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Abstract
The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional 
outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory 
effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 
pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel thera-
pies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune 
system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine 
inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release 
via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates 
pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, 
cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits 
of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective 
surgery are the most suitable clinical conditions in which to test this hypothesis.
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Background: challenges and new directions 
in RIC

Bringing the promise of remote ischaemic conditioning 
(RIC) to fruition in the clinical arena, remains a major chal-
lenge [23, 58]. RIC involves the sequential occlusion and 
reperfusion, of an arterial vessel distant to the target organ. 
It has demonstrated multi-organ benefit and cross-species 
cardiovascular protection in studies of ischaemia [13], and 
is highly effective in preventing damage in animal models 
of myocardial infarction [63]. However, large-scale trials in 
humans with ST-elevation myocardial infarction (STEMI) 
have proved inconclusive, with respect to traditional out-
come measures of myocardial infarct size, heart failure and 
survival [36, 48, 58]. RIC confers cardioprotection via a 
combination of humoral and neuronal pathways. These link 
the protective, “conditioning” response to ischaemia induced 

in the remote vascular bed, to the target tissue at risk of 
severe ischaemia and reperfusion (I/R) injury [7, 80]. Whilst 
many potential humoral factors have been proposed such as 
nitric oxide (NO) and nitrite, adenosine, stromal-derived fac-
tor 1α (SDF-1α) and glucagon-like peptide-1 (GLP-1); the 
underlying immunological pathways remain poorly defined 
[8, 27, 58, 80, 118].

The effectiveness of RIC in preventing myocardial I/R 
injury in humans has been assessed in numerous studies, 
most notably the CONDI-2/ERIC-PPCI trial, an interna-
tional, prospective, single-blind, randomised controlled 
outcome trial in 5,401 patients with ST-elevation myocar-
dial infarction (STEMI) undergoing primary percutaneous 
coronary intervention (PPCI), in which no improvement 
in clinical outcomes (cardiac death or hospitalisation for 
heart failure) were seen after 12 months [48]. Importantly, 
however, no harmful effects were seen. Many theories have 
sought to explain why the success of RIC in animal models 
has not been directly translatable to humans [58, 64]. One 
important observation, highlighted in two recent articles, 
is that the population studied in the CONDI-2/ERIC-PPCI 
trial may not have been significantly ‘high-risk’ enough, to 
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demonstrate an improvement in the primary outcome meas-
ures of infarct size and survival [11, 49, 65]. It is likely, 
however, that a plethora of factors make the human model of 
cardioprotection more complex than the animal population, 
who are often devoid of chronic endothelial dysfunction and 
medical co-morbidities [57, 65]. Moreover, the timing and 
size of an experimentally induced infarct in animals can be 
carefully predicted and is reproducible. The key to transla-
tion may lie in better understanding of the underlying mech-
anisms, and how these can be applied to human physiology 
in individual conditions.

We have embarked upon a new era of inflammation in 
cardioprotection. With the arrival of novel diseases such 
as COVID-19, and its associated cardiovascular complica-
tions, there is a need to re-fashion current cardioprotective 
strategies. Moreover, the pandemic has identified the need 
to further investigate the effects of infection on the heart in 
addition to ischaemia. Whilst many reviews have considered 
RIC as an infarct limiting intervention, the effects on the 
innate immune system are less well documented. We present 
this review of the anti-inflammatory effects of RIC, and the 
implications for future organ-protective therapies (Fig. 1).

The inflammatory hypothesis of organ 
protection

The ‘Inflammatory Hypothesis’ is a term used to define the 
role of the innate immune system in I/R injury. Following 
reperfusion in myocardial infarction, acute inflammation 
contributes to endothelial dysfunction, the development of 
cardiac failure and poor left ventricular remodelling [99, 
109, 157]. Such damage persists well after the initial ischae-
mic insult has ended, and the infarct related territory has 
been reperfused [148]. Upon reperfusion, resident immune 
cells detect the presence of danger-associated molecular pro-
teins (DAMPs) and necrotic tissue in the area of infarction 
[157]. DAMPS combine with other ‘alarmin’ molecules, 
such as high mobility group box one protein (HMGB1), 
extracellular DNA and histones, to trigger the secretion of 
pro-inflammatory cytokines via the cell-mediated nuclear 
factor kappa beta (NF-κB) pathway (Fig. 2) [128, 157]. Mac-
rophages, which engage with DAMPs via toll-like receptors 
(e.g. TLR4), are also responsible for the synthesis of pro-
inflammatory molecules including cytokines and the NLRP3 
inflammasome (Fig. 2).

Following myocardial ischaemia, four varieties of pro-
grammed cell death are observed, including apoptosis, 
necrosis, necroptosis and pyroptosis [21, 61]. Apoptosis 
is triggered by death receptors (DR) and intracellular sig-
nals, and does not induce the release of cellular contents 
beyond the confines of the cell. It is largely mediated via 
caspase-8, 9 and Bc12. Both necroptosis and pyroptosis, 

enhance inflammation by facilitating the release of interleu-
kins such as IL-1β and IL-18. [61, 135]. Pyroptosis is a type 
of programmed cell death (PMD) which is closely related 
to activity of the NLRP3 inflammasome and NF-κβ. Here, 
activated caspase-1 facilitates the release of interleukins via 
the Gasdermin (GSDMD) membrane pore. Not only does 
inflammasome activation contribute to cytokine release and 
extent of inflammation, but also to infarct size, following 
myocardial ischaemia [29, 135]. The latter is, therefore, an 
attractive target for cardioprotection [1]. Whilst there are 
clear associations between RIC and anti-apoptotic path-
ways [122], it remains unclear whether remote condition-
ing can directly limit pyroptosis (and at which step). There 
is, however, evidence for bi-directional cross-talk between 
caspase-1 and caspase-8 (anti-apoptotic) suggesting that 
inhibition of apoptosis might also influence other forms of 
cell death [29].

The microvasculature has a central role in mediating 
inflammation during I/R, and endothelial cells are notori-
ously more resistant to hypoxia than other cell types [109, 
137]. They are, however, sensitive to the presence of reactive 
oxygen species (ROS) and the changes in NO metabolism 
that accompany an ischaemic challenge [4, 47, 125]. The 
coronary endothelial system has an important role in detect-
ing mechanical and flow-mediated changes post-infarct, in 
addition to mediating the vascular immune response. In the 
case of myocardial infarction, within the coronary arteries, 
exposed atherothrombotic plaque causes cells of the innate 
immune system to migrate to the inflamed vessel, prompting 
further cytokine release. Increased neutrophil recruitment to 
the area of vascular inflammation is mediated by cytokines, 
the complement cascade (including IL-8; C5) and directly 
via ROS [109, 125]. Polymorphonuclear neutrophils (PMNs) 
are attracted to the endothelium via selectins and proceed to 
adhere and transmigrate into the microvasculature by bind-
ing to integrins and ICAM adhesion molecules [115].

As the inflammatory hypothesis has evolved, immune-
modulating therapies have been extensively investigated in 
both myocardial and cerebral infarction, and have finally 
met with some recent success. The CANTOS trial dem-
onstrated that the IL-1β blocker, Canakinumab, was able 
to reduce the risk of future coronary and cerebral athero-
sclerotic events [120]. This benefit was, however, associ-
ated with a mild increase in fatal infection, which should 
not be disregarded. Nevertheless, the CANTOS trial was 
important in measuring outcomes of inflammation in car-
diac protection, and included measurements of cytokines 
involved in IL-6 signalling and C-reactive protein (CRP) 
[120]. Both biomarkers were deemed to be prognostic, 
with respect to the primary end-point of non-fatal ath-
erosclerotic events. This might suggest that cytokines are 
valuable biomarkers in predicting future adverse events 
in patients with myocardial infarction [120]. As further 
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justification to pursue cytokine inhibition in I/R, two 
recent clinical studies of STEMI patients have demon-
strated that IL-6 and IL-8 are associated with worsening 
clinical outcome [42, 129].

In the VCUART3 trial, the recombinant interleukin-1 
receptor antagonist, Anakinra reduced CRP levels at 14-days 
post STEMI, and significantly reduced mortality and re-
hospitalisation. Unlike CANTOS, there was no increase in 
severe infection reported following administration [2]. Simi-
larly, IL-1 inhibition was well tolerated when administered 
subcutaneously to patients with acute cerebral infarction, 
in the SCIL-STROKE trial. In this study, Anakinra signifi-
cantly lowered levels of IL-6 and plasma CRP (p < 0.001) 
[132], suggesting that it is a key mediator of the inflamma-
tory response in cerebral ischaemia [72]. Although experi-
mental results are promising in both myocardial and cerebral 
infarction, immune modulation is not currently used as rou-
tine in STEMI patients. Inhibition of individual cytokines 
must be carefully risk stratified, due to the close association 
between innate immune suppression and the development of 
humoral immunity [126].

Cytokines in myocardial infarction 
and infection

The pro-inflammatory cytokines released in response 
to myocardial infarction include IL-1α, IL-1β, IL-6, 
TNFα, IL-8, IL-18 and small chemokine molecules 
such as monocyte chemoattractant protein 1 (MCP-1). 
These cytokines are released by a mixture of damaged 

cardiomyocytes, macrophages and activated endothelium 
[109, 115]. The primary aim of cytokine release is to 
activate and attract immune cells to the area of inflam-
mation, to enable the removal of damaged products via 
phagocytosis [5]. In the infarcted heart, cytokine release 
is triggered by TLR4 signalling pathways, the activation 
of NF-κB in circulating macrophages and by reactive oxy-
gen species (ROS), which interact with IL-6. The result-
ant release of IL-1β further stimulates additional pro-
inflammatory molecules [17, 107]. Cytokine ‘cross-talk’ 
exists between immune cells and the activated endothe-
lium, which maintains the amplitude of the acute inflam-
matory response [133].

There are two distinct phases of inflammation follow-
ing myocardial infarction: an initial, pro-inflammatory 
phase in which damaged cells and debris are eliminated, 
and a second, anti-inflammatory reparative phase leading 
to wound healing and scar formation. Cytokines also have 
a key role in tissue repair. IL-6, (in a second window of 
cytokine release), IL-10, transforming growth factor beta 
(TGF-β) and a sub-population of T-lymphocytes known 
as ‘T Regulatory cells’ (Treg) have all been associated 
with supressing the pro-inflammatory response and steer-
ing the immune system towards repair and resolution fol-
lowing I/R [99, 107]. Macrophages expressing altered 
interleukin signals (such as IRAK-M) are able to down-
regulate other macrophages, contributing towards anti-
inflammatory ‘stop’ signals [107, 155]. For suitable heal-
ing to take place, the amplitude of the initial macrophage 
activation syndrome must not outweigh that of regulatory 
immune cells. In myocardial infarction, cytokine release 

Fig.1  RIC mediates inflamma-
tion in vivo by immune condi-
tioning and cytokine inhibition, 
anti-apoptotic pathways and the 
reduction of NLRP3 inflammas-
omes, (pyroptosis). Decreased 
oxygen tension adjusts cell 
metabolism and limits apop-
tosis. Shear stress induces 
flow-mediated dilatation, which 
enables the transfer of exosomes 
carrying anti-inflammatory, 
chemo-active compounds. 
RISK reperfusion injury salvage 
kinase, ERK extracellular signal 
related kinase, SAFE survivor 
activating factor enhancement, 
MTP mitochondrial transition 
pore, HIF-1α hypoxia inducible 
factor 1 alpha, NFκβ nuclear 
factor kappa beta
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predominantly occurs on the border of the infarct zone, 
but can also be present in non-ischaemic tissue [17].

The cardiovascular system is vulnerable to inflamma-
tory insult induced by infection and cytokine damage, 
including viral myocarditis, septic cardiomyopathy and 
recently the acute cardiovascular syndrome of COVID-
19 [40, 68, 86]. The latter encompasses thrombotic acute 
coronary syndromes, myocarditis and pulmonary emboli, 
amongst other complications of pre-existing cardiac dis-
ease [40]. The cytokine response to infection is similar in 
the acute phase to myocardial infarction, and is triggered 
by DAMPS and danger signals following pathogenic inva-
sion (stimulating IL-6, TNFα and IL-1β). In some indi-
viduals, following exposure to endotoxins or viral anti-
gens, the innate immune system becomes hyper-active 
and a ‘cytokine storm’ develops. Here, further cytokines 
are secreted (IL-17, IL-8, G-CSF, MCP-1, CCL1-3, IFN-
y) and re-circulated via the dysfunctional endothelium. 
The following present an in-depth review of cytokine 
response during infection [84, 112, 153]. This has been a 
topic of much importance in COVID-19 and culminates 
in pan-vascular and multi-organ damage [102].

Given that multiple pathologies affect the heart in this 
pandemic era, it is important to consider protective strate-
gies which will target the inflammation of both I/R and 
pathogenic invasion. Below we will consider the evidence 
for RIC as a cytokine mediator in both animal and human 
studies.

Animal studies of RIC and inflammation

Table.1 demonstrates the animal studies of RIC and cytokine 
release, performed within the last 5 years, following myocar-
dial infarction and reperfusion [9, 15, 33, 114, 136, 141, 152] 
Across several studies, RIC was associated with reduced 
levels of the pro-inflammatory cytokines, IL-1β, TNF-α and 
HMGB1 following reperfusion [114, 152]. Likewise, RIC 
applied 24h prior to myocardial I/R, appeared to increase 
levels of the protective cytokine IL-10 [15], which governs 
the amplitude of the cytokine response [34, 127]. In vivo, 
this increase in IL-10 was STAT5 mediated [15]. STAT5 is 
linked to the survivor activating factor enhancement pathway 
(SAFE) and operates downstream of JAK (Janus Kinase) in 
human myocardial injury [66]. Similarly, previous litera-
ture has discussed the protective effects of IL-10, limiting 
I/R injury via STAT3 [44, 79, 100]. In another study, RIC 
was associated with an increase in IL-6 (which the authors 
propose has reparative function within the infarcted myocar-
dium) via early growth response protein 1 (EGR-1), a mol-
ecule upstream of many apoptotic pathways [9]. In animal 
models of myocardial infarction, RIC combined with other 
therapies such as sevoflurane post-conditioning (anaesthesia 
following ischaemia and prior to onset of reperfusion) vagal 

nerve stimulation or atorvastatin (HMG-CoA reductase 
inhibitor), provided additive organ protection and reduced 
inflammation [33, 141, 152].

RIC has proven effective at attenuating pro-inflamma-
tory cytokine release in animal models of cerebral infarc-
tion, renal, pulmonary and hepatic reperfusion injury [31, 
70, 83, 145, 156]. In a population of aged rats undergoing 
middle cerebral artery occlusion (mCAO), RIC significantly 
reduced levels of IL-1, IL-6 and IFN-γ in both plasma 
and the brain, whilst reducing the expression of hypoxia 
inducible factor (HIF-1α). Although HIF-1α is linked to 
cardioprotection by stimulating pro-survival pathways, it 
can equally induce a shift towards anaerobic glycolysis in 
macrophages resulting in increased cytokine manufacture 
[19]. It is previously discussed that the role of HIF-1α in 
cardioprotection is not fully understood, although deficiency 
in mice appears to dampen a reduction in infarct size [59]. 
In a murine model of hepatic I/R injury, RIC significantly 
reduced levels of intrinsic liver enzymes, IL-6 and TNF-α 
[150]. Furthermore, this anti-inflammatory effect was medi-
ated by the HMGB1/TLR4/NF-κB pathway, an established 
mechanism of cytokine release [150]. Pro-inflammatory 
pathways involving NF-κB, including notch signalling [67, 
121] will be considered in greater detail below.

RIC reduces inflammatory cytokine levels and improves 
survival in rodent models of lipopolysaccharide (LPS) 
induced endotoxaemia [68, 74, 76]. In mice receiving three 
cycles of hind limb I/R (10 min ischaemia/10 min reperfu-
sion) prior to LPS exposure, there was a significant survival 
benefit from RIC (10% of the control group survived vs 60% 
of the intervention group; p < 0.001). In the same study, his-
tology revealed a reduction in the diffuse parenchymal pul-
monary inflammation associated with LPS-induced acute 
lung injury, and a reduction of cytokines in bronchoalveolar 
fluid (TNF-α, IL-1β and IL-6). It was further demonstrated 
that RIC mediates cytokine reduction via a downregulation 
of NF-κB and myeloperoxidase (MPO) pathways [76]. MPO 
is associated with increased neutrophil influx to areas of 
inflammation and, therefore, promotes the release of pro-
inflammatory cytokines from neutrophils, which are sentinel 
cells in the inflammatory response [78].

LPS induces a potent inflammatory state, and causes 
cytokines and alarmins (e.g. HMGB1, HSP70, histones) 
to be released in response to infection. Bacterial DAMPs/
LPS trigger NF-kB activity via TLR4, which potentiates 
further inflammasome and cytokine release (Fig. 2) [77]. In 
septic cardiomyopathy, the myocardial depressant cytokine 
HMBG1 is central to the stimulation of inflammation and 
upregulates the coagulation cascade [68, 94]. There is also 
evidence to suggest that the cytokines IL-1, TNF-α, and IL-6 
play a pivotal inflammatory role in endotoxaemia, and this 
has also been observed in COVID-19 hyper-inflammation 
[113]. IL-6 in particular, can target the vasculature to induce 
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vasodilatation and disruption of endothelial tight junctions, 
which results in capillary leak and circulatory collapse [138]. 
In view of the above, RIC may be a novel treatment modality 
with cytokine-modulating potential, without the associated 
side effects of immune-modulating pharmacotherapy.

Human studies of RIC and cytokine response

Contrary to the findings in animal models, the majority of 
recent randomised control clinical trials have been unable 
to demonstrate a clear effect of RIC on pro-inflammatory 
cytokine release (Table.2) [37, 39, 105, 106, 108, 149, 
158]. However, to date, cytokines have predominantly been 
measured in small studies only (less than 100 participants). 
Despite this, the largest two trials (n = 65, n = 90 partici-
pants) demonstrated cytokine attenuation in the treatment 
group undergoing RIC prior to off-pump CABG and colo-
rectal surgery, respectively [53, 140]. In the latter study, lev-
els of IL-1β and TNF-α were significantly reduced for up to 
3 days post-operatively (p < 0.01) in patients receiving RIC, 
compared with controls. Surgery was performed for a range 
of pathologies, including colorectal neoplasm [53]. Consid-
ering that RIC has conferred a profound survival benefit in 

animal models of intra-abdominal injury, it could be sug-
gested that the inflammatory benefits in humans might differ 
between clinical conditions [110].

Humoral pathways of inflammation and cell 
survival

RISK, SAFE and HIF‑1α

Many studies have demonstrated, that RIC reduces cardio 
myocyte cell death in I/R and other pathologies [31, 63, 
69, 73, 154]. The reperfusion injury salvage kinase (RISK) 
and survivor activating factor enhancement (SAFE) path-
ways, are fundamental in protecting the heart from I/R injury 
[44, 122]. The RISK pathway acts to prevent opening of 
the mitochondrial permeability transition pore (MTP), when 
activated before reperfusion [50]. There is a clear role for 
RIC and protein kinase C (PKC), which has cardioprotective 
actions in both ischaemia and reperfusion [63]. PKC regu-
lates the opening of the MTP by mediating  KATP depend-
ent channels and controlling calcium influx [51]. The RISK 
pathway is also activated by adenosine, bradykinin, and 

Fig. 2  Cytokine release in inflammation is mediated by DAMPS 
binding to TLR4/RAGE receptors on the cell membrane. Both path-
ways activate NF-κB and NLRP3 inflammasome production, result-
ing in secretion of pro-inflammatory cytokines [75, 150]. RAGE 
results in further production of HMGB1 [151]. NLRP3 inflamma-
some activation results in caspase mediated cell death [119]. Several 
studies haves demonstrated that RIC modulates NF-κB activity via 
in both ischaemia and endotoxaemia [74, 76, 92, 117, 130]. TLR4 

Toll-like receptor 4, DAMPS damage associated molecular patterns, 
HMGB1 high mobility group box  1, TNF-α tumour necrosis factor 
alpha, LPS lipopolysaccharide, RAGE Receptor for advanced glyca-
tion end-products, ERK extracellular signal related kinase, MAPK 
mitogen activated protein kinase, EGR-1 early growth response 1, 
TAK1 transforming factor-β-activated kinase 1, Iκβ inhibitor kappa 
beta kinase, NF-κβ nuclear factor kappa beta
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sphingosine which bind to receptors on the cell membrane 
[122]. This leads to upregulation of endothelial nitric oxide 
synthase (eNOS) and nitric oxide (NO) which induces vas-
cular vasodilatation in the heart and vasculature. Cross-talk 
exists between the RISK and SAFE pathways to augment 
cell survival, and this has been demonstrated across different 
species in studies of RIC and I/R [131].

The SAFE pathway (first described by Lecour in 2009) is 
an alternative pro-survival axis to RISK. SAFE was found to 
act on the MTP when ERK/MAPK (RISK) were inactivated 
and thus its independent actions were demonstrated [44, 
88]. SAFE describes the pathway initiated by the binding of 
TNF- α to the plasma membrane and the subsequent activa-
tion of JAK/STAT transcription factors [60]. In experimental 
studies of myocardial I/R, SAFE has upregulated STAT3, 
(likely via the Sphingosine Kinase 1 enzyme) [44, 79]. In 
human studies, RIC is associated with the upregulation of 
myocardial STAT5 [66]. STAT is able to activate NF-κB 
to influence the MTP and promote cell survival; however, 
NF-κB is itself pro-inflammatory, and coupled to cytokine 
secretion and pyroptosis/the NLRP3 inflammasome (Fig. 2). 
This presents somewhat of a conundrum in the treatment 
of inflammatory cardiac conditions. JAK/STAT can further 
evoke ‘notch’ signalling between local monocytes, which 
is directly linked to increased IL-6 manufacture and down-
regulation of the anti-inflammatory M2 macrophage/IL-10 
[67, 121]. As the SAFE pathway can activate JAK/STAT and 
NF-κB, it can also promote adverse cardiac remodelling and 
heart failure [44]. With this in mind, other humoral factors/
pathways must be triggered by RIC to account for a reduc-
tion in pro-inflammatory cytokines.

The molecule hypoxia inducible factor (HIF-1α) has 
been linked to pro-survival signalling in I/R [63]. During 
periods of reduced oxygen tension, HIF-1α mediates a shift 
in mitochondrial metabolism towards anaerobic glycolysis, 
which induces production of pyruvate dehydrogenase kinase 
1 (PDK1) and limits entry of acetyl-CoA into the TCA cycle. 
This acts to preserve cellular energy and limit apoptosis [19, 
90]. In differentiated macrophages, however, this metabolic 
change results in increased synthesis of cytokines such as 
IL-1β and IL-18 via the NF-κB pathway [19, 143]. This 
is somewhat paradoxical, as increased levels of HIF-1α 
have been associated with cardioprotection following RIC 
[59, 147]. It is possible that repeated stimulation of HIF-
1α causes uncoupling of cytokine synthesis and immune 
tolerance; as is the case in other TLR4-dependent pathways 
[6]. It is already established that persistently elevated lev-
els of HIF-1α can induce hypoxia tolerance [89]. Again, 
HIF-1α alone cannot explain the interaction between RIC 
and cytokine levels observed in animal studies [114, 152].

Stromal-derived factor (SDF-1α/CXCR4) has also been 
associated with HIF-1α and cardioprotection secondary 
to reduced apoptosis and upregulation of PI3K/ERK1/2 Ta
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(RISK). Exogenous SDF-1α protects human myocardium 
from I/R injury [98] and is released from endothelial cells 
during RIC [12, 27]. In a rodent model of spinal cord injury, 
infused SDF-1α reduced levels of IL-1β, IL-18, TNF-α, and 
NLRP3 inflammasome production, suggesting that it has 
anti-inflammatory actions [150].

NF‑κβ and associated inflammatory pathways

NF-κβ is an important molecule and transcription factor, 
involved in all aspects of inflammation and tumour activ-
ity. In addition to stimulation of the NLRP3 inflammasome 
and pyroptosis (discussed extensively above) it has many 
anti-apoptotic actions, making upstream inhibition problem-
atic in inflammatory diseases [134, 146]. In response to this 
observation, strategies such as IL-1 inhibition and caspase-1 
inhibition have been proposed in the treatment of cardiac 
inflammation [1]. NF-κβ is coupled to other proteins such 
as Iκβ (inhibitor of kappa beta) which enable self-regulation. 
Well-known anti-inflammatory drugs such as glucocor-
ticoids e.g. dexamethasone can interact with inhibitors of 
NF-κβ, to reduce cytokines and the inflammatory response 
[146]. It is interesting then to note that RIC has also modi-
fied Iκβα proteins in a rodent model of acute lung injury, 
leading to reduced activity of NF-κβ and reduced TNF-α, 
IL-1β and IL-6 secretion [76].

Several other studies have proposed that RIC can suppress 
the TLR4/NF-κB/inflammasome axis and reduce cytokine 
secretion [74, 130]. Moreover, there are multiple pathways 
that are linked to NF-kB which are mediated by TLR recep-
tors, and HMGB1 [3, 121]. Activity of the JAK/STAT 
pathway has been coupled to RIC-mediated cytokine modi-
fication as described [15, 124]. The receptor of advanced 
glycosylation end-products receptor (RAGE) pathway is 
associated with inflammasome production and HMGB1, 
(Fig. 2). Activation of RAGE is pro-inflammatory, and this 
can also downregulate RISK [124]. In mice undergoing RIC 
following myocardial ischaemia (RICPost), a decrease in 
infarct size was associated with a decrease in cardiac RAGE 
expression and levels of HMGB1 [142]. This may indicate 
that (as yet unidentified) humoral factors stimulated by RIC, 
can inhibit RAGE. The evidence at present for this is limited 
and further research is required.

To summarise, further humoral intermediaries may exist 
to link the vascular phenomenon of RIC to the above inflam-
matory pathways, and the findings of pre-clinical studies 
cannot be explained by RISK/SAFE alone. It seems most 
feasible, that such circulating anti-inflammatory factors 
might originate from the local trigger vessel; however, it is 
also recognised that there is a role of regional and distant 
vasculature [123]. Identifying these intermediate compounds 
and their mechanisms, remains a priority; as targeting both 

pro-survival and anti-inflammatory pathways in synergy 
could result in maximum cardiac protection.

Micro and macrovascular humoral factors

Following myocardial I/R, an increased number of neutro-
phils in the resistance vessels contribute to local vasocon-
striction, microvascular obstruction and ‘no reflow’ [57]. 
Meanwhile, there is further immune cell influx (including 
mast cells), platelet activation and upregulation of the clot-
ting cascade via tissue factor and Von Willebrand’s factor 
[56, 101]. Cytokines induce disruption of endothelial tight 
junctions and this culminates in leakage from capillaries into 
the extracellular space and the concurrent presence of micro-
vessel haemorrhage and thrombi. Both no reflow and MVO 
post STEMI are considered prognostic, and this relationship 
is independent to infarct size [82]. It is, therefore, impor-
tant to investigate ways to target this phenomenon [57]. In 
a large clinical trial of 696 STEMI patients (LIPSIA CON-
DITIONING), neither RIC alone nor in combination with 
post-conditioning following PPCI, demonstrated any reduc-
tion in MVO following cardiac MRI. There was, however, a 
significant improvement in myocardial salvage index in the 
cohort who received RIC and post-conditioning in combina-
tion (p = 0.02) [32].

Despite these results in larger clinical trials, RIC has 
increased both macro and microvascular flow on ultrasound 
Doppler, in two studies [85, 95] and improved forearm blood 
flow (venous occlusion plethysmography) in healthy male 
volunteers [47]. Both RIC and NO donors such as glycerin 
trinitrate (GTN) improve endothelial-mediated dilatation and 
reduce vascular reperfusion injury. Given that GTN in com-
bination with RIC confers no additional endothelial protec-
tive benefit, it is hypothesised that conditioning utilises NO 
pathways to induce vasodilation and organ protection [47]. 
The vascular release of extracellular vesicles and exosomes in 
response to RIC is further considered below.

Does RIC mediate innate immune cell 
activity?

NETs and neutrophil recruitment

Neutrophils are a considerable driver of the inflammatory 
process, and are responsible for significant cytokine release 
and tissue damage [34, 111]. Activated neutrophils release 
neutrophil extracellular traps (NETs), which are structures 
containing DNA and histones, amongst other inflammatory 
molecules. Neutrophils are stimulated to release NETs fol-
lowing exposure to alarmins and defensins, and this is medi-
ated by neutrophil elastase (NE), myeloperoxidase (MPO) 
and activated platelets, which bind to cellular HMGB1 
receptors. NETs can induce host cell death in response 
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to immune invasion, in a slow apoptotic process called 
NETosis [10, 104, 111]. NETs can also cause inflamma-
tory obstruction within the microvasculature, contributing 
to MVO. NETosis is associated with worsening outcomes 
post STEMI [54].

The impact of RIC on neutrophils, adhesion molecules 
and enzymes such as MPO, has predominantly been inves-
tigated in animal models of I/R injury, endotoxemia and 
acute kidney injury [30, 69, 76]. In rats undergoing RIC by 
femoral artery occlusion, prior to 45 min of left renal ischae-
mia, RIC significantly reduced expression of ICAM-1 adhe-
sion molecules, in addition to pro-inflammatory cytokines 
(TNF-α, IL-1β) [69]. In humans with ulcerative colitis and 
moderate disease activity, however, RIC did not reduce neu-
trophil infiltration or other markers of inflammation such as 
CRP, following rectal biopsies [39]. Conversely, in a large 
randomised control trial (n = 206 participants) of patients 
undergoing ablation for atrial fibrillation, RIC significantly 
reduced neutrophil–lymphocyte ratio and levels of CRP up 
to 48 h post-operatively (p < 0.05) [71]. A recent review 
has recognised neutrophils as important targets in cardio-
protection [5], especially considering that these cells have 
the potential to polarise macrophages and enhance the acute 
inflammatory response.

Lymphocytes, monocytes and splenic response 
to RIC

In animals, RIC influences both circulating leucocytes and 
immune precursors in the spleen in models of cerebral 
ischaemia [14, 96]. In rats undergoing middle cerebral artery 
infarction, RIC was associated with increased splenic vol-
ume and lymphocytes, with reduced cytotoxic T cells and 
natural killer cells (NK) in cerebral tissue at day 3 [14]. 
These changes were negated when animals underwent sple-
nectomy, suggesting an underlining mechanism of splenic 
conditioning. Similarly, in a second study, RIC increased a 
colony of non-inflammatory monocytes  (CD43+/CD172a+), 
in addition to increasing circulating B lymphocytes [96]. 
This is interesting given that in infection and immunity, B 
lymphocytes are central to immune conditioning and ‘immu-
nological-memory’ [77]. Others have proposed that RIC uti-
lises a ‘splenic-vagal nerve’ axis of cardioprotection, given 
that the cardioprotective effects of RIC are abated in ani-
mals undergoing splenectomy and vagotomy. Splenectomy is 
associated with reduced amounts of STAT3 (SAFE pathway) 
but not all related humoral factors have been fully identified 
[62, 93]. It is proposed that the anti-inflammatory cytokine, 
IL-10 may be important in an RIC-mediated splenic axis of 
cardioprotection [62].

Platelets and the coagulation cascade

With respect to platelet function and the coagulation cas-
cade, animal models have demonstrated the fibrinolytic and 
anticoagulant benefits of RIC [97]. However, this benefit has 
not been observed in humans [41, 46, 52, 116]. Following 
the ERIC-PPCI/CONDI-2 trial, a subsequent sub-analysis of 
the study population was performed to look for fibrinolysis 
benefit, but no firm trends were observed, with the exception 
of a reduction in time to thrombosis at 48 h [41]. However, 
a recent study of patients with underlining coronary artery 
disease has demonstrated that whilst RIC cannot influence 
platelet aggregation alone, when combined with dual anti-
platelet therapy (DAPT) in vitro, there is significant de-acti-
vation of collagen-dependent, platelet glycoprotein integrin 
molecules [87]. Further studies showing clear fibrinolytic 
benefit post-RIC vs controls are, however, necessary to reaf-
firm this.

Extracellular vesicles (EVs) in inflammation 
and immunity

It has long been proposed that the organ-protective effects 
of RIC can be attributed to the release of humoral factors by 
the ‘trigger vessel’, which reach the target tissue to reduce 
inflammation and cell death. Recently, endogenous nano-
particles known as exosomes have been thought to facilitate 
this transfer, perhaps aided by an improvement in vascular 
flow, secondary to the release of vasoactive compounds [28, 
35, 38, 139].

Exosomes represent the smallest size of extracellular 
vesicles (measuring 50–100 nm in diameter) and have a 
wide variety of functions in ischaemia and inflammation. 
Such nanoparticles can be derived from many types of cells 
including endothelium, haematopoietic cells and platelets, 
and their function is defined by the underlying pathology 
and cell of origin [22]. Exosomes carry chemokines and 
genetic material such as microRNA, which permits distant 
genetic transcription and cellular cross-talk. Such exosomes 
engage with target cells using a range of surface molecules 
expressed on their lipid bi-layer including tetraspanins, 
annexins, integrins and receptors of the major histocompat-
ibility complex (MHC) [18, 26, 55]. They are distinct from 
other small extracellular vesicles and apoptotic bodies as 
they are smaller and carry different contents; which can be 
both anti and pro-inflammatory, depending on their stimulus 
[22].

It is necessary to define which contents may be most 
implicated in the inflammation of I/R and other conditions 
(Table.3). Exosomes carrying microRNA-21 (miR-21) 
have been identified in two recent RIC studies [35, 110] 
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as limiting apoptosis and infarct size, respectively. In a 
rodent model of endotoxemia induced by LPS, mice under-
going RIC prior to caecal puncture were found to secrete 
organ-protective exosomes carrying miR-21, which medi-
ated HIF-1α and led to cytokine attenuation (reduced lev-
els of IL-6 and TNF-α) [110]. In addition to apoptosis and 
cytokine release, it has been demonstrated that endothelial-
derived exosomes can mediate angiogenesis (via VEGF 
and eNOS) in response to RIC [16], and, therefore, pro-
mote cytokines and endothelial growth factors. Again, this 
illustrates their breadth of function, in different pathological 
conditions.

Regarding the anti-inflammatory actions of exosomes, 
(reductions in apoptosis and cytokine release), many of these 
benefits were negated in a study of diabetic rats vs normo-
glycaemic animals [144]. This suggests that animals with 
underlining co-morbidities and endothelial dysfunction, are 
unable to generate effective vesicles. However, when receiv-
ing exosomes from non-diabetic rats they can be rescued 
and protection is conferred [25, 144]. The authors of the 
latter study, make the important observation, that although 
RIC appears to generate cardioprotective exosomes in vivo, 
similar benefits can also be derived from the exosomes of 
control animals in absence of pre-conditioning [144]. This is 
re-enforced by a recent clinical study of patients undergoing 
RIC prior to treatment for STEMI, where no significant dif-
ferences were found in the release of platelet-derived extra-
cellular vesicles or other leucocyte derived vesicles in the 
intervention group [45].

The study did, however, suggest that whilst there was 
no increase in cardioprotective vesicles, there was also no 
increase in pro-inflammatory EV’s. The trial was limited 
by an absence of inflammatory and traditional end points 
in cardioprotection, such as infarct size and CRP. It is 
also noted that larger extracellular vesicles, as opposed to 
exosomes, may also be more likely to carry pro-inflamma-
tory chemokines [22].

Does RIC reduce inflammation? Summary

There was never a more appropriate time in this COVID-19 
era, to consider therapies which can treat the over-activity 
of the innate immune response and hyper-inflammation 
[112, 127]. Considering the above evidence, it is clear that 
RIC has anti-inflammatory benefits in vivo, across a wide 
range of different pathologies, at least in animal models. 
Perhaps the strongest evidence relates to the effects of RIC 
on pro-inflammatory cytokine release in endotoxaemia [68, 
74, 110]; however, this has also been observed in models 
of myocardial and cerebral infarction (Table.1). In animals, 
it is proposed that RIC mediates inflammation by cytokine 

inhibition, regulation of anti-apoptotic pathways and possi-
bly the reduction of NLRP3 inflammasome production and 
pyroptosis.

Most evidence from animal studies demonstrates that 
RIC is able to inhibit NF-κB related cytokine release, either 
by TLR4 receptor pathways, or other currently undefined 
mechanisms [134]. Further work is required to establish 
whether there is a clear link between RIC and other known 
mechanisms of cytokine release in inflammation, such as the 
RAGE pathway. It is recognised that, as a result of the nature 
of the NF-κB pathway, cell survival and cytokine release are 
closely related [99, 134] and, therefore, it can be difficult to 
establish if reduced cytokine concentrations are secondary 
to reduced cell death. Nevertheless, cytokine inhibition in 
cardioprotection remains a desirable goal, with prognostic 
value [4, 120].

Previous literature has discussed that an increase in the 
levels of HIF-1α in response to ischaemia, can stimulate 
affected tissue to maintain metabolic function upon further 
hypoxic insult [19]. As RIC has been shown to upregulate 
HIF-1α, it might, therefore, be suggested that this could 
induce hypoxic tolerance of both vascular endothelium and 
target tissue. Both HIF-1α and SDF-1 limit apoptosis follow-
ing RIC [27, 63]. Shear stress and mechanical stimulation of 
the trigger vessel, induce flow-mediated dilatation (via NO/
adenosine/COX), and stimulate the release of exosomes car-
rying chemo-active compounds to target tissue [38, 85, 95]. 
Exosomes can also carry pro-inflammatory compounds and 
chemokines in addition to cardioprotective substances, and 
are, therefore, ‘a double-edged sword’ in inflammation [45, 
55]. Despite this, the aforementioned studies investigating 
RIC and exosome release have reported protective effects 
(Table.3).

Although there is some evidence that RIC can modulate 
immune cell response in animal studies (e.g. neutrophil/
lymphocyte ratio) the authors concede that there is a lack 
of consistent clinical data. The role of immune cells in car-
dioprotection is an emerging and novel field on which to 
base further work, and the effects of RIC should continue 
to be investigated. Other potential immune targets such as 
fibroblasts, pericytes and mast cells have also been identified 
for further study [5]. Consistent with other aspects of RIC, 
it would be misleading to suggest that the anti-inflammatory 
effects have proven profound in humans, although there is 
a lack of large-scale focused RCT’s in patients with hyper-
inflammation. Moreover, a select few studies have offered 
some hope that under the right circumstances, clinical trans-
lation could be achieved [53, 140]. A further step in address-
ing this might be to consider whether we have measured 
inflammatory outcomes in the correct clinical setting to date.



Basic Research in Cardiology (2021) 116:12 

1 3

Page 13 of 20 12

Ta
bl

e 
3 

 E
xo

so
m

es
 re

le
as

ed
 in

 re
sp

on
se

 to
 R

IC
 in

 re
ce

nt
 h

um
an

/a
ni

m
al

 st
ud

ie
s

ST
EM

I 
ST

-e
le

va
tio

n 
m

yo
ca

rd
ia

l 
in

fa
rc

tio
n,

 P
C

I 
pe

rc
ut

an
eo

us
 c

or
on

ar
y 

in
te

rv
en

tio
n,

 E
V 

ex
tra

ce
llu

la
r 

ve
si

cl
es

, L
PS

 l
ip

op
ol

ys
ac

ch
ar

id
e,

 d
M

CA
O

 d
ist

al
 m

id
dl

e 
ce

re
br

al
 a

rte
ry

 o
cc

lu
si

on
, 

I/
Ri

sc
ha

em
ia

/re
pe

rf
us

io
n,

 L
AD

 le
ft 

an
te

rio
r d

es
ce

nd
in

g,
 H

/R
 h

yp
ox

ia
/re

ox
yg

en
at

io
n,

 H
IF

-1
α 

hy
po

xi
a 

in
du

ci
bl

e 
fa

ct
or

 1
 a

lp
ha

, H
SP

70
 h

ea
t s

ho
ck

 p
ro

te
in

 7
0,

 e
N

O
S 

en
do

th
el

ia
l n

itr
ic

 o
xi

de
 s

yn
-

th
as

e,
 V

EG
F 

va
sc

ul
ar

 e
nd

ot
he

lia
l g

ro
w

th
 fa

ct
or

, A
N

G
-1

 a
ng

io
po

ie
tin

 1
, L

VE
F 

le
ft 

ve
nt

ric
ul

ar
 e

je
ct

io
n 

fr
ac

tio
n,

 C
AB

G
 c

or
on

ar
y 

ar
te

ry
 b

yp
as

s g
ra

ft,
 IH

D
 is

ch
ae

m
ic

 h
ea

rt 
di

se
as

e

A
ut

ho
rs

Tr
ea

tm
en

t g
ro

up
Ex

os
om

e 
co

nt
en

t/p
at

hw
ay

s
In

fla
m

m
at

or
y/

th
er

ap
eu

tic
 a

ct
io

n

H
al

le
r e

t a
l. 

(R
C

T)
 [4

5]
N

 =
 32

 p
at

ie
nt

s w
ith

 S
TE

M
I u

nd
er

go
in

g 
fo

re
ar

m
 R

IC
 

pr
io

r t
o 

PC
I v

s c
on

tro
ls

 P
C

I a
lo

ne
Pl

at
el

et
-d

er
iv

ed
 E

V
’s

 (C
al

ce
in

/A
M

+
/C

D
41

+
)

En
do

th
el

ia
l-d

er
iv

ed
 E

V
’s

Le
uc

oc
yt

e 
de

riv
ed

 E
V

’s
 (C

D
14

, C
D

66
b)

Pr
o-

th
ro

m
bo

tic
—

no
 d

iff
er

en
ce

s o
bs

er
ve

d 
be

tw
ee

n 
R

IC
 v

s 
co

nt
ro

ls
? 

Pr
o/

an
ti-

 in
fla

m
m

at
or

y 
– 

m
on

oc
yt

e 
de

riv
ed

 m
ic

ro
-

pa
rti

cl
es

 e
le

va
te

d 
in

 R
IC

 g
ro

up
 a

t 1
-m

on
th

 p
os

t S
TE

M
I, 

ot
he

rw
is

e 
no

 d
iff

er
en

ce
s o

bs
er

ve
d

C
ui

 e
t a

l. 
[2

0]
SH

-S
Y

5Y
 n

eu
ro

na
l c

el
ls

 in
cu

ba
te

d 
w

ith
 v

en
ou

s s
er

um
 o

f 
he

al
th

y 
m

al
e 

vo
lu

nt
ee

rs
 fo

llo
w

in
g 

fo
re

ar
m

 R
IC

m
i-R

N
A

-1
26

In
cr

ea
se

d 
to

le
ra

nc
e 

to
 o

xy
ge

n/
gl

uc
os

e 
de

pr
iv

at
io

n 
vi

a 
do

w
nr

eg
ul

at
io

n 
of

 D
N

M
T3

B
C

he
n 

et
 a

l. 
[1

6]
R

at
s u

nd
er

go
in

g 
bi

la
te

ra
l h

in
d 

lim
b 

R
IC

 p
rio

r t
o 

LA
D

 
oc

cl
us

io
n 

do
na

te
d 

pl
as

m
a 

to
 re

ci
pi

en
t a

ni
m

al
s i

n 
a 

m
od

el
 o

f m
yo

ca
rd

ia
l i

nf
ar

ct
io

n,
 a

nd
 to

 C
M

V
EC

s i
n 

an
 

in
 v

itr
o 

H
/R

 m
od

el

H
SP

70
/H

IF
-1

α/
eN

O
S/

iN
O

S/
A

N
G

-1
/V

EG
F

Im
pr

ov
em

en
t i

n 
LV

EF
 in

 v
iv

o
In

cr
ea

se
 in

 a
ng

io
ge

ne
si

s a
nd

 re
du

ct
io

n 
in

 a
po

pt
os

is
 in

 v
itr

o

Li
 e

t a
l. 

[9
1]

M
ic

e 
un

de
rg

oi
ng

 b
ila

te
ra

l h
in

d 
lim

b 
R

IC
 d

on
at

ed
 p

la
sm

a 
ex

os
om

es
 to

 re
ci

pi
en

t m
ic

e 
pr

e-
 d

M
CA

O
H

IF
-1

α
Re

du
ct

io
n 

in
 c

er
eb

ra
l i

nf
ar

ct
 si

ze

Pa
n 

et
 a

l. 
[1

10
]

M
ic

e 
un

de
rg

oi
ng

 R
IC

 b
y 

bi
la

te
ra

l f
em

or
al

 a
rte

ry
 c

la
m

p-
in

g 
24

 h
 p

rio
r t

o 
ca

ec
al

 p
un

ct
ur

e,
 d

on
at

ed
 p

la
sm

a 
to

 
re

ci
pi

en
t m

ic
e 

w
ith

 L
PS

 c
ha

lle
ng

e

m
i-R

21
/H

IF
-1

α
Im

pr
ov

em
en

t i
n 

su
rv

iv
al

Re
du

ce
d 

pl
as

m
a 

cr
ea

tin
in

e 
le

ve
ls

Re
du

ce
d 

se
ru

m
 IL

-6
, T

N
F-

α 
w

hi
ch

 w
as

 a
br

og
at

ed
 in

 
m

i-R
21

 k
no

ck
-o

ut
 m

ic
e

M
in

gh
ua

 e
t a

l. 
[1

03
]

R
at

s u
nd

er
go

in
g 

bi
la

te
ra

l h
in

d 
lim

b 
R

IC
 p

rio
r t

o 
LA

D
 

oc
cl

us
io

n,
 d

on
at

ed
 p

la
sm

a 
to

 H
9c

2 
ce

lls
 in

 v
itr

o 
an

d 
to

 
re

ci
pi

en
t a

ni
m

al
s i

n 
vi

vo

m
i-R

24
/B

im
Re

du
ce

d 
ap

op
to

si
s a

nd
 c

as
pa

se
-3

 in
 v

itr
o

Re
du

ce
d 

in
fa

rc
t s

iz
e 

in
 v

iv
o

Fr
ey

 e
t a

l. 
(R

C
T)

 [3
5]

n =
 58

 p
at

ie
nt

s w
ith

 IH
D

 u
nd

er
w

en
t l

ef
t a

rm
 R

IC
 p

rio
r t

o 
an

d 
du

rin
g 

is
ofl

ur
an

e/
su

fe
nt

an
il 

an
ae

st
he

si
a 

fo
r C

A
B

G
, 

ex
os

om
es

 w
er

e 
sa

m
pl

ed
 a

nd
 a

na
ly

se
d 

at
 u

p 
to

 1
 h

r p
os

t 
in

du
ct

io
n

m
i-R

21
, m

i-R
28

, m
i-R

32
0,

 m
i-R

92
a

Re
du

ct
io

n 
in

 p
os

t-o
pe

ra
tiv

e 
tro

po
ni

n;
 h

ow
ev

er
, n

ot
 k

no
w

n 
w

he
th

er
 re

la
te

d 
di

re
ct

ly
 to

 m
i-R

21

W
id

er
 e

t a
l. 

[1
44

]
B

ot
h 

no
rm

og
ly

ce
m

ic
 a

nd
 d

ia
be

tic
 ra

ts
 u

nd
er

w
en

t b
ila

te
ra

l 
lim

b 
R

IC
 p

rio
r t

o 
LA

D
 o

cc
lu

si
on

 a
nd

 re
pe

rf
us

io
n.

 
Pl

as
m

a 
w

as
 d

on
at

ed
 a

nd
 in

cu
ba

te
d 

w
ith

 H
L-

1 
ca

rd
io

-
m

yo
cy

te
s e

xp
os

ed
 to

 H
/R

? 
A

po
 li

po
pr

ot
ei

n 
B

-1
00

; C
4 

co
m

pl
em

en
t 

(m
ul

tip
le

 p
ro

te
in

s i
de

nt
ifi

ed
)

Re
du

ce
d 

ap
op

to
si

s i
n 

vi
tro

Th
e 

ab
ov

e 
at

te
nu

at
ed

 in
 d

ia
be

tic
 ra

ts



 Basic Research in Cardiology (2021) 116:12

1 3

12 Page 14 of 20

Future considerations: towards a higher risk 
patient cohort

Reflecting on clinical challenges to date, it is suggested 
that the impact of both baseline and peak inflammation in 
clinical trials of RIC has been underestimated. For example, 
individuals with chronic inflammatory disease and persistent 
low levels of inflammation at baseline, may already be resist-
ant to remote conditioning [39]. The exact reasons for this 
remain elusive, but may be related to persistent endothelial 
activation, chronic cytokine release and defective exosome/
humoral factor production, (as observed in diabetic animals) 
[25, 144]. With respect to the STEMI patients of CONDI-2/
ERIC-PPCI, it is possible that the outcomes do not repre-
sent a failure of RIC to show significant benefit, but instead 
a success of modern primary percutaneous cardiovascular 
intervention (PPCI) in this cohort [11, 49]. I.e. it is not clear 
whether the ‘inflammatory peak’ following successful PCI, 
was significant enough to demonstrate an improvement in 
the primary outcome measures of the trial (cardiac death/ 
hospitalisation at 12 months) [48].

As proposed by several authors [11, 49, 65], higher risk 
patients with amplified inflammatory response to STEMI, 
might be proposed as the appropriate target for RIC e.g. 
those with large anterior infarcts who are late presenting, 
patients in cardiogenic shock, out of hospital cardiac arrest, 
those who develop angiographic no reflow of a large culprit 
vessel and those who are only able to receive thromboly-
sis and not primary PCI [49, 81]. Global inflammation is 
observed in patients with endotoxaemia and viral infec-
tion—these patients may also be favourable candidates for 
RIC [43]. Moreover, remote conditioning in combination 
with pharmacotherapy may be of benefit in preventing the 
development of a cytokine storm.

Given the challenges in clinical translation [65], RIC 
should be trialled as an adjunctive therapy in combina-
tion with gold-standard treatments in the above ‘high-risk’ 
cohort. It has been demonstrated above, that RIC can act 
synergistically to reduce inflammation when combined with 
pharmacotherapy and activation of neuronal pathways [24, 
33, 141].

The difficulty in predicting the timing of a major inflam-
matory insult remains a significant dilemma for human inter-
ventional studies. However, given the reproducibility and 
extent of the survival benefits observed in animal models; 
the anti-inflammatory effects of RIC warrant further clini-
cal pursuit.
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