
Cancer Medicine. 2019;8:593–605.     |  593wileyonlinelibrary.com/journal/cam4

Received: 20 June 2018 | Revised: 18 August 2018 | Accepted: 17 December 2018

DOI: 10.1002/cam4.1962

O R I G I N A L  R E S E A R C H

Three inflammation‐related genes could predict risk in prognosis 
and metastasis of patients with breast cancer

Shuangtao Zhao1,2  | Wenzhi Shen3 | Renle Du4 | Xiaohe Luo4 | Jiangyong Yu2 | 
Wei Zhou4 | Xiaoli Dong4 | Ruifang Gao4 | Chaobin Wang1 | Houpu Yang1 |  
Shu Wang1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Shuangtao Zhao and Wenzhi Shen are co‐first authors.

1Breast Disease Center, Peking University 
People’s Hospital, Peking University, 
Beijing, China
2Department of Radiation Oncology, 
National Cancer Center/Cancer 
Hospital, Chinese Academy of Medical 
Sciences and Peking Union Medical 
College, Beijing, China
3Department of Pathology and Institute 
of Precision Medicine, Jining Medical 
University, Jining, China
4The School of Medicine, Nankai 
University, Tianjin, China

Correspondence
Shu Wang, Breast Disease Center, Peking 
University People’s Hospital, Peking 
University, Beijing, China.
Email: shuwang@pkuph.edu.cn

Funding information
This study was funded by China 
Postdoctoral Science Foundation (No. 
179316, S. Zhao).

Abstract
Background: Current predictive model is not developed by inflammation‐related 
genes to evaluate clinical outcome of breast cancer patients.
Methods: With mRNA expression profiling, we identified 3 mRNAs with signifi-
cant expression between 15 normal samples and 669 breast cancer patients. Using 7 
cell lines and 150 paraffin‐embedded specimens, we verified the expression pattern 
by bio‐experiments. Then, we constructed a three‐mRNA model by Cox regression 
method and approved its predictive accuracy in both training set (n = 1095) and 4 
testing sets (n = 703).
Results: We developed a three‐mRNA (TBX21, TGIF2, and CYCS) model to stratify 
patients into high‐ and low‐risk subgroup with significantly different prognosis. In 
training set, 5‐year OS rate was 84.5% (78.8%‐90.5%) vs 73.1% (65.9%‐81.2%) for 
the low‐ and high‐risk group (HR = 1.573 (1.090‐2.271); P = 0.016). The predictive 
value was similar in four independent testing sets (HR>1.600; P < 0.05). This model 
could assess survival independently with better predictive power compared with sin-
gle clinicopathological risk factors and any of the three mRNAs. Patients with both 
low‐risk values and any poor prognostic factors had more favorable survival from 
nonmetastatic status (HR = 1.740 (1.028‐2.945), P = 0.039). We established two 
nomograms for clinical application that integrated this model and another three sig-
nificant risk factors to forecast survival rates precisely in patients with or without 
metastasis.
Conclusions: This model is a dependable tool to predict the disease recurrence pre-
cisely and could improve the predictive accuracy of survival probability for breast 
cancer patients with or without metastasis.
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1 |  INTRODUCTION

Breast cancer is reported as the most widespread tumor in 
women.1,2 It is universally accepted that the adjuvant or neo-
adjuvant systemic therapy substantially improves the survival 
probability in patients with breast cancer.3-6 Traditionally, the 
clinicopathological risk features such as age,7 tumor size,8 his-
tologic type,9 status of axillary lymph nodes,10 and hormone‐
receptor11,12 could divide patients into high‐ and low‐risk 
subgroup, but they have limited predictive power. Then, many 
biomarkers are explored for predicting the prognosis of breast 
cancer, but they could not still satisfy clinical practice.13-15 
Thus, it is urgently to investigate some new biomarkers to add 
the diagnostic power to the current predictive system.

Previous studies showed that the inflammatory microenvi-
ronment as the seventh hallmark of cancer could be activated 
to promote tumor process.16 Zhao et al discovered that three in-
flammatory genes (IL‐6, IL‐1A, and CSF3) could predict prog-
nosis of patients with diffuse large B‐cell lymphoma,17 and the 
inflammation‐related gene TBX21 could evaluate the survival 
of patients and increase cancer stemness via the TBX21‐IL‐4 
pathway in lung adenocarcinoma.18 Loza et al summarized that 
the pathway comprised of inflammation genes could define 
genetic risk factors for cancers.19 Currently, there is no data 
regarding a reliable model including some inflammatory genes 
to predict prognosis of patients with breast cancer.

To address this knowledge gap, we develop a three‐mRNA 
model including three inflammation‐related genes with the 
Cox regression method to evaluate prognosis independently 
and predict survival probability precisely in breast cancer pa-
tients with or without metastasis from The Cancer Genome 
Atlas (TCGA). Then, we validated the generalization ability 
of this model in another four independent cohorts from Gene 
Expression Omnibus (GEO) datasets. And we also compared 
its diagnostic power to single mRNAs and clinicopathologi-
cal risk factors.

2 |  METHODS

2.1 | Patients and samples
The clinical materials and mRNA data were collected from 
a research team (Cat. #BR1504a, Shanxi, Alenabio com-
pany, China), The Cancer Genome Atlas (TCGA) (https://
cancergenome.nih.gov), and GEO datasets (https://www.
ncbi.nlm.nih.gov/gds). After the removal of missing values, 

a total of 1938 breast cancer patients and 25 normal samples 
were applied into in this study, including 140 patients and 
10 normal samples from Alenabio company, 1095 patients 
from TCGA, 249 patients from GSE21653, 237 patients 
from GSE4922, 138 patients from GSE22226, 79 patients 
from GSE58812, and 15 normal controls from GSE8977 
separately. The normalization of expression values in studied 
genes was completed with a house‐keeping gene GAPDH. 
The formalin‐fixed paraffin‐embedded (FFPE) specimens of 
the 140 patients and 10 normal controls were collected be-
tween 2003 and 2006 and pathologically confirmed by the 
pathologist in the Nankai University.

2.2 | Screening process of the 
significant genes
A total of 156 candidate genes were screened from these 1027 
inflammation‐related genes by a medium throughput RNAi 
screen platform.20 And then, 14 significant genes were col-
lected from these 156 primary screening genes in breast cancers 
between with and without metastasis (P < 0.15, t test method, 
Table S1). Finally, the three significant genes (TBX21, TGIF2, 
and CYCS) were obtained from above genes among the meta-
static, relapse and tumorigenesis group when P < 0.15 in 2 of 
3 compared groups with t test method, which were on behalf of 
the clinical characteristics of the cancer stemness.

2.3 | Bio‐experiment methods
The biology experiment methods applied into this study in-
cluding cell culture, real‐time PCR, Western blotting, and 
immunohistochemistry were similar with the research meth-
ods as described previously.18,20 Primers used for the experi-
ments are summarized in Table S2.

2.4 | Functional enrichment analysis
The bioinformatical analysis methods were analogous with 
our research methods as described previously.18 Meanwhile, 
we applied the STRING tool (https://string-db.org/) to per-
form the functional protein association networks.

2.5 | Statistical analysis
We defined a median as the cutoff value in the expression 
of the studied genes in each set. And Pearson's chi‐square 

F I G U R E  1  The model construction. A, Different expression of three significant mRNAs between breast cancers and normal controls 
(*P < 0.05, t test method). B, Scatter plot shows three mRNA expression values to dead as a first event for those in whom this occurred (yellow 
dots), and alive for all other patients (gray dots). Shafts on the x‐axis represent breast cancer patients. Red spline and dotted line represent the fitted 
trend and the overall trend of mortality for patients, respectively. C, Three‐dimensional stereogram shows three‐mRNA‐based classifier stratifies 
patients into high (red dots)‐ and low (black dots)‐risk group with median as a cutoff value. D, Histogram shows three‐mRNA‐based classifier 
divides patients into high (red color)‐ and low (black color)‐risk group with median of predictive scores as a cutoff value

://cancergenome.nih.gov
://cancergenome.nih.gov
://www.ncbi.nlm.nih.gov/gds
://www.ncbi.nlm.nih.gov/gds
://string-db.org/
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T A B L E  1  Baseline characteristics of patients by 3‐mRNA signature in TCGA dataset

Number of patients Low risk (%) High risk (%) P‐value

Gender

Male 10 7 (70) 3 (30) 0.527

Female 990 558 (56) 432 (44)

Age

≤60 553 300 (54) 253 (46) 0.110

>60 447 265 (59) 182 (41)

Race

White 718 391 (54) 327 (46) 0.014

Nonwhite 187 83 (44) 104 (56)

ER status

Negative 237 123 (52) 114 (48) 0.073

Positive 804 470 (58) 334 (42)

PR status

Negative 342 201 (59) 141 (41) 0.424

Positive 698 392 (56) 306 (44)

HER2 status

Negative 557 321 (58) 236 (42) 0.223

Positive 355 190 (54) 165 (46)

Tumor stage

≤II 847 464 (55) 383 (45) 0.010

>II 153 101 (66) 52 (34)

Lymph node stage

0 471 271 (58) 200 (42) 0.533

≥1 529 294 (56) 235 (44)

Metastasis status

Yes 428 228 (53) 200 (47) 0.475

No 667 370 (55) 297 (45)

CNA

≤0.251 539 275 (51) 264 (49) 0.040

>0.251 538 308 (57) 230 (43)

Surgical margin status

Positive 102 87 (85) 15 (15) <0.0001

Negative 844 468 (55) 376 (45)

Mutation count

≤30 489 269 (55) 220 (45) 0.252

>30 486 285 (59) 201 (41)

Neoadjuvant therapy

Yes 11 9 (82) 2 (18) 0.088

No 988 555 (56) 433 (44)

Tumor location

Left 523 298 (57) 225 (43) 0.749

Right 477 267 (56) 210 (44)

Clinical stage

(Continues)
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test method was applied to analyze the statistical signifi-
cance in the basic characteristics.21 The t test was per-
formed to distinguish the distributive difference of the 
studied genes’ expression between cancers and healthy 
samples or between the high‐ and low‐risk groups. The cor-
relation analysis between two genes in this signature was 
measured with Spearman correlation analysis in the TCGA 
set. In the overall survival (OS) analyses, Random Survival 
Forest (RSF) algorithm and Cox proportional hazards re-
gression analysis were used to screen the optimal method 
to construct the prognostic model. Next, the Kaplan‐Meier 
method was used to analyze the relationship between fac-
tors and overall survival, and the log‐rank test to compare 
survival curves. The Cox regression model was selected 
to complete the multivariate survival analysis and data 
stratification analysis for exploring the independency of 
this signature model.22 Hazard ratios (HRs) and 95% con-
fidence intervals (CIs) were computed in each dataset. The 
prognostic performance at 3, 5, and 10 years was evalu-
ated by time‐dependent ROC curves. The Cox regression 
coefficients were to generate nomograms, and bootstrap 
cross‐validation method was selected to prove their pre-
dictive accuracy. Meanwhile, we used calibration to assess 
whether the actual results approximate the predicted out-
comes for each nomogram. The nomogram and calibration 
plots were performed with rms R package, and the other 
statistical tests were conducted with R software (version 
3.4.4). P < 0.05 was defined as the significant threshold in 
statistical results.

3 |  RESULTS

3.1 | Identification and derivation of a 
three‐mRNA model in predicting prognosis for 
patients with breast cancer
To develop a predictive model, we compared the expres-
sion values of 1027 inflammation‐related genes18,19 and 

obtained three significant mRNAs (TBX21, TGIF2, and 
CYCS) between 669 breast cancer patients from TCGA and 
15 normal controls from GSE8977 (P < 0.05; Figure 1A). 
In line with above, the expression patterns of these three 
genes were verified in 7 cell lines (Figure S1A‐C) and 150 
tissues from normal (n = 10) and cancer (n = 140) sam-
ples (Figure S1D‐F). Then, we discovered that the mor-
tality was negatively correlated with the expression value 
of TBX21 and TGIF2, but positively with CYCS in train-
ing set (n = 1095, Figure 1B). With no multicollinearity 
(Spearman's r ≤ 0.15; Figure S2A), these genes were nec-
essary for this new model by RSF analysis (depth ≥ 0.5; 
Figure S2B). Considering a balance between the dis-
criminant error rate and the number of mRNAs (Figure 
S2C), we finally integrated three mRNAs into a predic-
tive model with Cox regression algorithm: Risk scores = 
−0.082*TBX21‐ 0.05*TGIF2 + 0.069*CYCS. With a cut-
off point defined by the median value17,18,22 (0.020, Figure 
1C,D), patients with high‐risk scores (risk score>0.020) 
were classified into high‐risk group. In contrast, the pa-
tients with risk score ≥0.020 were divided into low‐risk 
group. The basal characteristics (Table 1) were not signifi-
cantly different between the low‐ and high‐risk groups ex-
cept for race (P = 0.014), tumor stage (P = 0.010), copy 
number aberration (CNA, P = 0.040), surgical margin sta-
tus (P < 0.0001), and menopause status (P = 0.014).

3.2 | The three‐mRNA model predicted the 
prognosis effectively in a training set and 4 
independent testing sets
Applying this new model into clinical practice, we found 
that the mRNA expression of TBX21 and TGIF2 in breast 
cancer patients with high‐risk value was significantly lower 
than those with low‐risk value (P < 0.0001), but inversely 
for CYCS. The 5‐year OS rates were 79.1% (74.4%‐84.0%) 
for all patients, 84.5% (78.8%‐90.5%) in the low‐risk 
group (n = 598), and 73.1% (65.9%‐81.2%) in high‐risk 

Number of patients Low risk (%) High risk (%) P‐value

≤II 761 419 (55) 342 (45) 0.088

>II 238 146 (61) 92 (39)

Menopause status

≤12 mo 
since LMP

280 179 (64) 101 (36) 0.014

>12 mo 
since LMP

646 357 (55) 289 (45)

Neoplasm status

Tumor‐free 772 421 (55) 351 (45) 0.893

With tumor 80 43 (54) 37 (46)

TCGA, The Cancer Genome Atlas.

T A B L E  1  (Continued)
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F I G U R E  2  Risk stratification by the model, and overall survival analysis by Kaplan‐Meier method in the whole patients and between high‐ 
and low‐risk group. A, training cohort. B‐E, independent testing cohorts. CI, confidence interval; HR, hazard ratio



   | 599ZHAO et Al.

group (n = 497), respectively (HR = 1.573 (1.090‐2.271), 
P = 0.016; Figure 2A). These results pointed out that this 
model could discriminate breast cancer patients with high or 
low risk of survival.

To validate the generalization of this new model, a total 
of 703 breast cancer patients were classified into low and 
high subgroups with the same cutoff point in another 4 inde-
pendent testing sets (GSE21653, GSE4922, GSE22226, and 
GSE58812). The 5‐year OS rates were 67.7% (61.6%‐74.3%) 
for all patients (n = 249), 73.1% (66.0%‐81.0%) in low‐risk 
group (n = 154) and 58.2% (47.9%‐70.7%) in high‐risk 
group (n = 95), respectively, in GSE21653 (HR = 1.630 
(1.022‐2.598), P = 0.040; Figure 2B). For the other three test-
ing sets, the 5‐year OS rates were analogous with the result 
above in all patients, high‐ and low‐risk group (Figure 2C‐E). 
Therefore, these results indicated that the three‐mRNA model 
was powerful to identify the prognosis of breast cancer pa-
tients with luminal, Her2+, or basal‐like subtype.

3.3 | Prognostic prediction by the 
three‐mRNA model was independent of 
clinicopathological factors
To assess the independence of this model in predicting prog-
nosis, we performed multivariate Cox regression analysis 

and discovered this model significantly associated with 
survival when adjusted for the other 14 clinical variables 
in TCGA set, as well as age, CNA, and neoplasm status 
(HR = 1.843 (1.094‐3.104), P = 0.022; Table 2). Next, data 
stratification analysis was completed between age, CNA, or 
neoplasm status. All patients were divided into young group 
(≤ 60 years, n = 553) and older group (>60 years, n = 447). 
As shown in Figure 3A, the cutoff value of the model could 
subclassify young patients into high‐ and low‐risk group 
with significant prognosis (HR = 3.098 (1.677‐5.722), 
P = 0.0003). The 5‐year OS rates of patients with high‐risk 
scores were 71.3% (95% CI: 58.5‐86.9), which was also 
significantly decreased compared with patients with low‐
risk scores whose corresponding proportions were 89.0% 
(83.6‐94.7). For the older group, the model exposed the 
comparable prognostic power (P = 0.0029; Figure 3B). 
Subsequently, the model was further measured in patients 
with different CNA or neoplasm status. The patients from 
each subgroup were subclassified into high‐ and low‐risk 
group with dramatically different prognosis (P < 0.05). The 
5‐year OS rates of patients with high‐risk scores were nota-
bly worse than those with low‐risk scores (74.4% vs 90.9% 
in less CNA group (≤ 0.251; P = 0.028; Figure 3C) and 
81.4% vs 93.2% in tumor‐free group (P = 0.002; Figure 3E); 
median survival time (months): 67.4 vs 129.0 in more CNA 

T A B L E  2  Univariate and multivariate Cox regression analysis of the three‐mRNA‐based classifier in TCGA set

Factors

Univariate analysis Multivariate analysis

HR (95% CI) P‐value HR (95% CI) P‐value

Three‐mRNA‐based classifier (High risk/
Low risk)

2.438 (1.684‐3.532) 0.000 1.843 (1.094‐3.104) 0.022

Gender (Male/Female) 0.049 (0.000‐792.724) 0.542

Age (>60/≤60) 1.793 (1.248‐2.577) 0.002 2.872 (1.597‐5.167) 0.000

Race (White/Nonwhite) 1.086 (0.676‐1.746) 0.733

ER status (Positive/Negative) 0.777 (0.516 ‐ 1.172) 0.229

PR status (Positive/Negative) 0.692 (0.472 ‐ 1.014) 0.059

HER2 status (Positive/Negative) 1.106 (0.676 ‐ 1.810) 0.687

Tumor stage (>II/≤II) 1.187 (0.768‐1.835) 0.440

Lymph node stage (≥1/0) 2.524 (1.687‐3.776) 0.000 1.161 (0.622‐2.167) 0.638

Metastasis status (Yes/No) 1.595 (1.109‐2.296) 0.012 1.503 (0.936‐2.415) 0.092

CNA (>0.251/≤0.251) 1.781 (1.224‐2.592) 0.003 2.043 (1.229‐3.396) 0.006

Surgical margin status (Positive/Negative) 1.357 (0.802‐2.296) 0.255

Mutation count (>30/≤30) 1.118 (0.771‐1.621) 0.555

Neoadjuvant therapy (Yes/No) 4.985 (1.560‐15.927) 0.007 3.033 (0.870‐10.571) 0.082

Tumor location (Right/Left) 0.747 (0.516‐1.080) 0.121

Clinical stage (>II/≤II) 1.885 (1.284‐2.767) 0.001 1.201 (0.655‐2.203) 0.553

Menopause status (>12/≤12 mo since 
LMP)

1.812 (1.149‐2.859) 0.011 1.530 (0.784‐2.986) 0.213

Neoplasm status (With tumor/Tumor‐free) 6.814 (4.510‐10.295) 0.000 7.573 (4.465‐12.845) 0.000

TCGA, The Cancer Genome Atlas.
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group (>0.251; P = 0.0008; Figure 3D) and 55.0 vs 83.8 
in with tumor group (P = 0.039; Figure 3F)). These results 
demonstrated that the prognostic power of the new model is 
independent of other clinicopathological characteristics for 
breast cancer patients.

3.4 | The three‐mRNA model had strongly 
diagnostic power in the prognostic prediction
To verify its strongly predictive power in prognosis, we cal-
culated the area under the curve (AUC) value at 5 years with 
the time‐dependent ROC analysis among the significant clini-
cal factors, three mRNAs, and this new model. We found that 
AUC value (0.684 (0.586‐0.782)) of this model was much 
higher than any single AUC value from the three clinical fac-
tors (0.597 (0.499‐0.695) for age, 0.592 (0.494‐0.690) for 
CNA, 0.619 (0.521‐0.717) for neoplasm status; Figure 4A) 
and the three mRNAs (0.532 (0.434‐0.630) for TBX21, 0.563 
(0.465‐0.661) for TGIF2, 0.536 (0.438‐0.634) for CYCS; 
Figure 4B), which was validated in the testing set (n = 703) 
integrated by another 4 independent datasets (Figure 4C), al-
though not all results reached statistically significant. These 
data indicated that the model was not only much higher 
prognostic accuracy than any other clinicopathological risk 

factors or single mRNA alone, but also added diagnostic 
power to clinicopathological prognostic features.

3.5 | The three‐mRNA model 
improved the survival identification between 
metastatic and nonmetastatic breast cancers
To investigate whether the model was clinically associated 
with the metastasis, a special analysis of the three mRNAs 
was conducted between two groups with or without metas-
tasis in TCGA set. As a result, we noted that the survival 
status was not identified between breast cancers with or 
without metastasis (HR = 1.503 (0.936‐2.415), P = 0.092; 
Figure 5A,C). Results from another subset analysis using 
our model showed that patients in the low‐risk group had 
a significantly favorable clinical outcome in nonmeta-
static group compared with the metastatic one (HR = 1.803 
(1.075‐3.024), P = 0.025; Figure 5A,C), or in patients with 
any poor prognostic features (HR = 1.487 (1.025‐2.156), 
P = 0.037; Figure 5B,C). Furthermore, patients with both 
low‐risk scores and any poor prognostic factors had a 
much better survival benefit from nonmetastatic status 
(HR = 1.740 (1.028‐2.945), P = 0.039; Figure 5B,C). The 
results above indicated that the model could successfully 

F I G U R E  3  Kaplan‐Meier survival analysis for all patients with breast cancer in TCGA set according to the model stratified by significantly 
clinicopathological risk factors. A‐B, Patients’ age. C‐D, CNA. E‐F, Neoplasm status. P‐values were calculated by the log‐rank test. CNA: copy 
number aberration; HR: hazard ratio

F I G U R E  4  Time‐dependent ROC curves compare the prognostic accuracy of the model with clinicopathological risk factors and single 
mRNA in patients from the training set and all testing tests. (A) Comparison of the prognostic accuracy by the model (high vs low risk), Age (≤60 y 
vs >60 y), CNA (≤0.251 vs >0.251), neoplasm status (with tumor vs tumor‐free), combined clinical prognostic factors alone, or the classifier and 
clinicopathological prognostic factors combined. (B‐C) Comparisons of the prognostic accuracy by the model (high vs low risk), and TBX21 (low 
vs high expression), TGIF2 (low vs high expression), or CYCS (high vs low expression) in the training set (B) and the testing set (C). P‐values show 
the AUC at 5 y for the model vs the AUC at 5 y for other features. ROC: receiver operator characteristic; AUC: area under curve; CI: confidence 
interval; CNA: copy number aberration
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F I G U R E  5  Effect of metastasis in different subgroups. A‐B, Kaplan‐Meier survival curves for patients in different subgroups stratified by the 
metastatic status. C, Effect of metastatic status on OS in different subgroups
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improve the survival identification between breast cancer 
patients with or without metastasis.

3.6 | The three‐mRNA model predicted the 
survival probability precisely by integrating 
other clinicopathological risk factors
To explore a quantitative method for calculating precise prob-
ability of cancer recurrence with or without metastasis, we 
developed two nomograms—metastasis and nonmetastasis—
that integrated both the model and another three significant 
clinical risk factors (Figure 6A). Calibration plots displayed 

that C‐index of nonmetastasis nomogram (0.844 ± 0.063, 
P = 0.000) was similar with that of metastasis nomogram 
(0.802 ± 0.065, P = 0.000), which indicated that the nomo-
grams worked well compared with an ideal model (Figure 
6B). Further validation was performed when we applied 
bootstrap cross‐validation algorithm into the patients from 
TCGA set. The integrated Brier Score for Cox bootstrap of 
metastasis (0.069) was less than out of bag (OOB) of me-
tastasis (0.109) at the range of integration (0, 126) months, 
which was similar with the result from nonmetastasis status 
(Figure 6C). Meanwhile, the AUC values of nonmetastatic 
and metastatic nomogram were 0.656 (0.552‐0.760) and 

F I G U R E  6  Nonmetastasis and metastasis nomograms to predict risk of cancer recurrence without or with metastasis in patients with breast 
cancer. A, Un‐metastasis and metastasis nomograms for predicting proportion of breast cancer patients with OS, either without (left) or with (right) 
metastasis status. B, Plots display the calibration of two models in terms of agreement between predicted and observed 5‐year survivals. The plot shows 
the model performance, relative to the 45‐degree line, which embodies perfect prediction. C, Validation of the predictive power of the nomograms’ 
model by bootstrap cross‐validation method. CNA, copy number aberration; OOB, out of bag; OS, overall survival; SD, standard deviation
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0.628 (0.528‐0.728), respectively (Figure S3). Generally, 
these nomograms could predict the survival probability ac-
curately in patients with breast cancer as a practical clinical 
tool.

4 |  DISCUSSION

In the past few years, the study correlated with mRNAs 
in breast cancer progress was increased inch by inch.23-25 
However, little has been reported for the inflammation‐re-
lated genes to predict breast cancer survival in a large dataset. 
Here, a three‐mRNA model was developed as a markedly pre-
dictor of survival in breast cancer patients with little overlap 
with the others. To reduce the predictive error rates, the ran-
dom sampling and ensemble strategies were used in RSF al-
gorithm and Cox regression method. And then, the measures 
of genes importance were performed by RSF algorithm to 
result in remarkable performance in factors screening. Next, 
a model was constructed with three mRNAs by Cox regres-
sion method. We espoused that the prognostic value could 
be substantially improved by integrating multiple biomarkers 
into a single model.26 However, it would be greater to have 
fewer genes as possible to produce the new model more com-
petitive. Through the RSF analysis, the three‐mRNA signa-
ture was necessary to develop the final model. And the result 
validated it as the “less‐gene‐possible” combination could 
subclassify the breast cancer risk status effectively.

To identify survival of the three‐mRNA model of either 
metastatic or nonmetastatic breast cancers on principle of 
“less‐gene‐possible” combination, we select one published 
model including two genes (HOXB13 and IL17BR) reported 
by Ma et al27 to compare the predictive power of prognosis in 
breast cancer patients from the TCGA dataset. By using ROC 
analysis, we found that AUC value of the three‐mRNA model 
was higher than the two‐gene model in the metastatic group 
(0.630 vs 0.541, Figure S3A) and nonmetastatic group (0.650 
vs 0.501, Figure S3B) of breast cancer patients. The data sug-
gested that our three‐mRNA model has more strongly diagnos-
tic power for predicting the clinical outcome in breast cancers.

To further verify the independence of this model in predic-
tion, we assessed the correlation between this model and the 
basic clinical factors and identified three factors (age, CNA, 
and neoplasm status) as dramatically candidate predictive vari-
ables in training set. Then, we performed a multivariate Cox 
regression analysis and discovered this model as an indepen-
dent factor. Especially the model could stratify patients with 
poor or favorable survival in the same age, CNA, or neoplasm 
status stratum, which demonstrated that the potential applica-
tion of this model in adding diagnostic power to the combined 
clinicopathological factors. Because the positive metastasis 
status negatively influenced the prognosis of patients with 
breast cancer,28 the predictive value of this model discovered 

in TCGA set furtherly verify its remarkable association with 
metastasis. The nomograms developed by the model and an-
other three significant risk factors produced a quantitative tool 
for predicting survival of patients. These results verified again 
that this model could divide the patients into high‐ and low‐
risk group more effectively and precisely than the performance 
of any other single mRNA or clinical factor.

Interestingly, we discovered the important tradeoffs with 
respect to the application of the three‐mRNA model in breast 
cancer patients who were deemed to be at high or low risk 
of recurrence based on the clinical and pathological factors. 
Also, we could report the median survival time, 3/5/10‐year 
OS probability for these patients with or without metasta-
sis by adding the three‐mRNA model into the nomogram. 
Overall, we could identify 40% and 60% in breast cancer pa-
tients with or without metastasis as especially short survival 
by evaluating individuals who had low‐ or high‐risk scores 
along with the basal clinical characteristics. This study gives 
us a big hint that we should pay enough attention to these 
patients in clinical treatment.

Importantly, it remains unknown whether this model has 
similar predictive power beyond molecular subtypes in breast 
cancer patients from different hospitals in China as this pre-
dictive model was derived from the TCGA set. Another lim-
itation of this research is that the validity of this model should 
be further confirmed in the prospect cohorts, especially for 
the correlation with tumor size. In addition, the possible 
function of this signature in breast cancer could be deduced 
by performing functional enrichment analysis on GO terms 
and KEGG pathways (Figure S5). It is a plausible inference 
from the result that this signature might be involved in cell 
apoptotic process and differentiation, energy metabolism, 
and pathways in cancer. However, these discoveries should 
be verified by bio‐experimentation.

Generally, our study identified three mRNAs (TBX21, 
TGIF2, and CYCS) that were significantly altered between 
high‐ and low‐risk patients with breast cancer. The three‐
mRNA model was independent and predicted the prognosis 
of patients robustly. Furthermore, this model could predict 
survival probability precisely in patients with or without me-
tastasis. And it is the first predictive model developed by in-
flammation‐related mRNA signature to evaluate survival of 
patients with breast cancer.
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