Supporting Information for

Di-HAMP domains of a cytoplasmic chemoreceptor modulate nucleoid array formation and downstream signalling

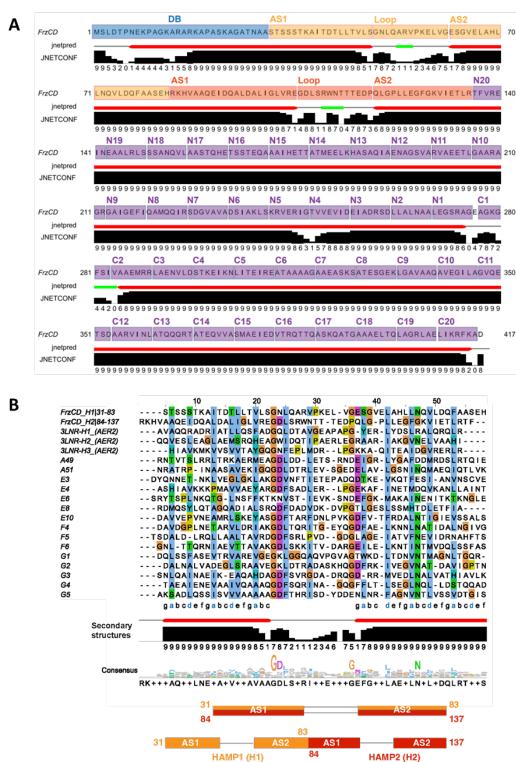
P J Jazleena^{1†}, Apurba Das^{1†}, Annick Guiseppi^{2†}, Fabien Debard^{2‡}, Jaya Sharma^{1‡}, Mutum Yaikhomba¹, Tâm Mignot², Emilia Mauriello^{2*} and Pananghat Gayathri^{1*}

Email: emauriello@imm.cnrs.fr; gayathri@iiserpune.ac.in.

This PDF file includes:

Supporting text Figures S1 to S7 Tables S1 to S5

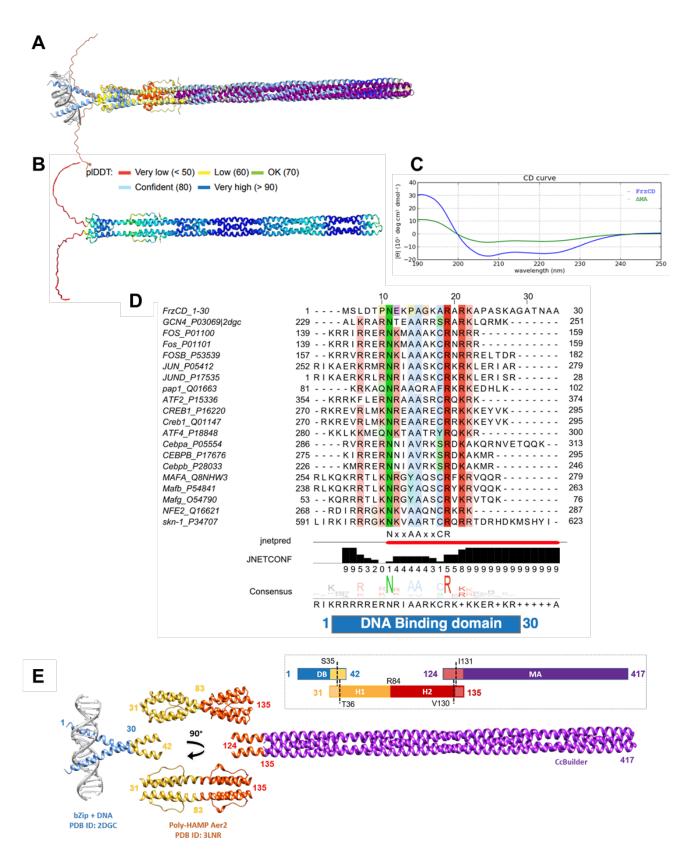
¹ Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, India 411008.


² Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Univ, Marseille, France.

^{†,‡} These authors contributed equally to the work.

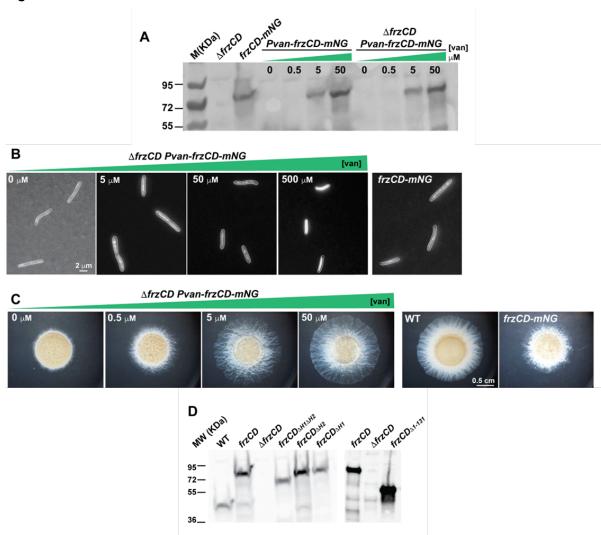
^{*} To whom correspondence should be addressed: Emilia Mauriello, Pananghat Gayathri.

Supplementary Figures


Figure S1

Supplementary Figure S1: FrzCD is mostly composed of alpha helices and its N-terminal domain comprises a di-HAMP domain.

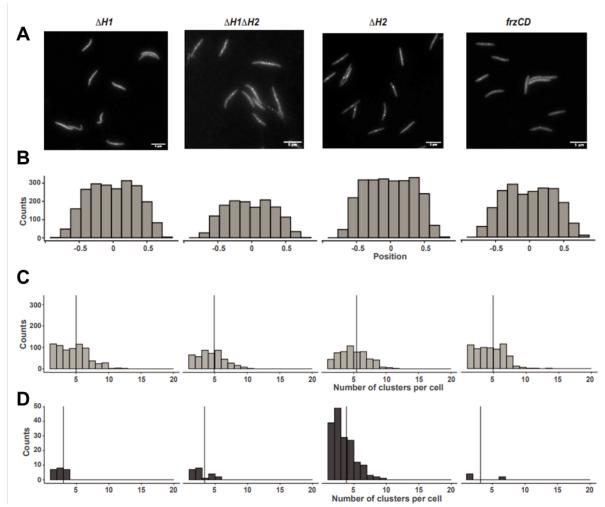
- **A.** Secondary structure prediction of FrzCD. DB (blue), H1 and H2 (each consisting of AS1, loop and AS2; orange and red), and MA (20 heptads of the N and C-terminal ends labeled as N1-20 and C1-20; purple) domains are marked on the amino acid sequence. Helices and strands are shown as red cylinders and green arrows, respectively. The confidence of secondary structure prediction is shown by numbers ranging from 0 to 9 (lowest to highest).
- **B.** Sequence alignment (top) and secondary structure (bottom) suggest the presence of two concatenated HAMP domains in FrzCD (H1: residues 31-83 and H2: residues 84-137). The aligned sequences are the consensus sequences of various classes of HAMP domains (1). The color scheme, as per ClustalX, is used to represent the alignments. Hydrophobic residues of helices AS1 and AS2 of H1 and H2 are labeled in blue in the alignment. The conserved glycines flanking the loop region are in orange. AS2 of H1 is in tandem with AS1 of H2. The confidence of secondary structure prediction is shown by numbers ranging from 0 to 9 (lowest to highest).


Figure S2

Supplementary figure S2. Validation of homology model of FrzCD.

- **A.** Superposition of the AlphaFold coordinates of FrzCD dimer mode (color-coded according to reliability scored by pIDDT) with our homology model (color-coded according to domains; DB: blue, H1: golden, H2: red, MA: purple)
- B. FrzCD AlphaFold model color-coded according to reliability scored by pIDDT.
- **C.** Circular dichroism spectroscopy of FrzCD (blue) and Δ MA (green) shows the presence of predominantly helical regions (71% and 44% helical content, respectively).
- **D.** DNA binding domain of FrzCD is similar to bZIP DNA binding sequences. Sequence alignment of the DB domain with leucine zipper domains highlights the conserved consensus sequence NxxAAxxCR (where x is any residue) and positively charged residues (R and K). Secondary structure prediction of the DB domain highlights a helical conformation similar to basic leucine zipper proteins. The color scheme as per ClustalX, is used to represent the alignments.
- **E.** Schematic representation of the strategy employed to generate a homology model of FrzCD where individual domains were modeled separately with an overlap of 12 amino acids for ease of stitching. The C- α of the 12 overlapping residues between each of the models were superimposed, followed by connecting S35 and T36 of DB and H1, and V130 and I131 of H2 and MA, respectively, and deleting the overlapping residue coordinates. Homology models for the DNA binding and di-HAMP domains were generated using leucine zipper (PDB ID: 2DGC) and Aer2 (PDB ID: 3LNR), respectively, in SWISS-MODEL while the MA domain was modeled using CCBuilder. The model is color-coded according to domains (DB: blue, H1: golden, H2: red, MA: purple).

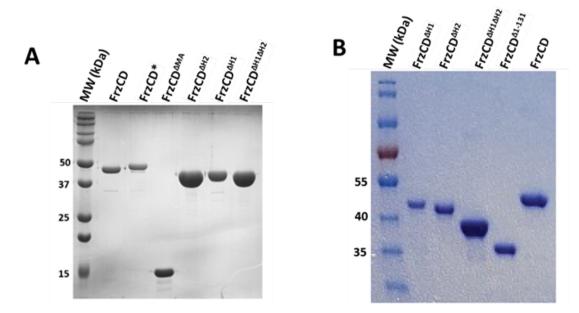
Figure S3



Supplementary Figure S3. FrzCD-mNG forms clusters at the nucleoid.

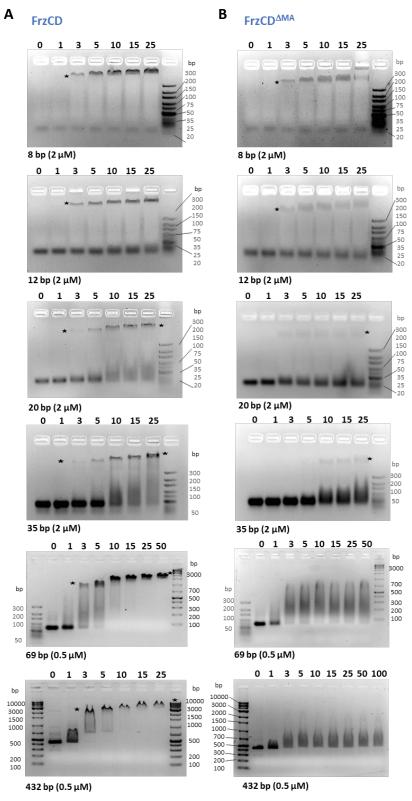
A. Representative Western blot with α -FrzCD antibodies on whole cell extracts of strains DZ2 (wild type), EM525 (Δ frzCD), EM724 (frzCDmNG) and EM885 (Δ frzCD P_{van} -frzCDmNG). P_{van} -frzCDmNG and Δ frzCD P_{van} -frzCDmNG were grown in the presence of the indicated concentrations of vanillate.

- **B.** $\Delta frzCD$ P_{van} -frzCDmNG was grown in the presence of the indicated concentrations of vanillate and imaged using a fluorescence microscope.
- **C.** The same cells were used for motility phenotypes on 0.5% CYE agar and imaged at 48h.
- **D.** Western blot with α-FrzCD antibodies on cell extract of strains DZ2 (wild type), EM525 ($\Delta frzCD$), EM885 ($\Delta frzCD$ P_{van} -frzCDmNG), EM914 ($\Delta frzCD$ P_{van} -frzCDmNG $^{\Delta H1}$), EM913 ($\Delta frzCD$ P_{van} -frzCDmNG $^{\Delta H2}$), EM911 ($\Delta frzCD$ P_{van} -frzCDmNG $^{\Delta H1\Delta H2}$) and EM908 ($\Delta frzCD$ P_{van} -frzCDmNG $^{\Delta 1-131}$).


Figure S4

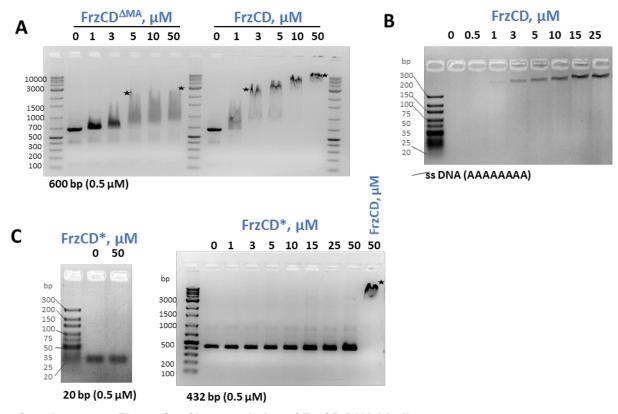
Supplementary Figure S4. Deletions of different HAMP domains have different effects on clusters number and intensity.

- **A.** Large views of micrographs of *M. xanthus* cells from strains EM885 ($\Delta frzCD \ P_{van}$ -frzCDmNG), EM914 ($\Delta frzCD \ P_{van}$ -frzCDmNG^{ΔH1}), EM913 ($\Delta frzCD \ P_{van}$ -frzCDmNG^{ΔH2}) or EM911 ($\Delta frzCD \ P_{van}$ -frzCDmNG^{ΔH1ΔH2}). Scale bars correspond to 5 μm.
- **B.** Absolute number of clusters as a function of their position in cells (from -1 to +1 on the y axis). "0" is the cell center; 0.5 and -0.5 are quarter positions.
- **C.** Absolute number of low-fluorescence clusters per cell as a function of their fluorescence intensity (arbitrary units).
- **D.** Absolute number of high-fluorescence clusters per cell as a function of their fluorescence intensity (arbitrary units).


Figure S5

Supplementary Figure S5. The proteins used in this study are stably expressed.

A, B. 12 % **(A)** or 10 % **(B)** SDS-PAGE profiles of the purified FrzCD constructs used in this study. Proteins in (A) were used to perform the experiments shown on Figure 5A, Figure 6, and Supplementary Figure S6 and S7. Proteins in (B) were used to perform the experiments shown on Figures 5 (B-D).


Figure S6

Supplementary Figure S6. MA domain stabilizes FrzCD binding to longer DNA fragments.

A-B. Representative electrophoretic mobility shift assays (EMSA) resolving the FrzCD and FrzCD $^{\Delta MA}$ binding to DNA. The protein concentrations of purified FrzCD protein domains are indicated corresponding to each lane and were incubated with the indicated concentration and length of DNA fragments from 8 to 432 bp (a star symbol in the gels marks supershifts).

Figure S7

Supplementary Figure S7. Characteristics of FrzCD DNA binding

- **A.** MA domain influences stable supershifts of longer DNA (binding profile comparison of 600-bp is shown; a star symbol in the gels marks supershifts).
- **B.** FrzCD binds to single-stranded DNA. 1 μ M of 8-base poly-A ssDNA titrated with increasing FrzCD concentration from 0 to 25 μ M, according to lane labels.
- **C.** FrzCD* shows no binding to DNA, and hence, no shift is observed in EMSA.

Supplementary Tables Supplementary Table S1. Strains used in this study

M. xanthus	Genotype	Reference or Source	
EM814	DZ2, Wild type	Campos and Zusman, 1975	
EM525	ΔfrzCD	Bustamante et al., 2004	
EM724	frzCD-mNeongreen	This study	
EM777	frzCD ^{∆H1} -mNeongreen	This study	
EM778	frzCD ^{∆H2} -mNeongreen	This study	
EM779	frzCD ^{∆H1H2} -mNeongreen	This study	
EM889	frzCD ^{∆H1}	This study	
EM775	frzCD ^{∆H2}	This study	
EM776	frzCD ^{ΔH1H2}	This study	
EM886	P ^{van} -frzCD-mNeongreen	This study	
EM885	ΔfrzCD, P ^{van} -frzCD-mNeongreen	This study	
EM914	Δ frzCD, P^{van} -frzCD $^{\Delta H1}$ -mNeongreen	This study	
EM913	ΔfrzCD, P ^{van} -frzCD ^{ΔH2} -mNeongreen	This study	
EM911	ΔfrzCD, P ^{van} -frzCD ^{ΔH1H2} -mNeongreen	This study	
EM1083	pBJ114::frzF	This study	
EM1084	frzCD ^{∆H1} , pBJ114::frzF	This study	
EM1085	frzCD ^{∆H2} , pBJ114::frzF	This study	
EM1086	frzCD ^{∆H1H2} , pBJ114::frzF	This study	
E. coli	Genotype	Reference or Source	
DH5α	F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1	New England Biolabs	
	endA1 hsdR17 (rK-, mK+) phoA supE44 λ- thi-1		
	gyrA96 relA1		
BL21-Al	F ⁻ ompT hsdS _B (r _B ⁻ m _B ⁻) gal dcm araB::T7RNAP-tetA	Invitrogen	

Supplementary Table S2. Plasmids used in this study

Plasmid	Insert	Source	
pKY480	Empty vector, containing KanR and SucS cassettes for	Mauriello et al., 2009	
	generating mutants and insertions in M. xanthus		
pEM517	pKY480 with frzCD-mNeongreen	This study	
pBJ114	Empty vector containing KanR and GalS cassettes for	Bustamante et al., 2004	
	generating mutants and insertions in M. xanthus		
pEM566	pBJ114 with <i>frzCD</i> ∆H1	This study	
pEM567	pBJ114 with frzCD ^{ΔH2}	This study	
pEM569	pBJ114 with $frzCD^{\Delta H1}$ Δ^{H2}	This study	
pMR3690	Empty vector containing a KanR cassette and a	Iniesta et al., 2012	
	promoter for inducible expression by vanillate		
	in <i>M. xanthus</i>		
pEM627	pMR3690 with frzCD-mNeongreen	This study	
pEM646	pMR3690 with frzCD ^{∆H1} -mNeongreen	This study	
pEM643	pMR3690 with frzCD ^{∆H2} -mNeongreen	This study	
pEM644	pMR3690 with frzCD ^{∆H1H2} -mNeongreen	This study	
pEM706	pBJ114 with truncated frzF	This study	
FrzCD	pHis17 with frzCD	This study	
FrzCD ^{∆MA}	pHis17 with frzCD ^{ΔMA}	This study	
FrzCD ^{∆H1}	pHis17 with frzCD ^{∆H1}	This study	
FrzCD ^{∆H2}	pHis17 with frzCD ^{ΔH2}	This study	
FrzCD ^{∆H1H2}	pHis17 with frzCD ^{ΔH1H2}	This study	
FrzCD*	pHis17 with frzCD ^{K9E_K13E_R15E_R17E_K18E}	This study	
pETphos	Empty vector for the synthesis of recombinant proteins	Canova et al., 2008	
	with a N-terminal His-tag fusion, containing a very		
	efficient TEV protease cleavage site and devoid of		
	putative phosphoacceptors in the His-tag fusion. It		
	derives from pET28.		
pEM410	pETphos with frzCD	Moine et al., 2017	
pEM414	pETphos with $frzCD^{\Delta 1-131}$	Moine et al., 2017	
pEM663	pETphos with $frzCD^{\Delta H1}$	This study	
pEM662	pETphos with $frzCD^{\Delta H2}$	This study	
pEM658	pETphos with frzCD ^{ΔH1H2}	This study	

Supplementary Table S3. Primers used for restriction-free cloning of domain-wise deletion constructs

Primer	Sequence (5' to 3')	
FrzCD ^{K9E_K13E_R15E_R17E_K18E} _f	CCCCCAACGAGGAGCCCGCTGGCGAGGCTGAAGCCGAGGAGGCCC CCGCCTCCGAGGCCGCGCC	
FrzCD ^{ΔH1} _f	GGCGCCACGAACGCGGCGCGCCAAGCATGTGGCGGCG	
FrzCD ΔH1ΔH2_f	GGCGCCACGAACGCGGCGTCGGTGCGGGAGATCAACGAG	
FrzCD ^{ΔH2} _f	CAGTTCGCGGCCTCCGAGCACGTGCGGGAGATCAACGAG	
FrzCD ^{ΔMA} _r	GCTTTTAATGATGATGATGATGGGATCCGAAGGTGCGCAGCGTC TCGATG	

Supplementary Table S4. List of DNA sequences used for EMSA

DNA length	Sequence (5' to 3')	
8bp	ACTGCAGT	
ss DNA	AAAAAAA	
12 bp	CTCACTATAGGG	
20 bp	TAATACGACTCACTATAGGG	
35 bp	GTCACCTGCTCTAGCTAATAGACTGAGCCGAGGTG	
69 bp	CTTGCAGTAGAGCTGACCATGATTACGCCATCAGCAGCTCCAGGTC	
	GTACCTCCAGCTACCAATCCCCG	
178bp	GGATCGCATCTGCCTACATCCCCAGCTCCCGGTCGGTCCGCTCGG	
	AACCTAGCCCGGGTCAAAGACCCGGGGTCTATGTTGACCCATTTGG	
	TGGGGATGGGTCTAATTGGACCTGGCGTTTTTTCGCGCCCATGGAAA	
	TGTCAAGGCCCGTGATTCCAGACTGTTGGGCAGGGAGTT	
432 bp	TAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAAT	
	AATTTTGTTTAACTTTAAGAAGGAGATATACATATGTCCCTGGACACC	
	CCCAACGAGAAGCCCGCTGGCAAGGCTCGCGCCCGGAAGGCCCC	
	CGCCTCCAAGGCCGGCGCCACGAACGCGGCGTCGACCTCTTCCTC	
	CACCAAGGCCATCACCGACACGCTGCTGACGGTGCTGTCCGGCAA	
	CCTGCAGGCCCGCGTGCCCAAGGAGCTGGTCGGTGAGTCCGGCGT	
	GGAGCTGGCGCACCTGCTCAACCAGGTGCTGGACCAGTTCGCGGC	
	CTCCGAGCACCGCAAGCATGTGGCGGCGCAGGAGATCGACCAGGC	
	GTTGGATGCGCTCATCGGCCTGGTGCGCGAGGGCGGATCCCATCA	
	TCATCATCATTAAAAGC	

Supplementary Table S5: Summary of the SEC-MALS profile peaks and their corresponding expected and estimated molecular masses.

Panel peak	Probable Protein/DNA/Protein-DNA	Theoretical	Observed
number	species	Molar Mass	Molar Mass
		(kDa)	(kDa)
Α	FrzCD dimer (89 kDa) +35-bp DNA (22	111	111 ± 0.3
	kDa)		
	FrzCD dimer (89 kDa)	89	89
	35-bp DNA (22 kDa)	22	22
В	FrzCD ^{ΔMA} (31 kDa) + 35-bp DNA (22 kDa)	53	47 ± 2
C.1	35-bp DNA (22 kDa)	22	21.8 ± 0.3
C.2	FrzCD dimer (89 kDa)	89	85.8 ± 1.2
C.3	Higher order species		138.2 ± 1.2
C.4	Higher order species		199 ± 5
D.1	35-bp DNA (22 kDa)	22	24.7 ± 0.7
D.2	FrzCD ^{ΔH2} (80 kDa) + 35-bp DNA (22 kDa)	102	107 ± 5.2
D.3	Higher-order species (broad peak)		294 ± 12