control siRNA [ON- TARGETplus Non- 
targeting Control Pool (Horizon Discovery), D- 001810- 10] using 
Lipofectamine RNAiMAX (Life Technologies) following the manu-
facturer’s protocol. Cells were harvested at 72 hours after transfection 
for RNA isolation. For RELA or RELB knockdown, cells were 
also treated with or without TNFα (R&D Systems; 100 ng/ml) at 
48 hours after transfection and harvested at 72 hours after transfec-
tion (24 hours after TNFα treatment).

MTS assay
Primary human PTCs were seeded at 2.5 × 103 cells per well on 96- 
well tissue culture plates 24 hours before transfection and transfected 
with 6 pmol of siRNA for CREB5 [ON- TARGETplus SMARTpool 
siRNA (Horizon Discovery), L- 008436- 00] or negative control siR-
NA [ON- TARGETplus Non- targeting Control Pool (Horizon Discov-
ery), D- 001810- 10] using Lipofectamine RNAiMAX (Life Technologies) 
following the manufacturer’s protocol. Four replicates were prepared 
per group. Proliferation was measured using the CellTiter96 AQueous 
One Solution Cell Proliferation Assay (Promega, G3582) following the 
manufacturer’s protocol. Optical density readings were obtained 2 hours 
following days 1, 2, 3, and 4.

Quantitative PCR
Total RNA was extracted from primary human PTCs with the Direct- 
zol MicroPrep Kit (Zymo) following the manufacturer’s instructions. 
The extracted RNA (2 μg) was reverse transcribed using the High- 
Capacity cDNA Reverse Transcription Kit (Life Technologies). Quan-
titative PCR (qPCR) was performed using the iTaq Universal SYBR 
Green Supermix (Bio- Rad). Data were normalized by the abundance 
of GAPDH mRNA. Primer sequences are shown in table S1.

CUT&RUN assay
We performed the CUT&RUN assay with the CUTANA kit (EpiCy-
pher, 14- 1048) according to the manufacturer’s instructions. The 
human RPTECs with early passages were seeded at 8 × 105 cells on 
a 10- cm culture dish at the day before the assay and treated with or 
without TNFα (R&D Systems; 100 ng/ml) at 3 hours before the 
fixation. Formaldehyde (37%, Sigma- Aldrich, 25259) was directly 
added to the medium of the RPTECs to achieve a final concentra-
tion of 0.5% for 1 min in room temperature. Fixation reaction was 
quenched by adding glycine at a final concentration of 125 mM. The 
cells were treated with trypsin (Gibco, 0.05%) for 2 min at 37°C, 
scraped from a culture dish, and centrifuged at 500g for 5 min. The 
centrifugated cells were resuspended in PBS with 1% BSA and 
counted. A total of 500,000 cells in 100 μl of wash buffer were mixed 
and incubated with concanavalin A–conjugated paramagnetic 
beads. Antibodies were added to each sample [RELA antibody 
(Santa Cruz, sc- 109, 1:25) or rabbit immunoglobulin G negative 
control antibody (EpiCypher, 13- 0041, 1:50)]. The remaining steps 
were performed according to the manufacturer’s instructions for 
cross- linked samples. Library preparation was performed using the 
NEBNext Ultra II DNA Library Prep Kit for Illumina (New Eng-
land BioLabs, E7645S) with the manufacturer’s instructions, in-
cluding minor modifications indicated by the CUTANA kit. The 
libraries were sequenced on a NovaSeq instrument (Illumina, 150- bp 
paired- end reads). Fastq files were trimmed with Trim Galore 
[Cutadapt (v2.8)] and aligned with Bowtie2 (v2.3.5.1) (parameters: 
- - local - - very- sensitive- local - - no- unal - - no- mixed - - no- discordant 
- - phred33 - I 10 - X 700) using hg38. The Sequence Alignment/Map 
(SAM) files were converted to Binary Alignment Map (BAM) files 
with samtools (1.9). Peak calling was performed using MACS2 
(v2.2.7.1) with default parameters. Visualization was performed 
with Integrated Genome Viewer (68) and bigWig files generated 
from BAM files using DeepTools (3.5.0). The visualization for mod-
ified histone (H3K4me3 and H3K27ac) in Fig. 3A was generated 
with previously published CUT&RUN data for human primary 
PTCs (33). CUT&RUN peaks were annotated with ChIPSeeker 
(v1.24.0) (69) using hg38. To convert the genome coordinates for 
human RELA binding sites (hg38) to those of the mouse genome 
(mm10), The Genome Browser Convert utility (https://genome.
ucsc.edu/cgi- bin/hgLiftOver) was used with a minimum ratio of 
bases that must remap = 0.1 (35).

Reanalysis of bulk RNA- seq
The bulk RNA- seq dataset for primary human PTCs with siRNA 
knockdown of CREB5 or control was retrieved from GEO220222 
(33). Briefly, the reads were then aligned with STAR v2.7.9a to the 
Ensembl release 101 primary assembly. Gene counts were calculated 
from the number of uniquely aligned, unambiguous reads by 
Subread:featureCount v2.0.3. The dataset was deconvoluted with 
snRNA- seq data for PTC subtypes of the IRI snRNA- seq dataset 
using CIBERSORTx executables v1.029 according to the instruc-
tions provided on the CIBERSORTx website (https://cibersortx.
stanford.edu) (32). Before deconvolution, the genes in snRNA- seq 
data were converted to human annotations using biomaRt and en-
sembl. The PTC data [normal PTCs: PTS1/2/3, injured PTCs: New 
PT1, and FR- PTCs: New PT2 in our previous study (8)] were used 
for deconvolution. Briefly, cell type fraction (CIBERSORTx Frac-
tions) was predicted with - - single_cell TRUE - - rmbatchSmode 
TRUE - - perm 100.

https://cole-trapnell-lab.github.io/cicero-release/docs_m3/
https://cole-trapnell-lab.github.io/cicero-release/docs_m3/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://cibersortx.stanford.edu
https://cibersortx.stanford.edu
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GSEA and GO analysis
Single- nucleus GSEA was performed with the VISION v2.1.0 R pack-
age according to the instructions provided on GitHub (https://github.
com/YosefLab/VISION) (48), using Hallmark gene sets obtained 
from the MsigDB v7.4 distributed at the GSEA website. The heatmaps 
were generated with pheatmap v1.0.12 from gene set enrichment 
scores averaged in each cell type (Fig. 6C). The bulk RNA- seq data 
were analyzed with GSEA v4.0.3 software (Broad Institute) (70) with 
Hallmark gene sets. The top- ranked gene set list in Fig. 7E only dis-
plays those with FDR < 0.05. The whole list including FDR = 0.05 or 
more is available in data S21. GO term analysis was performed with 
Gene Ontology Resource (https://geneontology.org/) (71, 72).

Gene regulatory network analysis with RENIN
To construct gene regulatory networks, we first generated CCANs in 
our snATAC- seq datasets with Cicero v1.3.9 (27). Within each CCAN, 
we identified peaks that overlapped with the 2–kilo- bp (kbp) promot-
er region or gene body for genes that were differentially expressed 
between the PTC and iPTC clusters in each of the control and AKI 
group in the human snRNA- seq dataset or between the healthy PTCs 
(PTS1–3) and acutely injured PTCs (New PT1) or FR- PTCs (New 
PT2) clusters in the mouse snRNA- seq dataset (8). Differentially ex-
pressed genes with linked CCANs were included for TF modeling. 
For each species, we then used the filtered cisBP v0.2 motif database 
provided by the chromVARmotifs package and JASPAR2022 to iden-
tify predicted TF binding sites within each differentially expressed 
gene- linked CCAN. A preliminary list of TFs that regulate each dif-
ferentially expressed gene was generated by aggregating TFs with at 
least one predicted binding motif within each gene’s CCAN. From the 
preliminary list of TFs regulating each differentially expressed gene, 
we then used the adaptive elastic net- based RENIN to generate para-
metric gene regulatory networks for each gene. We then ranked TFs 
by the sum of their coefficients across differentially expressed genes 
between groups, multiplied by each TF’s mean proximal tubular ex-
pression. Regulatory coefficients for differentially expressed genes 
that were up- regulated in the normal PTC cluster versus the injury- 
associated cluster were multiplied by −1 to allow for identification of 
failed repair or injury association for each TF. To evaluate interspecies 
RENIN scores (Fig. 7A), the mouse genes were converted to human 
genes using biomaRt and ensembl with the getLDS function.

Statistical analysis
No statistical methods were used to predetermine the sample size for 
single- nucleus analysis. Experiments were not randomized, and in-
vestigators were not blinded to allocation during library preparation, 
experiments, or analysis. Bonferroni- adjusted P values were used to 
determine significance for differential gene expression or accessibil-
ity. The qPCR data (Figs. 4 and 7 and fig. S9) and bulk RNA- seq de-
convolution data (fig. S8, C and D) are presented as means ± SD and 
were compared between groups with two- sided Student’s t test (Fig. 7) 
or one- way analysis of variance (ANOVA) with post hoc Tukey test 
(Fig. 4 and figs. S8 and S9). The MTS assay data were compared be-
tween groups with two- sided Student’s t test at each time point 
(Fig. 7). A P value of <0.05 was considered statistically significant.

Supplementary Materials
This PDF file includes:
Figs. S1 to S22

table S1
legends for data S1 to S21

Other Supplementary Material for this manuscript includes the following:
data S1 to S21

REFERENCES AND NOTES
 1. A. S. levey, M. t. James, Acute kidney injury. Ann. Intern. Med. 167, itc66–itc80 (2017).
 2. c. Ronco, R. Bellomo, J. A. Kellum, Acute kidney injury. Lancet 394, 1949–1964 (2019).
 3. l. S. chawla, P. W. eggers, R. A. Star, P. l. Kimmel, Acute kidney injury and chronic kidney 

disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).
 4. t. chen, Q. cao, Y. Wang, d. c. h. harris, M2 macrophages in kidney disease: Biology, 

therapies, and perspectives. Kidney Int. 95, 760–773 (2019).
 5. h. i. han, l. B. Skvarca, e. B. espiritu, A. J. davidson, n. A. hukriede, the role of macrophages 

during acute kidney injury: destruction and repair. Pediatr. Nephrol. 34, 561–569 (2019).
 6. B. d. humphreys, Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).
 7. e. R. Gibney, c. M. nolan, epigenetics and gene expression. Heredity 105, 4–13 (2010).
 8. Y. Kirita, h. Wu, K. Uchimura, P. c. Wilson, B. d. humphreys, cell profiling of mouse acute 

kidney injury reveals conserved cellular responses to injury. Proc. Natl. Acad. Sci. U.S.A. 
117, 15874–15883 (2020).

 9. l. M. S. Gerhardt, J. liu, K. Koppitch, P. e. cippà, A. P. McMahon, Single- nuclear 
transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to 
acute kidney injury. Proc. Natl. Acad. Sci. U.S.A. 118, e2026684118 (2021).

 10. S. ide, Y. Kobayashi, K. ide, S. A. Strausser, K. Abe, S. herbek, l. l. O'Brien, S. d. crowley,  
l. Barisoni, A. tata, P. R. tata, t. Souma, Ferroptotic stress promotes the accumulation of 
pro- inflammatory proximal tubular cells in maladaptive renal repair. eLife 10, e68603 
(2021).

 11. l. M. S. Gerhardt, K. Koppitch, J. van Gestel, J. Guo, S. cho, h. Wu, Y. Kirita,  
B. d. humphreys, A. P. McMahon, lineage tracing and single- nucleus multiomics reveal 
novel features of adaptive and maladaptive repair after acute kidney injury. J. Am. Soc. 
Nephrol. 34, 554–571 (2023).

 12. Y. Muto, P. c. Wilson, n. ledru, h. Wu, h. dimke, S. S. Waikar, B. d. humphreys, Single cell 
transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in 
the adult human kidney. Nat. Commun. 12, 2190 (2021).

 13. Y. Muto, e. e. dixon, Y. Yoshimura, h. Wu, K. Omachi, n. ledru, P. c. Wilson, A. J. King,  
n. eric Olson, M. G. Gunawan, J. J. Kuo, J. h. cox, J. h. Miner, S. l. Seliger, O. M. Woodward, 
P. A. Welling, t. J. Watnick, B. d. humphreys, defining cellular complexity in human 
autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nat. 
Commun. 13, 6497 (2022).

 14. P. c. Wilson, Y. Muto, h. Wu, A. Karihaloo, S. S. Waikar, B. d. humphreys, Multimodal single 
cell sequencing implicates chromatin accessibility and genetic background in diabetic 
kidney disease progression. Nat. Commun. 13, 5253 (2022).

 15. Y.- h. chou, S.- Y. Pan, Y.- h. Shao, h.- M. Shih, S.- Y. Wei, c.- F. lai, W.- c. chiang, c. Schrimpf, 
K.- c. Yang, l.- c. lai, Y.- M. chen, t.- S. chu, S.- l. lin, Methylation in pericytes after acute 
injury promotes chronic kidney disease. J. Clin. Invest. 130, 4845–4857 (2020).

 16. M. nangaku, Y. hirakawa, i. Mimura, R. inagi, t. tanaka, epigenetic changes in the acute 
kidney injury- to- chronic kidney disease transition. Nephron 137, 256–259 (2017).

 17. X. cao, J. Wang, t. Zhang, Z. liu, l. liu, Y. chen, Z. li, Y. Zhao, Q. Yu, t. liu, J. nie, Y. niu,  
Y. chen, l. Yang, l. Zhang, chromatin accessibility dynamics dictate renal tubular 
epithelial cell response to injury. Nat. Commun. 13, 7322 (2022).

 18. Y. hao, S. hao, e. Andersen- nissen, W. M. Mauck, S. Zheng, A. Butler, M. J. lee, A. J. Wilk,  
c. darby, M. Zager, P. hoffman, M. Stoeckius, e. Papalexi, e. P. Mimitou, J. Jain,  
A. Srivastava, t. Stuart, l. M. Fleming, B. Yeung, A. J. Rogers, J. M. Mcelrath, c. A. Blish,  
R. Gottardo, P. Smibert, R. Satija, integrated analysis of multimodal single- cell data. Cell 
184, 3573–3587.e29 (2021).

 19. t. Stuart, A. Srivastava, S. Madad, c. A. lareau, R. Satija, Single- cell chromatin state 
analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

 20. i. Korsunsky, n. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko, M. Brenner,  
P. loh, S. Raychaudhuri, Fast, sensitive and accurate integration of single- cell data with 
harmony. Nat. Methods 16, 1289–1296 (2019).

 21. J. liu, S. Kumar, e. dolzhenko, G. F. Alvarado, J. Guo, c. lu, Y. chen, M. li, M. c. dessing,  
R. K. Parvez, P. e. cippà, A. M. Krautzberger, G. Saribekyan, A. d. Smith, A. P. McMahon, 
Molecular characterization of the transition from acute to chronic kidney injury following 
ischemia/reperfusion. JCI Insight 2, e94716 (2017).

 22. A. n. Schep, B. Wu, J. d. Buenrostro, W. J. Greenleaf, chromvAR: inferring transcription- 
factor- associated accessibility from single- cell epigenomic data. Nat. Methods 14, 
975–978 (2017).

 23. l. M. Shelton, B. K. Park, i. M. copple, Role of nrf2 in protection against acute kidney 
injury. Kidney Int. 84, 1090–1095 (2013).

 24. M. Yamamoto, t. W. Kensler, h. Motohashi, the KeAP1- nRF2 system: A thiol- based 
sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 
(2018).

https://github.com/YosefLab/VISION
https://github.com/YosefLab/VISION
https://geneontology.org/


Muto et al., Sci. Adv. 10, eado2849 (2024)     7 August 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

18 of 19

 25. J. v. Bonventre, l. Yang, cellular pathophysiology of ischemic acute kidney injury. J. Clin. 
Invest. 121, 4210–4221 (2011).

 26. c.- t. Ong, v. G. corces, ctcF: An architectural protein bridging genome topology and 
function. Nat. Rev. Genet. 15, 234–246 (2014).

 27. h. A. Pliner, J. S. Packer, J. l. McFaline- Figueroa, d. A. cusanovich, R. M. daza,  
d. Aghamirzaie, S. Srivatsan, X. Qiu, d. Jackson, A. Minkina, A. c. Adey, F. J. Steemers,  
J. Shendure, c. trapnell, cicero predicts cis- regulatory dnA interactions from single- cell 
chromatin accessibility data. Mol. Cell 71, 858–871.e8 (2018).

 28. M. Bleu, S. Gaulis, R. lopes, K. Sprouffske, v. Apfel, S. holwerda, M. Pregnolato, U. Yildiz,  
v. cordo′, A. F. M. dost, J. Knehr, W. carbone, F. lohmann, c. Y. lin, J. e. Bradner,  
A. Kauffmann, l. tordella, G. Roma, G. G. Galli, PAX8 activates metabolic genes via 
enhancer elements in Renal cell carcinoma. Nat. Commun. 10, 3739 (2019).

 29. S. A. Patel, S. hirosue, P. Rodrigues, e. vojtasova, e. K. Richardson, J. Ge, S. e. Syafruddin,  
A. Speed, e. K. Papachristou, d. Baker, d. clarke, S. Purvis, l. Wesolowski, A. dyas,  
l. castillon, v. caraffini, d. Bihary, c. Yong, d. J. harrison, G. d. Stewart, M. J. Machiela,  
M. P. Purdue, S. J. chanock, A. Y. Warren, S. A. Samarajiwa, J. S. carroll, S. vanharanta, the 
renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. Nature 606, 
999–1006 (2022).

 30. A. J. Peired, G. Antonelli, M. l. Angelotti, M. Allinovi, F. Guzzi, A. Sisti, R. Semeraro,  
c. conte, B. Mazzinghi, S. nardi, M. e. Melica, l. de chiara, e. lazzeri, l. lasagni, t. lottini,  
S. landini, S. Giglio, A. Mari, F. di Maida, A. Antonelli, F. Porpiglia, R. Schiavina, v. Ficarra,  
d. Facchiano, M. Gacci, S. Serni, M. carini, G. J. netto, R. M. Roperto, A. Magi,  
c. F. christiansen, M. Rotondi, h. liapis, h.- J. Anders, A. Minervini, M. R. Raspollini,  
P. Romagnani, Acute kidney injury promotes development of papillary renal cell adenoma 
and carcinoma from renal progenitor cells. Sci. Transl. Med. 12, eaaw6003 (2020).

 31. P. J. Skene, S. henikoff, An efficient targeted nuclease strategy for high- resolution 
mapping of dnA binding sites. eLife 6, e21856 (2017).

 32. A. M. newman, c. B. Steen, c. l. liu, A. J. Gentles, A. A. chaudhuri, F. Scherer,  
M. S. Khodadoust, M. S. esfahani, B. A. luca, d. Steiner, M. diehn, A. A. Alizadeh, 
determining cell type abundance and expression from bulk tissues with digital 
cytometry. Nat. Biotechnol. 37, 773–782 (2019).

 33. n. ledru, P. c. Wilson, Y. Muto, Y. Yoshimura, h. Wu, d. li, A. Asthana, S. G. tullius,  
S. S. Waikar, G. Orlando, B. d. humphreys, Predicting proximal tubule failed repair drivers 
through regularized regression analysis of single cell multiomic sequencing. Nat 
Commun. 15, 1291 (2024).

 34. M. S. hayden, S. Ghosh, Regulation of nF- κB by tnF family cytokines. Semin. Immunol. 26, 
253–266 (2014).

 35. W. J. Kent, c. W. Sugnet, t. S. Furey, K. M. Roskin, t. h. Pringle, A. M. Zahler, d. haussler, the 
human genome browser at UcSc. Genome Res. 12, 996–1006 (2002).

 36. l. Xu, d. Sharkey, l. G. cantley, tubular GM- cSF promotes late McP- 1/ccR2- mediated 
fibrosis and inflammation after ischemia/reperfusion injury. J. Am. Soc. Nephrol. 30, 
1825–1840 (2019).

 37. l. li, l. huang, S.- S. J. Sung, A. l. vergis, d. l. Rosin, c. e. Rose, P. i. lobo, M. d. Okusa, the 
chemokine receptors ccR2 and cX3cR1 mediate monocyte/macrophage trafficking in 
kidney ischemia- reperfusion injury. Kidney Int. 74, 1526–1537 (2008).

 38. i. Ushach, A. Zlotnik, Biological role of granulocyte macrophage colony- stimulating factor 
(GM- cSF) and macrophage colony- stimulating factor (M- cSF) on cells of the myeloid 
lineage. J. Leukoc. Biol. 100, 481–489 (2016).

 39. M.- Z. Zhang, B. Yao, S. Yang, l. Jiang, S. Wang, X. Fan, h. Yin, K. Wong, t. Miyazawa, J. chen, 
i. chang, A. Singh, R. c. harris, cSF- 1 signaling mediates recovery from acute kidney 
injury. J. Clin. Invest. 122, 4519–4532 (2012).

 40. Y. Wang, J. chang, B. Yao, A. niu, e. Kelly, M. c. Breeggemann, S. l. Abboud Werner,  
R. c. harris, M.- Z. Zhang, Proximal tubule- derived colony stimulating factor- 1 mediates 
polarization of renal macrophages and dendritic cells, and recovery in acute kidney 
injury. Kidney Int. 88, 1274–1282 (2015).

 41. J. Menke, Y. iwata, W. A. Rabacal, R. Basu, Y. G. Yeung, B. d. humphreys, t. Wada,  
A. Schwarting, e. R. Stanley, v. R. Kelley, cSF- 1 signals directly to renal tubular epithelial 
cells to mediate repair in mice. J. Clin. Invest. 119, 2330–2342 (2009).

 42. l. Meziani, M. Mondini, B. Petit, A. Boissonnas, v. thomas de Montpreville, O. Mercier, 
M.- c. vozenin, e. deutsch, cSF1R inhibition prevents radiation pulmonary fibrosis by 
depletion of interstitial macrophages. Eur. Respir. J. 51, 1702120 (2018).

 43. n. Joshi, S. Watanabe, R. verma, R. P. Jablonski, c.- i. chen, P. cheresh, n. S. Markov,  
P. A. Reyfman, A. c. McQuattie- Pimentel, l. Sichizya, Z. lu, R. Piseaux- Aillon,  
d. Kirchenbuechler, A. S. Flozak, c. J. Gottardi, c. M. cuda, h. Perlman, M. Jain, d. W. Kamp, 
G. R. S. Budinger, A. v. Misharin, A spatially restricted fibrotic niche in pulmonary fibrosis 
is sustained by M- cSF/M- cSFR signalling in monocyte- derived alveolar macrophages. 
Eur. Respir. J. 55, 1900646 (2020).

 44. S. Jaiswal, M. P. chao, R. Majeti, i. l. Weissman, Macrophages as mediators of tumor 
immunosurveillance. Trends Immunol. 31, 212–219 (2010).

 45. encOde Project consortium, J. e. Moore, M. J. Purcaro, h. e. Pratt, c. B. epstein,  
n. Shoresh, J. Adrian, t. Kawli, c. A. davis, A. dobin, R. Kaul, J. halow, e. l. van nostrand,  
P. Freese, d. U. Gorkin, Y. Shen, Y. he, M. Mackiewicz, F. Pauli- Behn, B. A. Williams,  

A. Mortazavi, c. A. Keller, X.- O. Zhang, S. i. elhajjajy, J. huey, d. e. dickel, v. Snetkova,  
X. Wei, X. Wang, J. c. Rivera- Mulia, J. Rozowsky, J. Zhang, S. B. chhetri, J. Zhang,  
A. victorsen, K. P. White, A. visel, G. W. Yeo, c. B. Burge, e. lécuyer, d. M. Gilbert, J. dekker,  
J. Rinn, e. M. Mendenhall, J. R. ecker, M. Kellis, R. J. Klein, W. S. noble, A. Kundaje, R. Guigó, 
P. J. Farnham, J. M. cherry, R. M. Myers, B. Ren, B. R. Graveley, M. B. Gerstein,  
l. A. Pennacchio, M. P. Snyder, B. e. Bernstein, B. Wold, R. c. hardison, t. R. Gingeras,  
J. A. Stamatoyannopoulos, Z. Weng, expanded encyclopaedias of dnA elements in the 
human and mouse genomes. Nature 583, 699–710 (2020).

 46. J. Barrera- chimal, G. R. estrela, S. M. lechner, S. Giraud, S. el Moghrabi, S. Kaaki, P. Kolkhof, 
t. hauet, F. Jaisser, the myeloid mineralocorticoid receptor controls inflammatory and 
fibrotic responses after renal injury via macrophage interleukin- 4 receptor signaling. 
Kidney Int. 93, 1344–1355 (2018).

 47. J. M. luther, A. B. Fogo, the role of mineralocorticoid receptor activation in kidney 
inflammation and fibrosis. Kidney Int. Suppl. 12, 63–68 (2022).

 48. d. detomaso, M. G. Jones, M. Subramaniam, t. Ashuach, c. J. Ye, n. Yosef, Functional 
interpretation of single cell similarity maps. Nat. Commun. 10, 4376 (2019).

 49. S. e. Piret, Y. Guo, A. A. Attallah, S. J. horne, A. Zollman, d. Owusu, J. henein,  
v. S. Sidorenko, M. P. Revelo, t. hato, A. Ma’ayan, J. c. he, S. K. Mallipattu, Krüppel- like 
factor 6- mediated loss of BcAA catabolism contributes to kidney injury in mice and 
humans. Proc. Natl. Acad. Sci. U.S.A. 118, e2024414118 (2021).

 50. h. S. Kang, J. Y. Beak, Y.- S. Kim, R. herbert, A. M. Jetten, Glis3 is associated with primary 
cilia and Wwtr1/tAZ and implicated in polycystic kidney disease. Mol. Cell. Biol. 29, 
2556–2569 (2009).

 51. v. Senée, c. chelala, S. duchatelet, d. Feng, h. Blanc, J.- c. cossec, c. charon, M. nicolino,  
P. Boileau, d. R. cavener, P. Bougnères, d. taha, c. Julier, Mutations in GLIS3 are 
responsible for a rare syndrome with neonatal diabetes mellitus and congenital 
hypothyroidism. Nat. Genet. 38, 682–687 (2006).

 52. S. Wang, J. Qiu, l. liu, c. Su, l. Qi, c. huang, X. chen, Y. Zhang, Y. Ye, Y. ding, l. liang,  
W. liao, cReB5 promotes invasiveness and metastasis in colorectal cancer by directly 
activating Met. J. Exp. Clin. Cancer Res. 39, 168 (2020).

 53. S. he, Y. deng, Y. liao, X. li, J. liu, S. Yao, cReB5 promotes tumor cell invasion and 
correlates with poor prognosis in epithelial ovarian cancer. Oncol. Lett. 14, 8156–8161 
(2017).

 54. J. Wu, S.- t. Wang, Z.- J. Zhang, Q. Zhou, B.- G. Peng, cReB5 promotes cell proliferation and 
correlates with poor prognosis in hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 11, 
4908–4916 (2018).

 55. J. h. hwang, J.- h. Seo, M. l. Beshiri, S. Wankowicz, d. liu, A. cheung, J. li, X. Qiu,  
A. l. hong, G. Botta, l. Golumb, c. Richter, J. So, G. J. Sandoval, A. O. Giacomelli, S. h. ly,  
c. han, c. dai, h. Pakula, A. Sheahan, F. Piccioni, O. Gjoerup, M. loda, A. G. Sowalsky,  
l. ellis, h. long, d. e. Root, K. Kelly, e. M. van Allen, M. l. Freedman, A. d. choudhury,  
W. c. hahn, cReB5 promotes resistance to androgen- receptor antagonists and androgen 
deprivation in prostate cancer. Cell Rep. 29, 2355–2370.e6 (2019).

 56. W. Shi, W. le, Q. tang, S. Shi, J. Shi, Regulon analysis identifies protective FXR and cReB5 
in proximal tubules in early diabetic kidney disease. BMC Nephrol. 24, 180 (2023).

 57. l. Markó, e. vigolo, c. hinze, J.- K. Park, G. Roël, A. Balogh, M. choi, A. Wübken, J. cording,  
i. e. Blasig, F. c. luft, c. Scheidereit, K. M. Schmidt- Ott, R. Schmidt- Ullrich, d. n. Müller, 
tubular epithelial nF- κB activity regulates ischemic AKi. J. Am. Soc. Nephrol. 27, 
2658–2669 (2016).

 58. l. Yang, c. R. Brooks, S. Xiao, v. Sabbisetti, M. Y. Yeung, l.- l. hsiao, t. ichimura, v. Kuchroo, 
J. v. Bonventre, KiM- 1- mediated phagocytosis reduces acute injury to the kidney. J. Clin. 
Invest. 125, 1620–1636 (2015).

 59. S. h. Park, K. Kang, e. Giannopoulou, Y. Qiao, K. Kang, G. Kim, K.- h. Park- Min,  
l. B. ivashkiv, type i interferons and the cytokine tnF cooperatively reprogram the 
macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 
1104–1116 (2017).

 60. h. Yu, l. lin, Z. Zhang, h. Zhang, h. hu, targeting nF- κB pathway for the therapy of 
diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 5, 209 (2020).

 61. S. t. J. Bradford, h. Wu, Y. Kirita, c. chen, n. P. Malvin, Y. Yoshimura, Y. Muto,  
B. d. humphreys, tniK depletion induces inflammation and apoptosis in injured 
renal proximal tubule epithelial cells. Am. J. Physiol. Renal Physiol. 326, F827–F838 
(2024).

 62. t. Stuart, A. Srivastava, S. Madad, c. A. lareau, R. Satija, Single- cell chromatin state 
analysis with Signac. Nat. Methods 18, 1333–1341 (2021). 

 63. A. thibodeau, A. eroglu, c. S. McGinnis, n. lawlor, d. nehar- Belaid, R. Kursawe, R. Marches, 
d. n. conrad, G. A. Kuchel, Z. J. Gartner, J. Banchereau, M. l. Stitzel, A. e. cicek, d. Ucar, 
AMUlet: A novel read count- based method for effective multiplet detection from single 
nucleus AtAc- seq data. Genome Biol. 22, 252 (2021).

 64. M. d. Young, S. Behjati, SoupX removes ambient RnA contamination from droplet- based 
single- cell RnA sequencing data. Gigascience 9, giaa151 (2020).

 65. c. S. McGinnis, l. M. Murrow, Z. J. Gartner, doubletFinder: doublet detection in 
single- cell RnA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.
e4 (2019).



Muto et al., Sci. Adv. 10, eado2849 (2024)     7 August 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

19 of 19

 66. J. A. castro- Mondragon, R. Riudavets- Puig, i. Rauluseviciute, R. Berhanu lemma, l. turchi, 
R. Blanc- Mathieu, J. lucas, P. Boddie, A. Khan, n. Manosalva Pérez, O. Fornes, t. Y. leung,  
A. Aguirre, F. hammal, d. Schmelter, d. Baranasic, B. Ballester, A. Sandelin, B. lenhard,  
K. vandepoele, W. W. Wasserman, F. Parcy, A. Mathelier, JASPAR 2022: the 9th release of 
the open- access database of transcription factor binding profiles. Nucleic Acids Res. 50, 
d165–d173 (2022).

 67. l. haghverdi, A. t. l. lun, M. d. Morgan, J. c. Marioni, Batch effects in single- cell 
RnA- sequencing data are corrected by matching mutual nearest neighbors. Nat. 
Biotechnol. 36, 421–427 (2018).

 68. J. t. Robinson, h. thorvaldsdóttir, W. Winckler, M. Guttman, e. S. lander, G. Getz,  
J. P. Mesirov, integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

 69. G. Yu, l.- G. Wang, Q.- Y. he, chiPseeker: An R/Bioconductor package for chiP peak 
annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

 70. A. Subramanian, P. tamayo, v. K. Mootha, S. Mukherjee, B. l. ebert, M. A. Gillette,  
A. Paulovich, S. l. Pomeroy, t. R. Golub, e. S. lander, J. P. Mesirov, Gene set enrichment 
analysis: A knowledge- based approach for interpreting genome- wide expression 
profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550 (2005).

 71. M. Ashburner, c. A. Ball, J. A. Blake, d. Botstein, h. Butler, J. M. cherry, A. P. davis,  
K. dolinski, S. S. dwight, J. t. eppig, M. A. harris, d. P. hill, l. issel- tarver, A. Kasarskis,  
S. lewis, J. c. Matese, J. e. Richardson, M. Ringwald, G. M. Rubin, G. Sherlock, Gene 
Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

 72. G. O. consortium, S. A. Aleksander, J. Balhoff, S. carbon, J. M. cherry, h. J. drabkin, d. ebert, 
M. Feuermann, P. Gaudet, n. l. harris, d. P. hill, R. lee, h. Mi, S. Moxon, c. J. Mungall,  
A. Muruganugan, t. Mushayahama, P. W. Sternberg, P. d. thomas, K. van Auken,  
J. Ramsey, d. A. Siegele, R. l. chisholm, P. Fey, M. c. Aspromonte, M. v. nugnes, F. Quaglia,  
S. tosatto, M. Giglio, S. nadendla, G. Antonazzo, h. Attrill, G. dos Santos, S. Marygold,  
v. Strelets, c. J. tabone, J. thurmond, P. Zhou, S. h. Ahmed, P. Asanitthong, d. luna Buitrago, 
M. n. erdol, M. c. Gage, M. Ali Kadhum, K. Y. c. li, M. long, A. Michalak, A. Pesala,  
A. Pritazahra, S. c. c. Saverimuttu, R. Su, K. e. thurlow, R. c. lovering, c. logie, S. Oliferenko, 
J. Blake, K. christie, l. corbani, M. e. dolan, h. J. drabkin, d. P. hill, l. ni, d. Sitnikov, c. Smith, 
A. cuzick, J. Seager, l. cooper, J. elser, P. Jaiswal, P. Gupta, P. Jaiswal, S. naithani,  
M. lera- Ramirez, K. Rutherford, v. Wood, J. l. de Pons, M. R. dwinell, G. t. hayman,  
M. l. Kaldunski, A. e. Kwitek, S. J. F. laulederkind, M. A. tutaj, M. vedi, S.- J. Wang, 
P. d’eustachio, l. Aimo, K. Axelsen, A. Bridge, n. hyka- nouspikel, A. Morgat, S. A. Aleksander, 
J. M. cherry, S. R. engel, K. Karra, S. R. Miyasato, R. S. nash, M. S. Skrzypek, S. Weng,  
e. d. Wong, e. Bakker, t. Z. Berardini, l. Reiser, A. Auchincloss, K. Axelsen, G. Argoud- Puy, 
M.- c. Blatter, e. Boutet, l. Breuza, A. Bridge, c. casals- casas, e. coudert, A. estreicher,  

M. livia Famiglietti, M. Feuermann, A. Gos, n. Gruaz- Gumowski, c. hulo, n. hyka- nouspikel, 
F. Jungo, P. le Mercier, d. lieberherr, P. Masson, A. Morgat, i. Pedruzzi, l. Pourcel, S. Poux,  
c. Rivoire, S. Sundaram, A. Bateman, e. Bowler- Barnett, h. Bye- A- Jee, P. denny,  
A. ignatchenko, R. ishtiaq, A. lock, Y. lussi, M. Magrane, M. J. Martin, S. Orchard, P. Raposo,  
e. Speretta, n. tyagi, K. Warner, R. Zaru, A. d. diehl, R. lee, J. chan, S. diamantakis,  
d. Raciti, M. Zarowiecki, M. Fisher, c. James- Zorn, v. Ponferrada, A. Zorn, S. 
Ramachandran, l. Ruzicka, M. Westerfield, the Gene Ontology knowledgebase in 2023. 
Genetics 224, iyad031 (2023).

Acknowledgments 
Funding: this work was supported by niddK Uc2dK126024, 2R01dK103740, and 
1U54dK137332 (B.d.h.). Additional support was from the Japan Society for the Promotion of 
Science Postdoctoral Fellowships for Research Abroad, the Osamu hayaishi Memorial 
Scholarship for Study Abroad, and the American Society of nephrology carl W. Gottschalk 
Research Scholar Award (Y.M.). Author contributions: conceptualization: B.d.h. library 
preparation: e.e.d. and Y.Y. computational analysis: Y.M., n.l., and h.W. experiment: Y.M., 
e.e.d., Y.Y., n.l., and Y.K. Online tool: h.W. Supervision: B.d.h. Writing: Y.M. and B.d.h. 
Competing interests: B.d.h. is a consultant for Janssen Research & development llc, Pfizer, 
and chinook therapeutics, holds equity in chinook therapeutics, and has grant funding 
from chinook therapeutics and Janssen Research & development. Y.Y. is currently an 
employee of chugai Pharmaceutical co. ltd. the other authors declare that they have no 
competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. the 
sequencing data generated in this study have been deposited in the GeO database under 
accession code GSe252111. the computational preprocessing and analytic codes for the 
single- nucleus data are available at Zenodo under record number 11522227 (v1). Previously 
published snRnA- seq data for mouse kidneys we analyzed in the paper are available in GeO 
(GSe139107). Previously published bulk RnA- seq data for human Ptcs with siCREB5 
treatment are available in GeO (GSe220289). Gene expression, AtAc peaks, and gene 
activities for each cell type are also available via our interactive website Kidney interactive 
transcriptomics (http://humphreyslab.com/Singlecell/).

Submitted 25 January 2024 
Accepted 28 June 2024 
Published 7 August 2024 
10.1126/sciadv.ado2849

http://humphreyslab.com/SingleCell/

	Epigenetic reprogramming driving successful and failed repair in acute kidney injury
	INTRODUCTION
	RESULTS
	Single-nucleus chromatin accessibility atlas for mouse kidneys with IRI
	Mouse PTC heterogeneity after IRI
	Genome-wide proximal tubular RELA binding sites
	Immune cells potentially regulated by FR-PTCs
	PTC heterogeneity in human AKI
	CREB5 driving proliferative recovery of PTCs after IRI

	DISCUSSION
	MATERIALS AND METHODS
	Experimental design
	Nuclear dissociation for library preparation
	snATAC-seq for mouse kidneys and bioinformatics workflow
	snRNA-seq for human kidneys and bioinformatics workflow
	snATAC-seq for human kidneys and bioinformatics workflow
	Integration of AKI and DKD snRNA-seq data
	Visualization of single-nucleus dataset features
	Estimation of TF activity from snATAC-seq data
	Construction of pseudotemporal trajectories
	Construction of the CCAN
	Cell culture
	MTS assay
	Quantitative PCR
	CUT&RUN assay
	Reanalysis of bulk RNA-seq
	GSEA and GO analysis
	Gene regulatory network analysis with RENIN
	Statistical analysis

	Supplementary Materials
	This PDF file includes:
	Other Supplementary Material for this manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments


