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Abstract.  Recent evidence suggests that neurokinin B (NKB), a member of the neurokinin (tachykinin) peptide family, plays 
a pivotal role in gonadotropin-releasing hormone (GnRH) pulse generation. Three types of neurokinin receptors (NKRs), 
NK1R, NK2R and NK3R, are found in the brain. Although NKB preferentially binds to NK3R, other NKRs are possibly 
also involved in NKB action. The present study examined the effects of intravenous administration of the NKR subtype-
selective agonists GR73632 (NK1R), GR64349 (NK2R), and senktide (NK3R) on GnRH pulse generator activity and 
luteinizing hormone (LH) secretion. Multiple-unit activity (MUA) was monitored in ovariectomized goats (n = 5) implanted 
with recording electrodes. Characteristic increases in MUA (MUA volleys) were considered GnRH pulse generator activity. 
Although three NKR agonists dose-dependently induced an MUA volley and an accompanying increase in LH secretion, 
the efficacy in inducing the volley markedly differed. As little as 10 nmol of senktide induced an MUA volley in all goats, 
whereas a dose of 1000 nmol was only effective for the NK1R and NK2R agonists in two and four goats, respectively. When 
the treatment failed to evoke an MUA volley, no apparent change was observed in the MUA or LH secretion. Similar effects 
of the NK2R and NK3R agonists were observed in the presence of estradiol. The results demonstrated that NK3R plays a 
predominant role in GnRH pulse generation and suggested that the contributions of NK1R and NK2R to this mechanism may 
be few, if any, in goats.
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The hypothalamic neural substrate generates rhythmic bursts of 
firing activity that drive pulsatile gonadotropin-releasing hormone 

(GnRH) discharges into the hypophyseal portal vessels, thereby 
enabling pulsatile gonadotropin secretion from the anterior pituitary 
lobe. This neural substrate is termed the GnRH pulse generator [1, 2]. 
Because the frequency of pulsatile GnRH secretion is a key determinant 
of gonadal functions [1, 2], elucidation of the mechanisms underlying 
the neural activity of the GnRH pulse generator is a prerequisite to 
advance our understanding of reproduction.

The precise neural identity of the GnRH pulse generator remains 
to be clarified. However, recent emerging evidence has shed light 
on a population of neurons that concomitantly contain kisspeptin, 
neurokinin B (NKB) and dynorphin A, referred to as KNDy neurons 
[3], as a likely candidate for the intrinsic source of the GnRH pulse 
generator [3–6]. In a variety of mammals including mice [4], rats 

[7], sheep [8], goats [9] and monkeys [10], KNDy neurons exist 
exclusively in the arcuate nucleus (ARC) of the hypothalamus. 
The nucleus has been postulated to be the locus of the GnRH pulse 
generator [1, 11]. Moreover, the multiple-unit activity (MUA) recording 
method demonstrated that rhythmic increases in MUA (MUA volleys) 
representing GnRH pulse generator activity are observed in close 
proximity to KNDy neurons in goats [9, 12].

Of the neuropeptides in KNDy neurons, NKB has being a focus of 
growing interest as a substance intimately involved in the rhythmic 
bursting activity of KNDy neurons. NKB, substance P (SP) and 
neurokinin A (NKA) comprise the neurokinin (tachykinin) peptide 
family [13]. Three types of neurokinin receptors (NKRs), NK1R, 
NK2R, and NK3R, are found in the central and peripheral nervous 
systems and preferentially bind to SP, NKA and NKB, respectively 
[14]. However, this ligand-receptor interaction is not exclusive, 
and NKB has the ability to induce responses from both NK1R and 
NK2R [15].

Anatomical studies have revealed that KNDy neurons are intercon-
nected ipsilaterally and contralaterally with NKB-containing fibers 
[16, 17], and a majority of KNDy neurons express NK3R [4, 7, 18]. 
These anatomical features suggest the presence of an NKB-mediated 
auto-feedback network in the KNDy neurons [6, 19, 20]. On the other 
hand, electrophysiological studies demonstrated that NKB elicited 
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trains of action potentials in Kiss1- or Tac2 (NKB)-GFP identified 
neurons in the mouse ARC in vitro [19, 21, 22] and that bolus intra-
cerebroventricular (icv) administration of NKB immediately induced 
an MUA volley in vivo [9]. These lines of evidence suggest that NKB 
plays a role in triggering the synchronized firing of KNDy neurons at 
the time of GnRH pulse generation [6, 19, 20]. Icv administration of 
a selective NK3R agonist, senktide, increased luteinizing hormone 
(LH) secretion and induced cFos expression in the KNDy neurons of 
rats [7]. Prepubertal treatment of rats with senktide advanced puberty 
onset and tended to increase the LH pulse frequency [23]. Moreover, 
senktide activated KNDy neurons in vitro [19, 21, 22]. Therefore, it is 
plausible that NKB-NK3R signaling may play a dominant role in the 
GnRH pulse generation of KNDy neurons. However, the possibility 
that the other two types of NKRs are also involved in the action 
of NKB cannot be ruled out. Noritake et al. [24] reported that icv 
administration of an antagonist for all 3 receptor subtypes suppressed 
LH secretion, whereas that of each NKR subtype-selective antagonist 
was ineffective in rats, suggesting the involvement of all three NKRs 
in the NKB action of KNDy neurons. In agreement with this in vivo 
study, the activation of KNDy neurons by NKB was completely 
abrogated only when all three NKR subtype-selective antagonists 
were concomitantly applied in an in vitro bath [21].

In the present study, we aimed to clarify the role of NKRs in GnRH 
pulse generation using the MUA recording technique in goats [9, 12]. 
Doses of three NKR subtype-selective agonists, GR73632 (NK1R), 
GR64349 (NK2R) and senktide (NK3R), were intravenously injected 
into ovariectomized (OVX) and estradiol (E2)-treated OVX goats, 
and their effects on MUA volleys and LH secretion were examined. 
The EC50 values of each agonist for NK1R, NK2R and NK3R in rats 
have been reported to be as follows: NK1R = 4 nM, NK2R = 960 
nM, NK3R > 1,000 nM for GR73632; NK1R > 1,000 nM, NK2R = 
3.7 nM, NK3R > 1,000 nM for GR64349; and NK1R > 10,000 nM, 
NK2R > 10,000 nM, NK3R = 18 nM for senktide [25, 26].

Materials and Methods

Animal
Adult (3- to 8-year-old) female Shiba goats (n = 5) weighing 

20–30 kg were used. The goats were ovariectomized at least one 
month prior to the start of the experiment. They were loosely held 
in individual stanchions in a condition-controlled room (12 h light/
dark cycle, 23 C, and 50% relative humidity) and maintained with 
a standard pellet diet and dry hay. Water and supplemental minerals 
were always available. All experimental procedures were approved 
by the Committee on the Care and Use of Experimental Animals at 
the National Institute of Agrobiological Sciences.

Surgery and MUA recording
The goats were stereotaxically implanted with an array of bilateral 

recording electrodes aimed at the caudal region of the ARC as described 
previously [9, 12]. After a recovery period of approximately 4 weeks, 
the goats were subjected to the experimental procedures. The MUA 
was measured in conscious animals, and the MUA signal was stored 
as spikes per 20 sec [9]. A characteristic increase in MUA (MUA 
volley) was considered to be the electrophysiological manifestation 
of the GnRH pulse generator.

Steroid treatments
SILASTIC (silicone) tubing (inner diameter, 3 mm; outer diameter, 

5 mm; length, 20 mm; Dow Corning, Midland, MI, USA) was filled 
with crystalline E2 (Sigma-Aldrich, St. Louis, MO, USA). Four of 
the 5 OVX goats were implanted subcutaneously with an E2 capsule 
(OVX + E2) to produce E2 levels simulating the luteal phase of the 
estrous cycle (4–8 pg/ml) [27]. Experiments in the OVX + E2 goats 
were conducted between 5 and 7 days after implantation of the E2 
capsule.

Drug administration and blood sampling
GR73632 (R&D Systems, Minneapolis, MN, USA) and GR64349 

(R&D Systems) were dissolved in saline to make working concentra-
tions of 200 or 1000 nmol/2 ml. These doses were employed based 
on our preliminary experiments. Senktide (synthesized and provided 
by Drs. Oishi and Fujii, Kyoto University) was dissolved in saline 
to make working concentrations of 10 or 50 nmol/2 ml. These doses 
were selected according to a previous study [28]. For comparison 
of the LH-stimulatory action, human type kisspeptin-10 (Kp-10, 
Peptide Institute, Osaka, Japan) dissolved in saline (380 nmol/2 
ml) [12] was also prepared. The OVX goats received the vehicle 
(saline) and both doses of GR73632, GR64349, and senktide once 
each. The OVX + E2 goats received the vehicle and the higher dose 
of each agonist once. The vehicle and agonists were administered 
in random order among the goats, and each administration was 
separated by at least one day.

Prior to the start of the experiment, the goats were fitted with 
a jugular catheter for drug delivery and blood sampling. On the 
experimental day, MUA recording was started, and 4 successive MUA 
volleys were observed in the control period. The mean intervolley 
interval in the control period (the control interval) was calculated and 
used to anticipate the occurrence of the next expected MUA volley 
in each goat. Then, blood sampling was started while monitoring 
the MUA. After one regularly occurring MUA volley, 2 ml of either 
vehicle or a drug solution was injected at the midpoint between 2 
successive MUA volleys. Blood samples were collected every 3 min 
for more than 2 h, or every 6 min for more than 4 h in the OVX 
and OVX + E2 goats, respectively. Blood samples were centrifuged, 
and plasma was separated and stored at –30 C until assayed for LH.

Assays
LH concentrations in single aliquots of 50 µl plasma samples were 

measured by a double-antibody radioimmunoassay [29] with rabbit 
anti-ovine LH serum [30] and expressed in terms of the ovine LH 
standard (NIDDK-oLH-I-4). The least detectable LH concentration 
was 0.19 ng/ml for 50 µl plasma samples, and the intra- and inter-assay 
coefficients of variation were 5.1 and 6.5%, respectively.

MUA data analysis
The mean value and SD of all MUA data (spikes per 20 sec) during 

the experimental period were calculated in each treatment condition 
for each individual. When the count at a time point exceeded twice 
the SD of the mean value, it was designated the start of a volley. For 
analysis of the MUA data, the time interval between the start of 2 
successive MUA volleys (intervolley interval) was determined. The 
control interval was the mean intervolley interval of 4 successive MUA 
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volleys during the control period. The first posttreatment interval was 
the intervolley interval between the MUA volleys immediately before 
and after the injection. The second posttreatment interval was the 
intervolley interval following the first. When the first posttreatment 
interval was smaller than the lower 95% confidence limit of the 
control interval of a given animal, the treatment was considered to 
have induced the MUA volley.

The mean group value of the first posttreatment interval was 
statistically compared using one-way ANOVA followed by Tukey’s 
post hoc test within each treatment group. Comparison of the first 
mean posttreatment interval between the lower and higher doses of 
the drug was done using paired t-test. Comparison of the control 
interval for vehicle treatment between the OVX and OVX + E2 goats 
was done using the Student’s t-test. An effect was considered to be 
statistically significant when P < 0.05.

LH data analysis
LH pulses were identified by the PULSAR computer program 

[31]. The criteria for the identification of LH pulses were as follows: 
to be considered part of an LH pulse, the difference between a 
single LH concentration and the baseline concentration had to be 
3.0 times greater than the standard deviation (SD) at the level of 
the LH concentration, the difference between 2 consecutive LH 
concentrations and the baseline concentrations had to be 1.0 times 
greater than the SD or the difference between 3 or more consecutive 
LH concentrations and the baseline concentrations had to be 0.4 
times greater than the SD. The SD for each plasma concentration was 
calculated by the equation y=(1.46 x2 + 2.23 x + 1.99)/100, where x 
was the LH level and y was the SD for each LH level determined 
by assaying four series of control plasma samples in 10 replicates. 
Because relatively short inter-pulse intervals in the OVX animals 
contained insufficient time points between the peak and nadir values 
of LH concentrations, computer-aided analysis sometimes failed 
to identify small increases in LH secretion as an “LH pulse,” even 
though it occurred immediately after the MUA volley. We described 
this as a pulse-like increase in LH secretion.

To statistically analyze the effect of the NKR agonists and Kp-10 
on LH secretion, the area under the curve (AUC) of the LH response 
during the 1-h posttreatment period was compared with that during 
the 1-h pretreatment period in each treatment using paired t-test. 
Because basal LH secretion markedly varied among individuals (Fig. 
1), values of LH concentrations during the 1-h post- and pretreatment 
periods were divided by the mean LH concentrations during the 2-h 
sampling period for the vehicle treatment in each goat, and these 
standardized values were used for the statistical analysis.

Results

In the OVX goats, spontaneous MUA volleys occurred every 22–33 
min. Although the intervolley interval slightly varied among animals, 
it was relatively constant within the individuals. The MUA volley 
was always associated with an LH pulse or pulse-like increase in 
LH secretion. Representative profiles of MUA and LH secretion and 
individual data concerning the effects of NKR agonists on the first 
and second posttreatment intervals are shown in Fig. 1 and Fig. 2, 
respectively. The group MUA data and AUC of the LH response are 

summarized in Table 1. Intravenous administration of the vehicle had 
no effect on the MUA (Fig. 1A), and the first posttreatment interval was 
comparable to the control interval (Table 1). Occurrence of the MUA 
volley was not affected by 200 nmol of the NK1R agonist GR73632 
(Fig. 1B). After 1000 nmol of NK1R agonist administration, the first 
posttreatment interval was shorter than the lower 95% confidence 
limit of the control interval in 2 goats (Fig. 1C, left panel, Fig. 2A). 
Thus, the MUA volley was considered to have been induced by 
the treatment in those goats. Induction of an MUA volley was not 
observed in the remaining 3 goats (Fig. 1C, right panel, Fig. 2A). 
In administration of the NK2R agonist GR64349, an MUA volley 
occurred after injection of 200 (Fig. 1D, left panel) and 1000 nmol 
(Fig. 1E, left panel) of the drug in one and 4 goats, respectively (Fig. 
2B). Administration of the NK3R agonist senktide at both 10 (Fig. 
1F) and 50 (Fig. 1G) nmol doses induced MUA volleys in all goats 
(Fig. 2C). In all goats, no effect of NKR agonists was observed for 
the second posttreatment interval (Fig. 2). When either treatment 
evoked an MUA volley, it was invariably followed by an LH pulse 
or pulse-like increase in LH secretion. On the other hand, when the 
treatment failed to evoke an MUA volley, neither basal MUA levels 
nor LH concentrations showed any apparent changes (Fig. 1).

The overall effect of the NKR agonists in the 5 OVX goats was 
statistically analyzed by comparing the mean values of the intervolley 
intervals and the AUCs of the LH response (Table 1). In the NK1R 
agonist treatment, the first posttreatment interval was comparable to 
the control interval for both doses. Although the first posttreatment 
interval was slightly smaller after the higher dose of the NK1R agonist 
compared with the lower dose, the difference was not statistically 
significant. In the NK2R agonist treatment, the first posttreatment 
interval for the higher but not the lower dose was significantly smaller 
than the control interval of the respective administration (P < 0.05). 
There was a significant dose effect on the interval in the NK2R 
agonist treatment (P < 0.05). In senktide administration, both doses 
of the drug significantly decreased the first posttreatment interval 
compared with the control interval (P < 0.05). Again, there was a 
significant dose effect on the interval in the senktide treatment (P < 
0.05). The effects of NK2R agonist and senktide on MUA volleys 
were apparent only for the first posttreatment interval; the second 
posttreatment interval was comparable to the control interval in both 
administrations (Table 1). All of the NKR agonist treatments had no 
effect on overall LH secretion even in the senktide treatment in which 
an LH pulse or pulse-like increase in LH secretion was induced in 
all goats (Table 1).

In the OVX + E2 goats, the intervolley interval during the control 
period of vehicle administration was significantly larger than that in 
the OVX goats (59.4 ± 4.92 vs. 27.9 ± 2.43 min, P < 0.01), possibly 
reflecting the negative feedback action of E2 on the GnRH pulse 
generator [9]. The vehicle had no effect on the MUA (Fig. 3A). In 
the presence of E2, no MUA volley induction was observed in any 
goats after administration of 1000 nmol of the NK1R agonist (Fig. 
3B, Fig. 4A). In contrast, doses of 1000 nmol of the NK2R agonist 
(Fig. 3C, Fig. 4B) and 50 nmol of senktide (Fig. 3D, Fig. 4C) induced 
an MUA volley in all OVX + E2 goats. The first posttreatment 
intervals of the NK2R agonist and senktide administrations were 
significantly smaller than the control interval of the respective 
administration (P < 0.05). The MUA volleys induced by the NKR 
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agonists were also always followed by an LH pulse in the OVX + 
E2 goats (Fig. 3C, D). The effect of NKR agonists was not observed 
for the second posttreatment interval (Fig. 4, Table 1). There was no 
apparent change in LH secretion after administration of 1000 nmol 
of the NK1R agonist (Fig. 3B). As in the absence of E2, overall LH 
secretion was not affected by any NKR agonist treatments in the 
OVX + E2 goats (Table 1).

In the present study, we also examined the effect of kisspeptin 
on MUA volleys and LH secretion to compare the LH-stimulatory 
action of kisspeptin and NKR agonists. After administration of Kp-10 
in the OVX goats, LH concentrations rapidly increased, reached at 
a peak around 18 min after injection and then gradually decreased 
towards the baseline level (Fig. 5). The AUC of the standardized LH 

concentrations during the 1-h posttreatment period was significantly 
higher than that during the 1-h pretreatment period (117.2 ± 23.4 
vs. 60.6 ± 9.8, P < 0.05). However, the MUA was not affected by 
Kp-10. The induction of MUA was not observed in any goats, and 
the first (25.1 ± 1.90 min) and second (28.3 ± 1.80 min) posttreatment 
intervals were comparable to the control interval.

Discussion

In the present study, we demonstrated that intravenous administra-
tion of NKR agonists, GR73632 (NK1R agonist), GR64349 (NK2R 
agonist), and senktide (NK3R agonist), dose-dependently induced an 
MUA volley and an accompanying LH pulse or pulse-like increase 

Fig. 1. Effects of NKR subtype-selective agonists on the MUA and plasma LH in OVX goats. Representative profiles of the MUA and plasma LH 
concentrations in two OVX goats that received an intravenous injection of vehicle (A), 200 nmol (B) or 1000 nmol (C) of the NK1R agonist 
GR73632, 200 nmol (D) or 1000 nmol (E) of the NK2R agonist GR64349 and 10 nmol (F) or 50 nmol (G) of the NK3R agonist senktide are 
shown. The dotted line indicates the timing of the injection. The arrowhead indicates an MUA volley induced by the treatment. The asterisk 
represents the LH pulse identified by the PULSAR program.
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in LH secretion in OVX goats. The effects of the NK2R and NK3R, 
but not NK1R, agonists on the MUA and LH secretion were similarly 
observed in the OVX + E2 goats.

It has been reported in rats that SP and NKA stimulate LH secretion 
from in vitro cultured anterior pituitary cells [32] and hemi-pituitaries 

[33], respectively. Moreover, NKRs have been shown to exist in 
pituitary cells in rats [34] and sheep [35]. These studies suggest 
that neurokinin peptides affect LH secretion at the pituitary level. In 
the present study, however, the increase in LH secretion caused by 
the NKR agonists was observed only when the agonists evoked an 

Fig. 1.   (continued)
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MUA volley. When the agonist treatment failed to evoke an MUA 
volley, there was no apparent change in LH secretion. These results 
suggest that peripherally administered agonists acted centrally on the 
GnRH pulse generator and thereby stimulated pulsatile LH secretion. 
Whether they cross the blood-brain barrier is unknown. However, 
because the three NKR agonists used in the present study possess a 
hydrophilic structure and are water-soluble, it is unlikely that they 
do pass through the blood-brain barrier. Instead, it is possible that the 
sites of the action of the agonists are the circumventricular organs, 
regions characterized by an incomplete blood-brain barrier [36] or areas 
adjacent to such circumventricular organs. The ARC lies immediately 

dorsal to the median eminence, one of the circumventricular organs, 
and therefore has been thought to directly sense acute fluctuations 
of hormones in the peripheral circulation [37]. Previous studies 
have suggested that the ARC is involved in the control of pulsatile 
GnRH/LH secretion [1, 11]. Furthermore, it has been shown that 
NK1R, NK2R, and NK3R are all expressed in this nucleus [7, 18, 
38–43]. Therefore, the ARC is one of the plausible sites of action 
of the peripherally administered agonists in inducing MUA volleys.

In the ARC, KNDy neurons have been demonstrated to contain 
NK3R in mice [4], rats [7, 44] and sheep [18]. Although the presence 
of NK1R and NK2R in KNDy neurons has not yet been examined, a 

Table 1. Effects of neurokinin receptor agonists on multiple-unit activity (MUA) and LH secretion in ovariectomized (OVX) and estradiol-treated 
(OVX + E2) goats

Treatment Control interval 
(min)

Induction of an MUA volley 
(the number of goats)

Posttreatment interval (min) LH secretiona

1st 2nd Pretreatment Posttreatment
OVX (n=5)
   Vehicle 27.9 ± 2.43 0 27.8 ± 2.13 29.2 ± 3.79 58.4 ± 0.93 61.8 ± 0.94
   NK1R agonist 200 nmol 25.1 ± 1.43 0 25.5 ± 1.11 25.7 ± 1.64 60.7 ± 7.83 60.5 ± 7.76

1000 nmol 26.1 ± 1.57 2 22.7 ± 2.77 24.9 ± 1.19 67.0 ± 8.63 60.8 ± 7.39
   NK2R agonist 200 nmol 26.0 ± 1.74 1 26.2 ± 1.27 25.5 ± 1.67 59.8 ± 6.22 58.4 ± 3.59

1000 nmol 27.3 ± 1.22 4 17.2 ± 1.70*‡ 27.0 ± 1.54 105 ± 29.5 101 ± 30.1
   Senktide 10 nmol 27.5 ± 2.43 5 16.3 ± 1.45* 28.6 ± 2.43 57.9 ± 2.66 57.2 ± 2.82

50 nmol 27.2 ± 2.25 5 14.3 ± 1.27*‡ 27.8 ± 1.95 56.3 ± 3.45 54.7 ± 4.42
OVX + E2 (n=4)
   Vehicle 59.4 ± 4.92# 0 60.0 ± 5.52 57.3 ± 3.43 59.3 ± 1.17 60.9 ± 0.67
   NK1R agonist 1000 nmol 56.9 ± 5.13 0 62.7 ± 6.76 64.5 ± 7.52 62.6 ± 3.33 65.0 ± 1.44
   NK2R agonist 1000 nmol 59.3 ± 3.86 4 31.0 ± 2.10* 65.1 ± 8.47 72.5 ± 4.99 66.5 ± 3.82
   Senktide 50 nmol 62.0 ± 4.67 4 31.9 ± 2.25* 61.8 ± 3.71 69.9 ± 2.88 71.4 ± 5.50

Data are represented as the mean ± SEM. * Significantly smaller than the control interval of the respective treatment (one-way ANOVA, Tukey’s 
post hoc test, P < 0.05). ‡ Significantly smaller than the lower dose of the same agonist (paired t-test, P < 0.05). # Significantly larger that the control 
interval of the vehicle treatment in the OVX animals (the Student’s t-test, P<0.05). a Values represent the area under the curve of standardized LH 
concentrations during the 1-h period.

Fig. 2. Effects of NKR subtype-selective agonists on the first and second posttreatment intervals in OVX goats. Individual data of the first (1st) and 
second (2nd) posttreatment intervals for administration of the NK1R agonist GR73632 (A), NK2R agonist GR64349 (B) and NK3R agonist 
senktide (C) are shown as the percent of the control interval for a given animal. The drug solution was injected at the midpoint between 2 
successive MUA volleys (50% of the control interval after the pretreatment MUA volley). The same symbol in A–C represents the value obtained 
in a single goat. Closed symbols indicate values smaller than the lower 95% confidence limit of the control interval within the individual. The 
actual value of the control interval in each treatment is shown in Table 1.
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Fig. 3. Effects of NKR subtype-selective agonists on the MUA and plasma LH in OVX + E2 goats. Representative profiles of the MUA and plasma 
LH concentrations in two OVX + E2 goats that received an intravenous injection of vehicle (A), 1000 nmol of the NK1R agonist GR73632 (B), 
1000 nmol of the NK2R agonist GR64349 (C) and 50 nmol of NK3R agonist senktide (D) are shown. The dotted line indicates the timing of the 
injection. The arrowhead indicates an MUA volley induced by the treatment. The asterisk represents the LH pulse identified by the PULSAR 
program.
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recent in vitro study in mice showed that a cocktail of all three NKR 
antagonists was required to completely block the activation of KNDy 
neurons by NKB [21]. Therefore, it is possible that KNDy neurons 
co-express the three NKRs and that the peripherally administered 
agonists act on those receptors. Given that this is the case, it is suggested 
that the action of NKB in GnRH pulse generation is mediated by the 
three NKRs. In accordance with this, the present result showed that 
the three NKR agonists possess the ability to induce MUA volleys. 
However, there was a marked difference in their efficacies (Table 
1). As little as 10 nmol of senktide induced an MUA volley in all 
the goats. On the other hand, the dose of 200 nmol of the NK1R and 

NK2R agonists was effective for zero and one goat, respectively, and 
the dose of 1000 nmol for these same agonists induced a positive 
MUA response in two and four goats, respectively. Therefore, although 
pharmacological activation of NK1R and NK2R by the respective 
agonist resulted in the induction of an MUA volley in the present 
study, the contributions of NK1R and NK2R signaling in endogenous 
GnRH pulse generation may be few, or merely supplemental, in goats. 
Alternatively, it cannot be ruled out that the extremely high doses 
of the NK1R and NK2R agonists possibly induced MUA volleys 
via NK3R, even though they are highly specific to their respective 
NKRs. Collectively, it is plausible to consider that the action of NKB 
in GnRH pulse generation is predominantly mediated by NK3R in 
goats. This suggestion is supported by the fact that the induction of 
an MUA volley and LH pulse by the male pheromone are blocked by 
the pretreatment of OVX goats with SB222200, an NK3R antagonist 
[45]. Moreover, an inactivating mutation of TACR3 encoding NK3R 
produces gonadotropin deficiency and pubertal failure in humans [46].

In contrast, it has been demonstrated in rats that pulsatile LH 
secretion was suppressed by icv administration of CS-003, an an-
tagonist for all three NKRs, whereas administration of each NKR 
subtype-selective antagonist alone had no effect [24]. Similarly, in 
vitro studies showed that the activation of KNDy neurons by NKB 
was partially reduced by SB222200 in rats [47, 48] or completely 
abrogated when three NKR subtype-selective antagonists were 
concomitantly bath applied in mice [21]. These studies suggest that 
the three NKRs play an indispensable role in the activation of KNDy 
neurons in rodents. Taken together with the present study, it may 
be that although the three NKRs are involved in the GnRH pulse 
generation of KNDy neurons, the ratio of the contribution of each 
NKR conspicuously varies among species.

It has been reported in rodents that the action of senktide is affected 
by E2. For example, senktide inhibited LH secretion in OVX mice 
[4] and rats [7], whereas the peptide increased LH secretion in intact 
and OVX + E2 rats [7]. To address this issue, we examined the effect 
of higher doses of the agonists in the OVX + E2 goats. Treatment 
with the NK2R and NK3R agonists resulted in the induction of an 
MUA volley in all the OVX + E2 goats. Again, the induced MUA 
volleys were always followed by an LH pulse, as in the absence 
of E2. This result suggests that E2 has little, if any, effect on the 
action of NK2R and NK3R agonists in GnRH pulse generation. 

Fig. 5. Effects of Kp-10 on the MUA and plasma LH in OVX goats. Representative profiles of the MUA and plasma LH concentrations in two OVX goats 
that received an intravenous injection of 380 nmol of Kp-10 are shown. The dotted line indicates the timing of the injection.

Fig. 4. Effects of NKR subtype-selective agonists on the first and 
second posttreatment intervals in OVX + E2 goats. Individual 
data of the first (1st) and second (2nd) posttreatment intervals 
for administration of the NK1R agonist GR73632 (A), NK2R 
agonist GR64349 (B) and NK3R agonist senktide (C) are shown 
as the percent of the control interval for a given animal. The drug 
solution was injected at the midpoint between 2 successive MUA 
volleys (50% of the control interval after the pretreatment MUA 
volley). The same symbol in A–C represents the value obtained 
in a single goat. Closed symbols indicate values smaller than 
the lower 95% confidence limit of the control interval within 
the individual. The actual value of the control interval in each 
treatment is shown in Table 1.
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In the NK1R agonist treatment, induction of an MUA volley was 
not observed in the OVX + E2 goats, while it was observed in two 
OVX goats at the same drug dosage. Because the number of goats 
that exhibited a positive response was small (n = 2), an evaluation 
of the effect of E2 on NK1R agonist action could be made in the 
present study. However, it should be noted that the change in LH 
secretion induced by the peripherally administered NKR agonists 
was always stimulatory, and we never observed any inhibitory action 
of the agonists on LH secretion.

Because the effect of the agonists on MUA was observed only for 
the volley immediately after the treatment (first), we presume that 
the administered doses of the drugs were rapidly cleared from and/
or broken down in the body. Importantly, the next volley (second) 
occurred with the regular interval observed in the control period 
(Table 1). This result indicates that the GnRH pulse generator 
activity was reset to its initial level after the NKR agonist-induced 
volley, as after endogenously occurring ones. Moreover, the NKR 
agonist treatments had no effect on overall LH secretion even in the 
senktide treatment in which an LH pulse or pulse-like increase in 
LH secretion was induced in all goats. These results suggest that the 
action of the NKR agonists on LH secretion is intimately associated 
with the GnRH pulse-generating mechanism. In addition to NKB, 
kisspeptin also has been suggested to play a role in GnRH pulse 
generation. For example, administration of a Kiss1r antagonist into 
the ARC inhibited the LH pulse frequency in rats [49] and sheep 
[50]. Moreover, intravenous administration of Kp-10 altered the 
timing of the occurrence of the LH pulse in men [51]. However, the 
Kp-10 treatment did not affect the MUA at all, and the profiles of 
the LH increase in the Kp-10 treatment (Fig. 5) were substantially 
different from those accompanying the MUA response in the NKR 
agonist treatments (Fig. 1, 3) in the present study. This result is 
consistent with previous observations in female rats [52] and castrated 
male goats [12] and is consistent with recent observations in OVX 
goats who received icv administration of kisspeptin (Yamamura 
et al. unpublished data). It is therefore suggested that kisspeptin 
stimulates LH secretion through mechanisms other than the GnRH 
pulse generator, unlike the NK3R agonists.

Icv administration of SP [53] or NKA [33], endogenous ligands 
for NK1R and NK2R, respectively, increased LH secretion, and SP 
neurons project their fibers to the ARC in rats [54]. Furthermore, 
colocalization of SP in KNDy neurons has also been suggested to 
occur in humans [55]. These lines of evidence imply that SP and 
NKA are also involved in the control of pulsatile GnRH/LH secretion. 
However, the present results do not support the involvement of NK1R 
and NK2R in GnRH pulse generation, at least in goats. It is possible 
that SP and NKA affect GnRH/LH secretion via mechanisms other 
than the GnRH pulse generator. Further studies are needed to clarify 
the precise roles of SP and NKA in GnRH/LH secretion and their 
interaction with NKB signaling.

In summary, the present study demonstrated that NK3R plays a 
predominant role in GnRH pulse generation. Although the involvement 
of NK1R and NK2R cannot be ruled out, the results suggest that their 
contributions to GnRH pulse generation may be few, if any, in goats.
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