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Despite significant effort, the development of effective vaccines inducing strong and
durable T-cell responses against intracellular pathogens and cancer cells has remained
a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of
peptides derived from internalized antigen on class I major histocompatibility complex mol-
ecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to
enhance the effectiveness of vaccination is to deliver antigens directly to DCs.This is done
via selective targeting of antigen using monoclonal antibodies directed against endocytic
receptors on the surface of the DCs. In this review, we will discuss considerations relevant
to the design of such vaccines: the existence of DC subsets with specialized functions,
the impact of the antigen intracellular trafficking on cross-presentation, and the influence
of maturation signals received by DCs on the outcome of the immune response.
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INTRODUCTION
Vaccination is the most effective way to prevent the spread of infec-
tious diseases. We classify vaccines into two main types: preventa-
tive or therapeutic. Preventative vaccines typically elicit generation
of specific antibodies and memory B cells. They are designed to
block the spread of infection through these humoral immune
responses (1). Alternatively, therapeutic vaccines are designed as a
treatment to eradicate the cause of disease. Therapeutic vaccines
are typically intended to activate or induce cytotoxic antigen-
specific CD8+ T cells to eliminate virally infected cells or cancer
cells. There are many conditions for which vaccination has dimin-
ished the devastating effects of disease, and the discovery of these
vaccines has largely resulted from successful trial and error. How-
ever, there are many diseases for which no vaccine exists; e.g.,
human immunodeficiency virus, hepatitis C, malaria, and cancer.
It is likely that cytotoxic CD8+ T-cell activity will be required to
protect patients from these chronic conditions. For this reason,
efforts are required to develop carefully designed therapeutic vac-
cines that will derive from our increasing understanding behind
the mechanisms of the human immune system. Dendritic cells
(DCs) are the antigen-presenting cells that initiate and direct adap-
tive immune responses, and thus are critically important in our
consideration of vaccines designed to induce cellular immunity.

DCs induce and regulate immunity against pathogens, and
tolerance against self-antigens and commensal microorganisms
(2–4). In their immature state, DCs reside in the periphery where
they are situated to recognize and capture antigens. Upon receiving
an activating stimulus, DCs migrate to lymphoid organs whereby
they present processed peptides derived from captured antigens
to T cells in the context of major histocompatibility complex
(MHC) class I or II (5). The immune response initiated by the
DCs is dependent upon the context in which the antigen was
captured. DCs induce tolerance under steady-state conditions,
in the absence of infection or inflammation – generally in this
case it is self-antigens that are processed and presented. The exact

nature and state of tolerogenic DCs remain elusive. However,
there is an increasing body of evidence suggesting that microen-
vironmental signals condition DCs to become tolerogenic (6).
In this process, beta-catenin activation appears to play a central
role (7–10), although other mechanisms also contribute to tol-
erance induction (8). In the presence of inflammatory signals,
such as microbial products, proinflammatory cytokines, and other
endogenous signals, DCs undergo a process called maturation. DC
maturation is associated with dramatic functional and morpho-
logical changes that lead to an optimized ability to initiate T-cell
immunity. It is characterized by an increase in cell surface expres-
sion of MHCI and MHCII molecules and accessory/costimulatory
molecules, increased antigen processing, and induction of specific
cytokine production (5). Maturation depends on both the nature
of the stimuli and its extent and combination (11). Additionally,
the DC compartment is diverse and contains different cell types
with both conserved and unique functions and specialties. Indeed,
different DC subsets possess different capacity for antigen presen-
tation, cytokine production, and microbial sensing (12). Thus, it
seems that different types of immune responses are initiated by
specialized DC subsets.

The critical role of DCs to activate CD8+ T cells makes them
an attractive target for vaccination against intracellular pathogens
and diseases for which cellular immunity seems to be a crucial part
of the immune response. One approach is cell-based immunother-
apy with ex vivo generated DCs loaded with antigens (13). This
approach however is laborious and expensive, and thus far clinical
results have been limited. Another more promising approach to
direct DCs involves selective targeting to DC-specific endocytic
receptors by monoclonal antibody coupled or fused to a desired
antigen. These complexes are internalized by the DCs, trafficked
through the intracellular vesicular system, processed, and the anti-
genic peptides are loaded onto MHC and presented to T cells (14,
15). In mice, in the presence of adjuvant, these antigen–antibody
conjugates induce robust immune responses (16). However, in the
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absence of adjuvant, these conjugates can promote a tolerogenic
state (17). This in situ targeting strategy is in its infancy in human
patients. The first clinical trials to evaluate this vaccine approach
are in progress and their preliminary results are encouraging (18–
20). Recent progress in understanding the biology of DCs should
further help with optimization of a DC-targeted vaccine strategy:
(1) identification of the human DC subsets with superior capac-
ity at initiating CD8+ T-cell responses if any, (2) selection of the
receptors based on expression pattern to target the desired DC
subset(s), and also their ability to deliver antigen to intracellular
compartments for processing and loading on MHC and (3) choice
of the adjuvant(s) to induce the desired immune response. In this
review, we will discuss the issues relevant to human vaccination
through in vivo DC targeting: the existence of multiple DC subsets
with specialized functions, how DCs handle external antigen for
presentation on MHCI and the intracellular targeting that induces
optimal immune responses, and finally the role of DC maturation
signals in orchestrating the immune outcome.

DENDRITIC CELL SUBSETS
Increasingly it has become apparent that there exists a division of
labor among DC subsets in both mice and in humans (12, 21, 22).
The number of DC subsets identified, and the functional stud-
ies performed both in vivo in mice and in vitro using isolated
DC subsets from humans yield evidence for specialization in T-
cell priming and induction of immune responses, although the
functions of the different DC subsets can partially overlap.

While the mouse DC network has been quite well character-
ized, until recently thorough studies with human blood DCs have
been difficult due to their paucity in the blood and the difficulty
to access human tissues. However recent genome-wide expression
profiling studies helped identify the potential human counterparts
to the mouse DC subsets (23, 24).

Human and mouse DCs can be divided in two main sub-
sets: plasmacytoid DCs (pDCs) and conventional/myeloid DCs
(mDCs) (Figure 1). pDCs play a crucial role against viral infec-
tion by producing vast amounts of type I interferon in response
toll-like receptors (TLR) 7 and 9 and intracellular sensor triggering
(25). pDCs have been shown to be rather poor at antigen presen-
tation in comparison to mDCs (26–28), although recent studies
suggest that efficient antigen delivery to pDCs via endocytic recep-
tors can lead to robust presentation on both MHCI and MHCII
(29–31). However, the influence of antigen presentation by pDCs
in vivo has yet to be understood. Additionally, in mice there is
evidence that suggest pDCs play a major role in the generation of
tolerance (32, 33). Whether this is true for human pDCs is still
unknown.

Human mDCs can be divided into two main subsets based on
the surface markers BDCA1/CD1c or BDCA3/CD141. A transcrip-
tional comparison of mDCs has shown genetic similarity between
human BDCA1+ DCs and BDCA3+ DCs from various tissues
to murine CD11b+ and CD11b− DCs, respectively (23, 34–36).
Human BDCA3+ DCs express a number of markers unique to
mouse CD11b− CD8α+ and CD11b− CD103+ DCs including the
lectin receptor Clec9A/DNGR1, the chemokine receptor XCR1,
and Necl2 (37–39). Further, human BDCA3+ DCs and mouse
CD11b− CD8α+ DCs share the expression of the transcription

factors IRF8, BATF3 essential for their development (35, 40–43).
Conversely, the transcriptional programing of mouse CD11b+

CD8α− DCs and human BDCA1+ is dependent on IRF4 (44, 45).
Functional studies of the mouse and human mDCs revealed dif-
ferences between the two species, however. A clear division of labor
exists among the two mDC subsets in mice with CD11b− CD8α+

DCs and CD11b− CD103+ DCs being far superior and essen-
tial at priming CD8+ T-cell responses, while CD11b+ CD8α−

DCs are specialized for presenting antigen on MHCII to stimulate
helper T-cell immunity (12, 46, 47). This division of labor does
not appear as clear between BDCA3+ DCs and BDCA1+ DCs at
least in in vitro studies. Indeed both BDCA1+ DCs and BDCA3+

DCs can effectively cross-present antigens on MHCI (28, 31, 37,
38, 40, 41, 48–52). In addition, BDCA1+ DCs also produce high
levels of IL-12 upon stimulation, a cytokine essential to inducing
Th1 response and cross-priming of CD8+ T cells (28, 44, 48, 53,
54). BDCA3+ DCs and BDCA1+ DCs also exhibit a comparable
capacity to present antigen on MHCII (28, 31). The skin contains
two additional DC subsets that have been functionally character-
ized, the Langerhans cells (LCs) and the CD14+ DCs (36, 55).
CD14+ DCs appear specialized in initiating humoral immune
responses, while in vitro-derived LCs cross-present antigen on
MHCI and prime CD8+ T cells of higher avidity as compared
to CD14+ dermal DCs in vitro (26, 55). A side-by-side compari-
son of in vitro-derived LCs with CD14+ DCs suggests the two DC
subset have similar capacity for cross-presentation (36). Impor-
tantly, LCs isolated from skin are incapable of cross-presentation
of captured antigen, while they can present antigen on MHCII to
CD4+ T cells (36, 56). Whether this deficiency is the result of the
isolation procedure or a true characteristic of LCs remains to be
confirmed.

Finally, the human equivalent of mouse inflammatory DCs was
recently identified (57, 58). This DC subset is found in inflam-
matory microenvironments and can be divided into two main
populations: CD16+ BDCA1+ DCs or CD16− BDCA1+ DCs.
They have characteristic gene patterns similar to that of DCs
and macrophages, and thus are likely derived from monocytes.
Although there are limited data on the functional specialization
of human inflammatory DCs, they appear highly plastic like their
murine counterparts (57, 58).

One limitation of the studies aimed at characterizing the func-
tional capacity of human DCs is that they are performed in vitro
using T-cell lines or memory T cells. These assays permit to eval-
uate the DCs’ capacity for antigen presentation. However, other
factors are also important for DC function in vivo and priming
of immune responses. The enhanced capacity of LCs to prime
CD8+ T-cell responses may at least partially result from their
ability to express IL-15 upon maturation (59, 60). The costim-
ulatory molecule CD70 also promotes the priming of CD8+

T-cell responses and the generation of CD8+ T-cell memory
(61–63). CD70 has been found to be expressed on LCs and all
three blood DCs subsets upon maturation [(64, 65); Delamarre,
personal communication]. Finally, DC function may depend on
environmental cues, resident BDCA3+ DCs constitutively pro-
duce IL-10, possibly in a vitamin D3-dependent manner, and thus
mediate T-cell tolerance rather than immunity at steady-state (66).
Granulocyte–macrophage colony stimulating factor (GMCSF) has
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Cohn and Delamarre Receptor-targeted delivery of antigens to DCs for vaccination

FIGURE 1 | (A) Human dendritic cell subsets have overlapping functions
and phenotypes, but also show some degree of specialization. BDCA1+

DCs and BDCA3+ DCs both efficiently present antigen on MHCI and
MHCII. pDCs can present antigen to CD4+ and CD8+ T cells, but likely
their primary role in the immune response is the production of type I
interferon during viral infection. LCs seem to be specialized for
cross-presentation on MHCI, while CD14+ dermal DCs prime naïve CD4+

T cells to generate follicular helper T cells. Inflammatory DCs are
monocyte-derived, and are present at sites of inflammation. There is also
partial overlap between expression of PRRs among DC subsets.

(B) A clear division of labor exists among mouse splenic dendritic cell
subsets. CD11b− CD8α+ DCs are far superior and essential at priming
CD8+ T-cell responses, while CD11b+ DCs are specialized for presenting
antigen on MHCII to stimulate helper T-cell immunity. pDCs can present
antigen to CD4+ and CD8+ T cells, but likely their primary role in the
immune response is the production of type I interferon during viral
infection like their human counterparts. There is overlap between
expression of PRRs among DC subsets, although CD11b− CD8α+ DCs
express much higher levels of TLR3 while CD11b+ DCs uniquely express
TLR5 and TLR7 (30, 35, 41, 58, 64, 147–151).

recently been shown to enhance the cross-presentation capacity of
mouse CD11b− CD8α+ DCs (67, 68).

Based on our current knowledge, there is no strong rational for
the targeting of one DC subset over another to prime CD8+ T-cell
responses in humans. Further in vivo studies are needed to iden-
tify the DC subsets if any that are specialized in cross-priming of
CD8+ T cells. In this effort, it would be useful to better characterize
DC subsets in non-human primates which appear to possess sub-
populations of DCs that are similar to those present in humans
(69) and therefore would be a more relevant model to humans
than mice. Additionally, engagement of multiple DC subsets has
been suggested to be important in generating a broad and potent
T-cell response (70). For this reason, it may make sense to target a
broad spectrum of DC subsets rather than a single DC subset.

ANTIGEN CROSS-PRESENTATION PATHWAYS
In the design of rational DC-targeted vaccines, there are impor-
tant considerations related to the delivery of antigen to DCs
and the downstream processing of antigen by DCs. Delivery of
antigen to DCs is essential to generate strong and prolonged T-
cell responses. DCs are able to non-specifically phagocytose and
macropinocytose pathogen-associated antigen and can also uptake
antigen more specifically via lectin receptors, Fcγ receptors, and
scavenger receptors (5). It has been shown that antigens can be
efficiently targeted to DCs using antibodies against these endo-
cytic receptors (15, 71). This takes advantage of antibodies against
DC-specific endocytic receptors either coupled or fused to anti-
gen or attached to nanoparticles containing antigen. In mice, this
delivery method is hundreds of times more efficient and potent
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than untargeted antigens and offers options for antigen presen-
tation on both MHCI and MHCII to CD8+ and CD4+ T cells,
respectively (72). In addition, this strategy can also extend anti-
gen cross-presentation to pDCs, which display poor phagocytosis
and macropinocytosis capacity, and thus could potentially fur-
ther promote T-cell responses in vivo (28–31). Another benefit of
employing this strategy for antigen delivery is that it can allow
for delivery to both immature and mature DCs. Unlike the non-
specific phagocytosis and macropinocytosis, endocytic receptor-
driven uptake continues even after DC maturation (73, 74). It
would be best to selectively target DCs to reduce the dose of antigen
required, while additionally limiting cross-presentation by other
cell types. Indeed B cells and other non-hematopoietic cells can
cross-present exogenous antigens, albeit with less efficiency than
DCs, and induce peripheral tolerance under steady-state condi-
tions and could potentially negatively impact vaccination efficacy
(75–78). In addition, the binding of a target receptor by non-DCs
may trigger a signaling pathway and thus may potentially have
unwanted side effects.

DC subsets express different pattern of endocytic receptors and
therefore the choice of receptor will determine which DC subsets
are delivered antigen (Table 1). The choice of receptor also matters

for other reasons. Some receptors can trigger DC maturation and
induce immune responses of various natures as further discussed
in the next section. In addition, they determine antigen intracellu-
lar trafficking that impacts antigen fate (28, 79). Some antibodies
may also differentially alter antigen cross-presentation by mod-
ulating receptor trafficking (80). Antigen processing and loading
on MHCI and MHCII happens in distinct intracellular compart-
ments. For presentation on MHCII, antigen processing and load-
ing occurs in the endosomal compartments, and peptide–MHCII
complexes are transported to the plasma membrane (5).

Two main intracellular pathways for the cross-presentation of
exogenous antigen on MHCI have been reported. They are referred
to as the “cytosolic” and “vacuolar” pathways (Figure 2) (81, 82).

From extensive work with human and mouse DCs, the
“cytosolic pathway” appears the most predominant pathway. It
is proteasome-dependent, and therefore requires that internalized
proteins escape the intracellular trafficking pathway and access the
cytosol, where they are processed by the proteasome and trans-
ported into the ER and possibly in endocytic compartments by
TAP1/2 transporters for loading onto MHCI (83–85). The mole-
cular mechanism underlying transport of antigen from endocytic
compartments to cytosol remains largely unknown. No specific

Table 1 | Expression, intracellular localization, and ability to deliver antigen to MHCI and MHCII pathways of selected endocytic receptors and

antigen.

Receptors Expression by DCs Expression by

other cells

Intracellular

routing

DC activation MHCI cross-

presentation

MHCII

presentation

CD11c BDCA1+, BDCA3+, CD14+,

LC, inflam. DC

Mono/MØ, neutrophil Early endosome No +++ (Peptide) ?

CD32 BDCA1+, BDCA3+, CD14+,

LC, inflam. DC, pDC

B, mono/MØ, NK,

endothelial, neutrophil

Lysosome Yes +++ (Protein) +++ (Protein)

CD40 BDCA1+, BDCA3+, CD14+,

LC, inflam. DC, pDC

B, mono/MØ,

endothelial

Early endosome Yes +++ (Peptide) +++ (Peptide)
+++ (Protein) +++ (Protein)

CD205 BDCA1+, BDCA3+, CD14+,

LC, inflam. DC, pDC

B, mono/MØ, T,

endothelial

Lysosome No ± (Peptide) ± (Peptide)
+++ (Protein) +++ (Protein)

CD206 BDCA1+, CD14+, inflam. DC Mono/MØ, epithelial Early endosome No + (Peptide) +++ (Protein)

+++ (Protein)

CD207 LC – Birbeck granules No − (Virus) +++ (Protein)

+++ (Virus)

CD209 CD14+, inflam. DC, pDC Mono/MØ Early endo-

some/lysosome

No +++ (Protein) +++ (Protein)

DNGR1 BDCA3+ – Early endosome No +++ (Peptide) +++ (Protein)

+++ (Protein)

Dectin-1 BDCA1+, CD14+ Mono/MØ ? Yes +++ (Protein) ?

DCIR BDCA1+, LC, CD14+, pDC B, mono/MØ Early endo-

some/lysosome

No/suppressive? +++ (Protein) ?

Receptor selection for targeting DCs depends on four criteria: (1) whether the receptor is widely expressed among DC subsets, (2) whether other subsets of cells

express the receptor, (3) upon internalization, where the receptor is trafficked, and finally (4) whether binding of this receptor activates DCs (28, 79, 80, 103, 105, 148,

149, 152–154). ?, not tested.
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Cohn and Delamarre Receptor-targeted delivery of antigens to DCs for vaccination

FIGURE 2 | MHCI cross-presentation pathways of captured antigens.
Antigen captured by DCs has different potential fates. Antigens destined
for cross-presentation on MHCI have two different intracellular routes.
Antigen can be transported from the endocytic vesicles to the cytosol to
access the classical MHCI pathway involving proteasomal degradation

and transport into the ER or back into the endosomal compartment for
loading onto MHCI. The second pathway results in degradation and
loading directly in endosomal compartments before peptide–MHCI
complexes are transported to the plasma membrane. Modified from
Delamarre and Mellman (14).

transporter has been identified yet, despite substantial efforts from
different laboratories. A role of the ER-associated degradation
(ERAD) machinery has been suggested in antigen export to the
cytosol (86, 87). Consistent with this finding, the recruitment
of ER-resident proteins to the phagosomes, via the ER molecule
Sec22b, is required for cross-presentation (88). Regardless of the
exact mechanism, antigen transfer to the cytosol is rate-limiting
to antigen access to the MHCI pathway. When the antigen actively
gains access to the cytosol using listeriolysin O or a fusogenic virus,
cross-presentation is 10-fold more efficient (28). ISCOMATRIX
adjuvant, a saponin-based adjuvant, which disrupts lysosomal
membranes and facilitates antigen translocation to the cytosol also
enhances antigen cross-presentation (89).

The“vacuolar pathway”is dependent upon lysosomal proteoly-
sis by cathepsins and IRAP (90, 91) and independent of the protea-
some and TAP1/2 transporters. Exogenous antigens are degraded
directly in endocytic compartments by lysosomal proteases and
trimmed for loading onto MHCI.

The reason why certain antigens are cross-presented by one
pathway rather than the other is unknown. The nature and the
form of the antigen, and the ability of the proteolytic environment
to generate MHCI epitopes are certainly contributing factors (90).
Maybe counter intuitively, antigen intracellular targeting does not
appear to influence the intracellular-processing pathway for cross-
presentation in human blood DCs as cross-presentation of antigen
required proteasomal processing independently of its intracellular
targeting (79).

A feature essential to the ability of DCs to efficiently present
antigens on MHCI and MHCII is their reduced ability for endo-
somal degradation. Although proteolysis is essential to the gen-
eration of MHC peptides, too much proteolytic activity leads to

complete protein degradation into amino acids. Indeed, DCs are
distinguished from other phagocytic cells (e.g., macrophages) by
a remarkably low expression level of lysosomal proteases and a
high lysosomal pH (92–94). The antigen susceptibility to degra-
dation even by these reduced levels of proteases is a determinant
factor to the efficiency at which MHCII–peptide complexes can
be generated (95). Studies performed with murine DCs suggest
that the MHCI pathway may be even more sensitive to lysosomal
degradation. Indeed, inhibition of lysosomal proteases promotes
antigen cross-presentation (96, 97). Murine CD11b− CD8α+DCs,
which exhibit an increased ability for cross-presentation in com-
parison to the CD11b+ CD8α− DCs, also generate high levels
of reactive oxygen species in a NOX-2-dependent fashion so that
their endocytic compartments stay at a more alkaline pH, thereby
limiting antigen destruction (98). In addition, this phenomenon
may also act to weaken or disrupt the vesicular membrane (99).
As a result, antigen transport in the cytosol is increased. In addi-
tion, CD11b− CD8α+ DCs also have higher levels of lysosomal
inhibitors and lower levels of lysosomal proteases than CD11b+

CD8α− DCs (46, 100). The constitutive activation of IRE-1α, a
sensor of ER stress, is also a unique feature of CD11b− CD8α+

DCs and appears essential to antigen cross-presentation (101).
The precise mechanism by which activated IRE-1α promotes the
MHCI cross-presentation pathway remains to be elucidated. At
least, some of the features of the murine CD11b− CD8α+ DCs are
shared by human tonsil resident BDCA3+ DCs but also BDCA1+

DCs, both of which display similar cross-presentation capacity
(51). Additionally, the three DC subsets efficiently export inter-
nalized proteins to the cytosol. However, another study found that
blood BDCA3+ DCs superior at cross-presenting antigen deliv-
ered to lysosomes (28). Furthermore, blood BDCA3+ DCs express
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lower levels of lysosomal proteases than BDCA1+ DCs, suggesting
that perhaps enhanced antigen release into the cytosol is favored by
reduced lysosomal degradation. The lysosomal pH of blood DCs
was not measured, and in the aforementioned study intracellular
targeting of the antigen was not characterized. Further analysis will
be needed to determine if different BDCA3+ DC subsets display
different properties.

Finally, recent studies from our group and others suggest that
both early and late endosomal compartments are capable of serv-
ing as antigen portals for cytosolic entry and cross-presentation.
However, early endosomal compartments appear to be far more
efficient for some antigens. This is not dependent on internaliza-
tion levels, but rather the low proteolytic activity of early endo-
somes (28, 79, 80, 97, 102). Surprisingly, there does not seem to be
a direct correlation between the level of internalization and cross-
presentation. CD40 and mannose receptor/CD206 both deliver
antigen to early endosomes, but CD40, the receptor that is the
least efficiently internalized, turns out to be the most efficient at
promoting cross-presentation (79). Slow antigen internalization
might preserve antigen and provide a continuous “time-release”
pool of antigen that might be used over extended periods for the
continuous formation of peptide–MHCI complexes. The impor-
tance of targeting antigen to compartments with low proteolytic
activity most likely depends on the nature antigen and its sta-
bility. Chatterjee et al. used long peptides as antigen which are
particularly susceptible to degradation and probably have reduced
ability to survive long enough to escape into the cytosol. Protein
antigens, however, may be inherently more resistant. This could
explain why in some systems antigen delivered to lysosomes using
DEC205 or FcγR, are efficiently cross-presented, with similar or
better efficacy as antigen delivered to early endosomes via mannose
receptor/CD206 (103–105).

Collectively, the data reviewed in this section indicate that tar-
geting receptors for antigen delivery to DCs can promote CD8+

T-cell responses by increasing the amount of antigen delivered to
the desired DC subset(s). It can also enhance antigen presentation
by controlling its intracellular routing and degradation,and extend
antigen cross-presentation to DCs that might not be optimally
equipped.

ADJUVANT
In absence of stimulation at steady-state DCs can induce tolerance.
Antigen inoculation in absence of adjuvant leads to T-cell anergy
or T-cell deletion (17, 72), and can induce regulatory T cells in the
periphery (106–109). Hence, in vivo delivery of antigens to DCs
in absence of adjuvant may also be a promising strategy to treat
autoimmune disorders as reviewed elsewhere (110). But, to induce
immunity rather than tolerance, it is essential to provide the DCs
with an activation signal or “adjuvant” in addition to the vaccine
antigen. Conserved components of microorganisms, or pathogen-
associated molecular patterns (PAMPs) have been best character-
ized for their ability to activate DCs and their discovery offers the
prospect of developing new vaccine adjuvants. PAMPs are rec-
ognized by pattern recognition receptors (PRRs) of the innate
immune system. PRRs comprise a variety of receptors, includ-
ing TLRs, cytosolic receptors [nucleotide-binding oligomerization
domain-like (NOD-like) receptors (NLRs), RIG-I-like receptors

(RLRs)], and C-type lectin receptors (111, 112). Activation of
PPR signaling in DCs results in the enhancement of antigen pre-
sentation on MHCI and MHCII, cytokine production, and the
upregulation of costimulatory molecules that are necessary for the
induction of T-cell responses (5). Importantly, the nature of the
adjuvant determines the type, the magnitude, the breadth, and the
quality of the adaptive immune response. Differential patterns of
expression of PRRs among DC subsets and different cytokine pro-
files induced by the triggering of distinct PRRs account for much
of the diversity of phenotypes of the immune response (111, 113,
114) (Figure 1). Adding yet another level of complexity, adju-
vants that trigger different pathways within a cell (115–117), or
stimulate multiple cell types can cooperate to further enhance
immune responses (70, 114, 118). In addition to PPRs, it was
recently found that induction of stress response through sensing
of amino acid starvation in DCs initiates autophagy and enhances
MHCI cross-presentation (119). Stress sensors could therefore be
possibly targeted to potentiate adjuvants.

The use of the mouse model to study and select adjuvants
for human vaccine is limited because the pattern of expression
of PRR can significantly differ between the two species. Because
non-human primates express a similar repertoire of TLRs on
immune cells to humans, they are a more relevant model to
evaluate adjuvant effects (120, 121). While most adjuvants can
induce antibody responses, generation of CD8+ T-cell immunity
has proved particularly difficult (122). Immunization studies in
non-human primates showed that Poly ICLC which stimulate mul-
tiple PPRs (TLR3, RIG-I, and MDA-5) and TLR7/8 agonists are
currently the most potent known adjuvants for induction of T
helper 1 and CD8+ T-cell responses (123–126). Poly ICLC and
TLR7/8 agonist are the only TLR ligands capable of inducing both
IL-12 and type I interferon, which are required for efficient cross-
priming (53, 70, 114, 118). In mice, multiple cell types need to
be stimulated for the production of IL-12 and type I interferon.
IL-12 is produced by mDCs in response to Poly ICLC (through
TLR3 triggering) and TLR7/8 agonist stimulation, whereas type
I IFN is largely produced non-hematopoietic cells in response to
Poly ICLC stimulation through MDA-5, and pDCs in response to
TLR7/8 agonist, respectively. However, in mice reconstituted with
a human immune system IL-12p70 and type I IFN production after
TLR3 ligand stimulation resulted mainly from BDCA3+ DCs (53).
Even more surprising is that those BDCA3+ DCs produce similar
amounts of type I interferon as pDCs. These results are conflicting
with those obtained after in vitro stimulation of BDCA3+DCs iso-
lated from human blood and human tissues which produce only
limited amount type I interferon (28, 41). Further studies will be
needed to confirm this observation. Another potential benefit of
those TLRs is that they appear broadly expressed on human mDC
subsets (Figure 1), and therefore they can engage multiple DC
subsets, which has been shown to improve T-cell responses (70).
Multiple clinical studies have been initiated to evaluate Poly ICLC
and TLR7/8 agonists as vaccine adjuvants which will help establish
their potency in humans (www.clinicaltrials.gov).

The co-delivery of adjuvant and antigen to DCs is critical for the
priming of the immune response. Co-delivery has been realized by
coupling antigen to adjuvant (127–129), fusing antigen to protein
adjuvant, or co-encapsulation in particles (130–132), and has lead
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to significant increase in the magnitude of the immune responses
and a better quality immune response (127). This enhanced T-
cell priming may result from multiple effects: increased antigen
uptake, altered intracellular routing, increased stability of the
TLR agonist. The adjuvant effect may be even better achieved if
the adjuvant and the antigen co-localize in the same endosomal
compartments, as TLRs control MHCII presentation only in the
compartments in which they are present (133, 134). Another ben-
efit of coupled vaccines may be the local retention of the adjuvant
at the site of injection, and thus the reduction of their toxicity.
Indeed, free TLR agonists rapidly leave the site of injection and
induce systemic innate responses resulting in high levels of serum
cytokines (114). A more direct and controlled approach to reduce
unwanted systemic effects of TLR agonists is to engineer their
targeted delivery to DCs, although it might affect adjuvant effec-
tiveness if activation of bystander cells contributes to the immune
response (70, 118). Delivery of poly ICLC and TLR7/8 agonists
through DEC205 or CD209 enhances DC activation and CD8+

T-cell response in mice. Moreover, potent CD8+ T-cell responses
can be achieved with doses of adjuvant that do not induce toxic
high serum cytokine levels (132).

Receptors other than TLRs have been shown to trigger DC
activation. They are attractive due to their stimulatory capac-
ity and their endocytic capacity that offer the potential of using
a single molecule to deliver both antigen and activation sig-
nal to DCs. Dectin-1, a receptor involved in anti-fungal immu-
nity, is a syk-coupled C-type lectin receptor that stimulate DC
through its ITAM-like domain (112). Antigen delivery to human
monocyte-derived DCs and BDCA1+DCs through Dectin-1 leads
to enhanced MHCI cross-presentation and cell activation in vitro
(135, 136). However, mouse immunization studies suggest that
Dectin-1 may be more potent at priming CD4+ T-cell responses
than CD8+ T-cell responses (137). A more promising receptor may
be the CD40 receptor, which is expressed by all DC subsets. Not
only does it efficiently deliver antigen to the MHC presentation
pathways in DCs (28, 79), but its ligation induces DC stimulation
and promotes cross-presentation (138, 139). Immunization stud-
ies confirmed that anti-CD40 agonistic antibody/Ag conjugates
can prime CD8+ T-cell responses in mice (140, 141). However,
the use of agonist anti-CD40 antibodies in vaccine formulation
may be limited by a narrow therapeutic window. CD40 is broadly
expressed on B cells, monocytes, platelets, and endothelial cells,
and CD40 ligation can induce high serum cytokine levels (142). It
will be important to compare anti-CD40 antibodies with different
agonistic function. Anti-CD40 with weaker agonistic function may
be better tolerated and therefore allow higher antigen payload and
vice versa for strong agonists. How this will impact the outcome
of the immune response remains to be determined. CD32/FcγRII
cross-linking also induces DC maturation and efficient antigen
cross-presentation after immune complex internalization (73, 105,
143). Like CD40, it has the advantage of targeting most DCs, but
could induce some toxicity because of its broad expression on
other cells.

CONCLUSION
Recent advances in DC biology and the mechanisms control-
ling adaptive immune responses have offered new insights for

the rational design of novel vaccines. Immunization studies
in mice indicate that there is a clear benefit to the target-
ing of antigens to DCs. A major challenge, however, remains
to translate this approach developed in mice to humans. The
preliminary data obtained from the first clinical trials testing
vaccines targeting DEC205 (CDX-1401, Celldex) and mannose
receptor/CD206 (CDX-1307, Celldex) indicate that this strat-
egy can elicit immune responses (18–20), but maybe not as
strong as one could have expected based on the mouse data.
One explanation is that immunologist’s favorite model antigen
for mouse studies is ovalbumin, which is exceptionally immuno-
genic, and may lead to overestimating vaccine efficacy. Mouse
and human immune systems have also significant differences
that make translation difficult (144). Although the intracellu-
lar mechanisms involved in antigen cross-presentation pathway
and the DC lineage appear conserved between the two species,
the specialization of the DC subsets may not be conserved.
In addition, the pattern of expression of endocytic receptors
for antigen delivery and TLRs for DC activation are different
between mice and humans. Clearly, using a different model such
as mice with a reconstituted immune system or non-human pri-
mates, which have a human immune system more similar to
the human immune system is essential to optimize these vac-
cines. Additionally, analysis of the immune response to suc-
cessful human viral vaccines that induce potent CD8+ T-cell
responses could help further determine the mechanisms that con-
trol immune responses to vaccination and identify predictors of
vaccine efficacy (145).

Another challenge specific to the therapeutic treatment of can-
cer and maybe persistent viral infection is that they developed
mechanisms to evade immune clearance by impairing T-cell func-
tion (146). The presence of these suppressive factors may limit
vaccine efficacy, and combination of a vaccine with immunomod-
ulatory molecules to neutralize inhibitory signals may be necessary
to produce effective T-cell immune response.

In spite of these challenges, we view the present as an exciting
time to study vaccine development and foresee that continuing to
design DC-based therapies will allow us to prevent and treat many
of the major illnesses for which no vaccine currently exists.
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