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Abstract

Sediment profile and mud shrimp (Austinogebia edulis) from the coastal wetland of central

Taiwan in 2017 and 2018 were analyzed for concentration, source, and composition of per-

sistent organic pollutants (POPs) including polycyclic aromatic hydrocarbon (PAHs), poly-

brominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs; DDT and HCB),

and polychlorinated biphenyls (PCBs). Sediment profiling indicated PAH concentrations

reaching 254.38 ng/g dw in areas near industrial areas and PAH concentrations of 41.8

and 58.42 ng/g dw in sampling areas further from industrial areas, suggesting that the deter-

mining factor for spatial distribution of POPs might be proximity to contaminant sources in

industrial zones. Based on molecular indices, PAHs were substantially of both pyrolytic and

petrogenic origins. The main sources for PCBs were Aroclor 1016 and 1260 and the conge-

ner BDE-209 was the dominant component among PBDE congeners. While we were unable

to obtain live mud shrimp samples from the heavily contaminated areas, in samples from

less contaminated areas, the risk assessment on mud shrimp still illustrated a borderline

threat, with DDT concentrations almost reaching standardized values of Effects Range-Low

(ERL). Bioaccumulation factors for DDTs and PCBs (17.33 and 54.59, respectively) were

higher than other POPs in this study. Further study is essential to assess and understand

the impact of these chemicals on the wetland ecosystem near this heavily industrialized

area.

1. Introduction

Persistent organic pollutants (POPs) are pervasive contaminants found in different domains

of the environment [1–4], especially the coastal and esturaine sediments due to a rise in
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industrialization along the coastal regions. Increasing anthropogenic activities, such as dis-

charge of pesticides and fertilizers and incomplete combustion of petrochemicals, have

significantly elevated the loading of POPs to the underlying sediment, which has often been

considered as the ultimate sink for numerous chemical pollutants [5–11]. Coastal wetland with

intertidal zones are considered to receive the most stress due to the fluctuation of different

physical parameters, and are more susceptible to anthropogenic activities [12, 13]. Thus, con-

tamination of tidal flats in wetland is a common scenario and measures should be taken to pro-

tect the wetland ecosystem.

The vast intertidal flat of coastal zone at Changhua County, Taiwan, represents a complex

environmental ecosystem with high biodiversity of crabs, shrimps, fish, and clams. Mud

shrimp (Austinogebia edulis) is the dominant species in the tidal flat, where they build deep

burrows (>1 m) as their habitats. This mud shrimp is prominent in the Changhua County and

is considered to be ecologically and commercially essential; hence, it is frequently monitored

through different governmental programs. A previous study demonstrated the sensitivity of A.

edulis to trace metals and alterations to enzymatic activities and physiology caused by higher

concentrations of cadmium [14]. During the past decade, the A. edulis population has exten-

sively declined for unknown reasons. Since benthic organisms are more likely to get exposed

to contaminants in sediment than in air and water, the sediment is a good index for recording

contamination levels. An emerging hypothesis is that A. edulis experience higher contaminant

stress since their burrows are commonly high in organic matter compared to surrounding sed-

iment and can therefore accumulate more POPs [15].

Although many POPs such as polychlorinated biphenyls (PCBs), polybrominated diphenyl

ethers (PBDEs), and organochlorine pesticides (OCPs) have been prohibited in many coun-

tries, they still continue to be reported as toxic chemicals to pose a global threat to the ecosys-

tem. In 1988, after several years of extensive usage and application, the Environmental

Protection Administration of Taiwan listed 10 POPs as toxic substances [16]. Despite this reg-

ulation, previous research has demonstrated extensive levels of POPs in Taiwan, including

PAHs, PBDEs, and OCPs, mostly in rivers and coastal areas such as Gao-Ping River [17–19],

Kenting coral reef [20, 21], Danshui River and Keelung River [22–25]. Given this precedence,

there are few studies on POP concentrations in the western coast of central Taiwan, an area

heavily impacted by anthropogenic activities [26]. In particular, the Changhua coastal indus-

trial park, also known as the Changbin Industrial Park, is a conglomeration of industries,

which includes a variety of chemical industries, processors for metals, textile, and food produc-

tion. Previous research in the area has demonstrated poor air quality with elevated levels of

trace metals and PAHs [27, 28]. However, there is no information on the distribution and

effects of POPs in the Changbin Industrial Park.

The aims of this study are to investigate the spatial and temporal distribution of several

POPs in sediments and benthic organisms (mud shrimp, A. edulis) near Changbin Industrial

Park, identify the possible sources of POPs, and assess the potential ecological risks to benthic

organisms in this area.

2. Material and methods

2.1 Sample collection

The sediment and biota (mud shrimp) samples from around the industrial area in the western

coast of central Taiwan were collected at five stations along the coastline: stations A, B, C, D,

and E (Fig 1; S1 Table) from September 2017 to January 2018. The sampling sites experience a

wet season (monsoon) from late July until the end of October and a dry season from December

until March (winter). Sampling was conducted once in the wet season (September, 2017;
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temperature of ~28˚C) and once in dry season (January 2018; temperature of ~15˚C). The sed-

iment samples were collected by coring with the deepest layer at 50 cm, middle layer at 25 cm,

and the surface at 0 cm. Some sediment samples were kept for analysis of total organic carbon

(TOC) and grain size. In this study, the mud shrimps A. edulis were collected only from station

A and E due to their absence from the other stations (B, C, and D) during sampling. Shrimp

samples were washed by ambient water to remove the sand on exoskeleton, wrapped in alumi-

num foil, stored in an icebox, and immediately transported to the laboratory. Sediment sam-

ples were homogenized on a clean stainless-steel tray, transferred to solvent cleaned glass

bottles, and all samples were stored in -20˚C until further analysis. A. edulis is not defined as

threatened or protected in Red List for Species. As the sampling was conducted outside of

national parks or any protected area, no specific permissions were required.

2.2 Sample preparation

The preparation and extraction of sediment samples and mud shrimp (A. edulis) were con-

ducted as described by previous studies [20, 21]. Briefly, about 5 g of dried sediment and

shrimp of each sample were ground finely with anhydrous Na2SO4 in a mortar pestle, follow-

ing by extraction in a Soxhlet apparatus for 24 h with hexane and acetone (1:1; v/v). Every sam-

ple was spiked with surrogate standards (d8-Napthalene, d10-Fluorene, d10-Fluoranthene and

d12-perlene for PAHs and PCB congener14, congener65 and congener166 for PCBs, OCPs,

and PBDEs) prior to extraction in order to calculate the percentage of procedural recovery.

Activated copper wires or granules were used as necessary to remove elemental sulfur from

sediment samples. A rotary vacuum evaporator was used to concentrate the extract. Fraction-

ation and further cleaning of the extract to remove polar interference was performed using 8 g

of 6% deactivated alumina packed in a column. Extracts were concentrated using a rotary

evaporator followed by a gentle purified nitrogen stream. PAH concentrations were measured

by gas chromatography-mass spectrometer (GC-MS) (Varian 320). After PAH analysis, the

sample extracts were passed through a glass column packed with 8 g of 2.5% deactivated florisil

and covered with about 1 cm Na2SO4. The column was conditioned with 35 ml petroleum

Fig 1. Map showing the sampling stations (A, B, C, D and E) at the western coast of Taiwan.

https://doi.org/10.1371/journal.pone.0227367.g001
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ether (PE) and dichloromethane (DCM) mixture (1:1) solvent with further addition of 35 ml

PE. The PCBs, OCPs, and PBDEs were eluted with 35 ml PE. The eluate was transferred to

hexane, concentrated by rotary evaporation, and further dried to less than 0.1 ml under a gen-

tle stream of nitrogen. For quantification, the internal standards (PCB congener30 and conge-

ner204 for PCBs and OCPs, and PBDE congener209 for PBDEs) were added to each sample

before analyzing the PCB, OCP, and PBDE concentrations with a GC-triple- quadruple mass

spectrometry system (TQ-8050, Shimadzu).

2.3 Analytical techniques

The PAHs were determined using a Varian 320 GC-MS, while PCBs, DDT, HCB and PBDEs

analysis were conducted via GC-MS/MS (TQ-8050, Shimadzu). Separation was performed

with a VF-5ms column (30 m, 0.25 mm i.d., 0.25 μm film thicknesses) for PAHs, and OCPs,

VF5ht (15 m, 0.25 mm i.d., 0.1 μm film thickness) for all PBDE congeners, and DB-5 (60 m,

0.25 mm i.d., 0.25 μm film thickness) for PCBs. The oven temperature programs for POPs

of the instrumental analysis are described in supplementary data (S1 Protocol). The method

detection limits (MDLs), recovery analyzed process, and the quantitative ion and confirm ion

in mass spectrometry for each POP are listed in S2–S4 Tables, respectively.

2.4 Total organic carbon determinations

The total organic carbon (TOC) content in the sediment was determined by using an Elemen-

tar Vario EL III (Exeter Analyutical Inc, Germany) after removal of inorganic carbon. [19, 21].

For each sample, three replicates were used to determine the TOC.

2.5 Quality assurance and quality control

Analysis was conducted according to the standard quality assurance protocols. Glassware and

apparatus were washed with detergent and double distilled water, followed by a rinse with ace-

tone and hexane. All analysis included procedural blanks, samples (in duplicate), and spiked

samples to assure the quality of the extraction and to detect any transmission of contaminants

that might have occurred during analysis. In order to find out the recovery efficiency, four

PAH surrogates (d8-napthalene, d10-fluorene, d10-fluoranthene, and d12-perylene) and three

PCB surrogates (congener14, congener65, and congener166) were added prior to extraction

in all the sample tubes, including the blank. The average recoveries of the standards were 62.8

±13.5%, 84.2±10.7%, and 89.9±12.4%, 82.9±18.3% for the PAHs and 73.9±14.5%, 83.3±16.8%,

84.0±17.3% for the PCBs, respectively. The concentrations of POPs were not corrected for sur-

rogate recoveries. The ranges of recovery of spiked individual POPs were 65.3% -100.6% for

PAHs, 57.2%-90.6% for PCBs, 64.4%-80.3% for HCB, 64.4%-94.6% for DDTs, and 66.6%-

118.8% for PBDEs, respectively. The method detection limits (MDLs) of POPs were defined

as the average mass of each compound in the blanks plus three times the standard deviation.

The mass of compounds below the MDLs were computed as zero. Quantification of POPs was

done by the internal standard method. The relative standard deviation of relative response fac-

tor (RRF) was below 10%.

2.6 Calculation of bioaccumulation factors (BAFs)

In order to implement a tool for the regulation of contaminated habitats, and for the assess-

ment of potential risk to benthic animals, calculation of bioaccumulation factors (BAFs) have

been proved to be a useful approach. The BAFs for each pollutant in stations A and E was

POP distribution in coastal sediment and benthos: Potential impact of industrial to wetland ecosystem
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calculated by using the Eq (1).

BAFs ¼
Concentration of POPs in mud shrimp
Concentration of POPs in sediment

ð1Þ

3. Results and discussion

3.1 Spatial and temporal distribution of POPs

Among the five POPs series that were analyzed, PAHs, PCBs, DDTs and PBDEs were detected

in all the samples except HCB at station A and station E (Fig 2a). Station C had the highest

concentration of t-PAHs (332.95 ng/g dw; dry weight), t-PCBs (4.34 ng/g dw), t-HCBs (0.18

ng/g dw) and t-PBDEs (58.36 ng/g dw) and station D had the highest concentration of t-DDTs

(2.63 ng/g dw). Station C and station D had much higher concentrations of all the measured

POPs, indicating site-specific pollution levels at these stations, probably due to their proximity

to Changhua Industrial Park. The POP concentrations in this study did not significantly differ

between seasons. Fig 2b shows the total concentration of all the POPs in the sediment core

depths (0 cm, 25 cm, and 50 cm) at the five sampling stations were not significantly different.

Fig 2a shows the concentration of different POPs in the surface sediment of five sampling

stations around Changhua County collected in the wet season (August) and the dry season

(January).

3.2 Comparison of POP concentrations with other coastal and estuarine

regions in the world

The concentration of PAHs, PCBs, and DDT in the present study was in a range similar to that

of Gao-ping estuary in south Taiwan and in Southeast Asian countries, which is substantially

Fig 2. Total concentrations of POPs in different stations (A, B, C, D, E); a. Seasonal variation. b. distribution at

different depths (0 cm, 25 cm, and 50 cm).

https://doi.org/10.1371/journal.pone.0227367.g002
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lower than in the other coastal areas of the world (Table 1). In this study, the DDT concentra-

tions near the Industrial Park (stations C and D) were significantly higher than in other parts

of Changhua County, but much lower when compared to the DDT concentrations found

across the globe. In this study, we also analyzed the concentration of PBDEs. The t-PBDE con-

centrations ranged from 0–58.36 ng/g dw. This range of t-PBDEs was similar to the Macao

coast in China where the reported range was from 0.6–41.3 ng/g dw [44]. We found that the

discharge of PBDEs in the Industrial Park was also much higher than in other parts of Chan-

ghua County, including the southwestern coast (station E) where the t-PBDE concentrations

was below the detection limits.

3.3. Compositional profiles

3.3.1. PAHs. PAH isomer ratios have been used to determine PAHs sources and estimate

the importance of combustion and petroleum-derived PAHs [45, 46]. The index of combus-

tion (anthropogenic) input of PAHs is an increase in the proportion or molecular mass totals

of the less stable or kinetically produced parent PAH isomers relative to the thermodynami-

cally stable isomers, such as fluoranthene relative to pyrene. Index calculations are traditionally

restricted to PAHs within a given molecular mass to minimize factors such as differences in

volatility, water/carbon partition coefficients, adsorption, and in most cases closely reflect the

source characteristics of PAHs.

PAH rations considered were primarily proportions of fluoranthene to fluoranthene plus

pyrene (Fl/202) and indeno[1, 2, 3-cd]pyrene (IP) to IP plus benzo[ghi]perylene (IP/276) (Fig

3). Fl/202 ratios less than 0.40 indicate petroleum (oil, diesel, and coal) and ratios between 0.40

and 0.50 indicate liquid fossil fuel (vehicle and crude oil) combustion, while ratios over 0.50

indicate grass, wood or coal combustion. Similarly, IP/276 ratios less than 0.20 indicate petro-

leum, ratios between 0.20 and 0.50 indicate liquid fossil fuel combustion, and ratios over 0.50

Table 1. Comparison of the POP concentrations (ng/g dw) in the sediments from the other coastal areas with the present study.

Locations t-PAH

(ng/g dw)

t-PCB

(ng/g dw)

t-DDT

(ng/g dw)

References

Stations A, B, and E 19.96–129.66 0.04–1.11 0.03–0.21 This study

Stations C and D

(Changbin Industrial Park)

135.15–332.95 0.24–4.34 0.11–2.63 This study

Pearl River Estuary, China 138–1100 - 1.38–25.4 [29]

Yangtze Estuarine, China 32.10–71.10 ND-63 ND-5.10 [30]

Victoria Harbor, Hong Kong 3.2–27 1.4–30 [31]

Coastal region, Singapore 12.65–93.85 1.40–330 3.40–46.10 [32]

Coast of Korea 9.1–1400 0.17–371 0.01–135 [33]

Gao-ping Estuaries, Taiwan 1.43–356 0.38–5.90 0.44–1.88 [34]

Northeastern coast of India - 0.18–2.33 0.18–1.93 [35]

Bay of Bengal, India 20.35–2615.38 0.02–6.57 0.04–4.79 [36]

West coast of India - - 1.47–25.17 [37]

Bay of Biscay, France 0.7–300 ND-375 - [38]

The Baltic Sea 9.5–1900 0.01–6.20 0.13–0.50 [39]

Cantabrian Sea, Spain 19–2123 ND-160 4.2–25 [40]

San Francisco Bay, CA 2944–29590 - 11–23330 [41]

Guánica Bay, Puerto Rico, USA 0.64–4663 140.11–3059.90 0.00–69.25 [42]

Bahia Blanca Estuary, Argentina 15–10260 0.61–17.6 ND-2.3 [43]

ND: lower than MDLs

https://doi.org/10.1371/journal.pone.0227367.t001
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indicate grass, wood or coal combustion. Furthermore, these two parent PAH ratios are sup-

plemented by anthracene (An) to An plus phenanthrene (An/178). An/178 ratios less than

0.10 indicate petroleum, while ratios greater than 0.10 indicate combustion.

In this study, sediment samples presented a mean Fl/202 ratio of 0.50 ± 0.03 (n = 42) and

an IP/276 mean ratio of 0.25 ± 0.12 (n = 35) (Fig 3), indicating a pyrogenic source impacting

the area. The mean An/178 ratio was 0.07± 0.03 (n = 42), pointing to petrogenic inputs.

Principal Components Analysis (PCA) was used to extract underlying common factors

(principal components, PCs) and to analyze relationships among observed variables. As a

result of an effective extraction process, PC1 accounted major proportion of the total data vari-

ance while the second and following PCs progressively explained smaller amounts of data vari-

ation. Prior to analysis, values under the method detection limits (MDLs) in the data set were

replaced with random values under the MDL value.

Concentrations of 40 PAHs as active variables and 42 samples as cases were used. The num-

ber of factors extracted from the variables was determined according to Kaiser´s rule, which

retains only factors with eigenvalues exceeding 1. As performed in other studies [47] a method

of factor rotation to get as many positive loadings as possible to achieve a more meaningful

and interpretable solution was preferred (Varimax normalized).

The majority of the variance (88.3%) was explained by three principal components vectors.

PC1 accounted for 73.1% of the total variance, PC2 accounted for 6.2%, while PC3 accounted

Fig 3. Comparison of selected PAHs ratios for 42 sediment samples along the area of study. Abbreviations refer to

the ratios of fluoranthene plus pyrene (Fl/202), indeno[1, 2, 3-cd] pyrene (IP) to IP plus benzo[ghi]perylene (IP/276)

and anthracene (An) to An plus phenanthrene (An/178).

https://doi.org/10.1371/journal.pone.0227367.g003
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for 3.9% of the variance. Fig 4a shows the loadings for the individual PAHs at the principal

components plot. All the compounds were found to be positively correlated along the PC1

axis; indeed, PC1 had high correlation (r2 = 0.7) with alkylated derivatives of PAHs, which are

markers of petrogenic origin. This component also included some pyrogenic markers such

as fluoranthene, pyrene, benz[a]anthracene, chrysene (coal combustion) and even retene, a

marker of wood combustion. In addition, PC1 compounds were strongly correlated with the t-

PAHs concentration (r2 = 0.91), indicating PC1 as mixed origin with over-imposition of petro-

genic origin and a quantitative correlation component.

PC2 presented significant positive loadings for two 3-ringed PAHs compounds: fluorene

and dibenzothiophene. Fluorene has been reported as a dominant PAH in the coke oven sig-

nature [48] while dibenzothiophene (thiophenes in general) is a marker of diesel-powered

vehicles [49]. Such PAHs are the result of combustion/pyrolitic processes and are absent in

crude oil or refined products. Consequently, PC2 was defined as a pyrogenic component

including coke combustion and diesel motors exhaust.

PC3 presented a significant correlation with indeno[1, 2, 3-c,d]pyrene, a six fused ring com-

pound, which is a common marker of pyrolysis. The principal components plot (Fig 4a) shows

different PAHs clustering. PAHs in the three main clusters may be originated from different

origin sources. Following PCA, a portion of the total variance of PAH concentrations is

explained by source contribution, with petrogenic origin as the prevalent contribution over

the sampled area. These results are consistent with our previous findings. Fig 4b shows the 2-D

score plot with PC1 and PC2 axes, characterizing the sampling stations according to the first

and the second components. In this context, we identified three major groups of samples dis-

tributed along the three axes (Fig 4a). PC1-positive coordinates include 19 samples dominated

by stations C and D. These samples are located in a petrochemical industrial park wastewater

discharge zone, an area defined above as a hotspot because of its total PAHs levels. The

remaining samples can be divided into different PC2 and PC3 contributions, with stations B

and E mainly correlating with PC2 (coke + diesel combustion) and stations A and B correlat-

ing with PC3 (gasoline, coal combustion). In brief, PCA allowed us to assess different PAH

sources and classify the sampling sites. These PCA results reflect the conclusions drawn from

the ratio metric analysis.

Fig 4. a. The PCA loading plot of sedimentary PAHs; b. Score plot illustrating the distribution of PAHs compounds in the sampled areas along PC1 and PC2 axis.

https://doi.org/10.1371/journal.pone.0227367.g004
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As shown in Fig 4b, stations C and D represented marked petrogenic PAH inputs, conclud-

ing that the PAHs sources at the most impacted locations in Changhua County are mainly pet-

rogenic inputs and not combusted oil and petroleum derivatives.

3.3.2. Organochlorines and PCBs. Commercial grade DDT generally contains 90%

DDT, 5% DDE, <1% DDD, and <0.5% unidentified compounds [50]. DDT-isomers have a

long persistence in the environment, gradually degrading to DDE and DDD under both aero-

bic and anaerobic conditions. In general, the trend of concentrations of DDT and its metabo-

lites present in sediments was DDT>DDD/DDE, indicating quite recent inputs of commercial

DDT to the environment. Despite this, different spatial trends were identified: in the north

(stations A and B; catchment of city sewage outlet and harbours), there were medium DDT

levels (0.17 ng/g dw) and the trend observed for its derivatives was DDT >DDD> DDE. In

the south (stations D and E; reserve), the DDT levels were the minimum recorded (0.02–0.06

ng/g dw), while the industrial stations C and D showed the maximum levels (>0.8 ng/g dw).

The dominance of DDTs in stations C and D sediments, as well as the maximum concentra-

tion achieved in top layer, indicates slow degradation of DDTs or recent inputs of DDT at

these locations [51].

Concentrations of PCBs in worldwide comparison were relatively lower (< 4 ng/g dw).

PCB levels were highest at stations C and D, lower at stations A and B, and lowest at station

E, reflecting the land use/cover in these areas. The major compounds found in the area were

congeners 132,153, 31, 28 and 5+8. Comparing the pattern of percentage of chlorinated com-

pounds with the average known Aroclor mixes (UNEP), we found that the source of PCB con-

tamination in the study area was mixed pattern, involving Aroclor 1016 and Aroclor 1260.

3.3.3. PBDEs. The concentration of total PBDE (S10 congeners) ranged from 0–57.6 ng/

g dw, with BDE-209 being the most abundant congener at all the stations and in both seasons.

The highest concentration of PBDE was found at station C (57.60 ng/g dw) in the deepest layer

(50 cm) of sediment in the dry season (January). This result was in accordance with studies in

other parts of world which described greater concentrations of POPs in dry seasons than in

the wet seasons and higher PBDE concentrations near chemical industries [25, 52, 53]. BDE-

209, the most abundant congener, composed almost 85–90% of the total PBDE concentration

in all the stations in both seasons. The highest BDE-209 concentrations were recorded in sta-

tion C (57.60 ng/g dw at 50 cm in dry season and 47.89 ng/g dw at 25 cm in wet season). Simi-

lar results have been published by previous studies, where BDE-209 was found to be the most

abundant congener, accounting for almost 90–100% of the composition of t-PBDE and show-

ing highly variable concentrations throughout the world [25, 53, 54]. The observation is cor-

roborated by recent studies demonstrating the high commercial usage of Br-10 mixtures in

Taiwan. The low brominated BDEs found in the top layer of each station might be the product

of debromination of higher brominated congeners of PBDE.

3.4. Concentrations of POPs related with sediment characteristics

The total organic carbon (TOCs) of sediment is often considered as a prime factor for the dis-

tribution of POPs in a particular area and are widely compared in studies related to organic

contaminants [22–25, 55, 56]. Persistence of POPs in aquatic sediments is due to their low rate

of degradation and vaporization, low water solubility, and high partitioning to particles and

organic carbon. To test this in the present study, a correlation between each POP level and %

TOC was assessed in this study (Fig 5).

The TOCs of the sediments ranged from 0.16–0.93%. The lowest TOC content was

recorded at station A and the highest at station C, both in the middle layer (25 cm) of the sedi-

ment column. There were strong and significant correlations between each POP (t-PAH, t-

POP distribution in coastal sediment and benthos: Potential impact of industrial to wetland ecosystem

PLOS ONE | https://doi.org/10.1371/journal.pone.0227367 January 9, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0227367


PCB, t-DDT and t-PBDE) with TOC (Fig 5). Previous studies have reported similar findings

when comparing TOC and POP concentrations [25, 34, 57, 58, 59]. Hence, TOC content can

be considered as a useful tool to assess or surveil the concentrations of diverse organic contam-

inants in sediments [25, 57,58].

3.5. Ecological risk assessments of POPs in sediments

Taiwan still lacks a standard for acceptable concentrations of individual POPs in seafood and

sediment. However, previous studies have used the general rule presented by [60] from the

Canadian councils of Ministers of the Environment [61], which uses the Threshold Effect

Level (TEL) and the Probable Effect Level (PEL) to estimate the risk of POPs in sediments and

benthic organisms. This standard criterion represents the limit above which (50% frequency,

“Effects Range-Median”) contaminant concentration will be considered toxic and below

which (10% frequency, “Effects Range-Low”), contaminant concentrations will rarely cause

detrimental effects. Using these sediment quality guidelines (SQG) set by [60], none of the

POP concentrations at the stations exceed the ERL values (Table 2). However the t-DDT

concentrations at stations C and D are closer to the standardized ERL values. This can be

explained by the use of pesticides for nearby agriculture and the proximity of these two stations

to the Industrial Park. Also, the concentration of t-PAHs and t-PCBs are higher at stations

Fig 5. The relationship between TOC (%) and t-PAH, t-PCB, t-DDT, and t-PBDE in ng/g dw.

https://doi.org/10.1371/journal.pone.0227367.g005
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C and D than at the other stations, which may have caused the absence of mud shrimps at

these sites. Therefore, the concentrations of POPs in the wetland sediment of this study,

including the Changhua Industrial Park, likely have rudimentary or marginal effects on ben-

thic organisms.

3.6 Bioaccumulation of POPs in the mud shrimp

Austinogebia edulis is a common seafood consumed by locals of the western coast of Taiwan

and it has high economic importance. The concentration of each measured POP in A. edulis
has been listed in Table 3. Out of the five stations (A, B, C, D, and E) only two stations (A and

E) showed the presence of mud shrimps. The concentration of t-PAHs was higher when com-

pared to the other POP concentrations. HCB was not detected in any of the samples that were

tested. The concentration of all the POPs tested were found to be much higher at station E

than station A. Since the Taiwanese government has declared station A a restricted mud

shrimp conservation area, the level of contamination by organic pollutants are comparatively

lower than in surrounding unrestricted and open areas.

The BAFs in the mud shrimp A. edulis were much higher at station E than at station A,

especially for t-PCBs and t-DDTs (Table 3). Austinogebia edulis are burrowers in the muddy

substratum and are get exposed to the sediment column throughout their entire lifespan. Pre-

vious literatures have documented that BAFs values are highly variable and dependent on vari-

ous parameters, like direct contact or exposure of the organisms with the sediment column,

amount of the residue present in the sediment etc. [62–66]. Thus, even a hydrophobic com-

pound like PCB may have a higher BAF value in the body of a burrowing mud shrimp. Previ-

ous literature noted ranges of BAFs for PAHs to be higher in certain crabs and lugworms than

in oysters and clams [64]. Several studies have accounted for varying BAFs for PCB and PBDE

in fishes, crabs, mussels, shrimps, etc. For instance, the Chinese Mitten Crab exhibited the

highest value of Biota-Sediment Accumulation Factor (BSAF) for PCBs (2900), followed by

the shore crab in the Scheldt estuary of Netherlands–Belgium (2330) [67]. At the same site the

Table 2. Comparison of standard values set for toxicity (SQG and CCME values ng/g dw) with the POP concentrations in the sediments from this study.

SQG [60,61] This study

Stations

ERM ERL PEL TEL A B C D E

t-PAHs 44792 4022 6676 655 58.42 99.2 238.93 254.38 41.80

t-PCBs 180 22.7 189 22 0.25 0.73 2.07 1.75 0.07

t-DDTs 46.1 1.58 4.77 3.89 0.06 0.16 0.67 0.79 0.06

https://doi.org/10.1371/journal.pone.0227367.t002

Table 3. The total concentrations and bioaccumulation factors (BAFs) of POPs in mud shrimps.

Station t-PAHs t-PCBs t-PBDEs t-DDTs HCB

Concentration (ng/g)

Station A 61.9 0.5 1.2 0.4 nd

Station E 94.1 3.9 2.2 1.1 nd

Bioaccumulation factor

Station A 1.1 1.9 0.5 6.2

Station E 2.3 54.6 0.9 17.3

nd: lower than MDLs

https://doi.org/10.1371/journal.pone.0227367.t003
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value of PCB BSAF in the brown shrimp (606), blue mussels (1090), and worms (1180) were

found to be comparatively lower [67]. However, the PCB BSAF for the Blue crab (0.22–1.7)

and the white perch (0.34–1.5) in the Passaic River, USA accounted for minute values of bioac-

cumulation factor [65]. The BSAF for PBDEs in the Scheldt estuary was also higher in Chinese

mitten crab (2520) and shore crab (598), but in comparison was much lower in brown shrimp

(162) and blue mussels (304). The PBDE BSAF found in the northern horse mussel of the Van-

couver Island, Canada varied from 0.95–527 [68]. The present study found lower BAF values

for each measured POPs in mud shrimps when compared to other global studies. The varia-

tions in the results can be accounted for by different trophic levels or the modes of ingestion

amongst the benthic biota. For instance, lower molecular weight PAHs such as phenanthrene

and anthracene have been reported to absorb compounds from the interstitial water directly,

whereas higher molecular weight compounds adsorb on particulate matter [64, 69]. Thus, the

bioaccumulation pathways for different aquatic and intertidal organisms differ greatly depend-

ing on the molecular weight of the compounds, modes of ingestion, absorption through skin,

and the ability of the organisms to metabolize the compounds.

4. Conclusion

This study presents the first comprehensive survey of PAHs, PBDEs, OCPs, and PCBs in sedi-

ments from Changhua County, Taiwan providing useful information on concentrations, com-

position and sources. The spatial distribution of POPs showed that proximity to sources was

the most important determining factor for the distribution of these contaminants. In general,

POP concentrations were greater in samples collected near the industrial area (C and D) than

those from the non-industrial locations (A, B, and E). Molecular indices such as Fl/202, IP/

276, and An/178 revealed the existence of both pyrolitic and petrogenic inputs at the area. Fur-

ther, the use of PCA enabled the classification of sampling sites in accordance to their main

source of PAHs. Considering PCBs, Aroclor 1016 and 1260 were assessed as the main technical

sources for the area. Although levels were below scientific sediment guidelines, the study iden-

tified recent DDT inputs to the area. Beyond the anthropogenic impact on the sediment, POPs

appear to pose a potential rudimentary or marginal risk in regards to their effect on benthic

organisms.
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