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Abstract

The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional
outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory
effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19
pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel thera-
pies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune
system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine
inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release
via a reduction in nuclear factor kappa beta (NF-kB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates
pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group,
cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits
of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective

surgery are the most suitable clinical conditions in which to test this hypothesis.
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Background: challenges and new directions
in RIC

Bringing the promise of remote ischaemic conditioning
(RIC) to fruition in the clinical arena, remains a major chal-
lenge [23, 58]. RIC involves the sequential occlusion and
reperfusion, of an arterial vessel distant to the target organ.
It has demonstrated multi-organ benefit and cross-species
cardiovascular protection in studies of ischaemia [13], and
is highly effective in preventing damage in animal models
of myocardial infarction [63]. However, large-scale trials in
humans with ST-elevation myocardial infarction (STEMI)
have proved inconclusive, with respect to traditional out-
come measures of myocardial infarct size, heart failure and
survival [36, 48, 58]. RIC confers cardioprotection via a
combination of humoral and neuronal pathways. These link
the protective, “conditioning” response to ischaemia induced
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in the remote vascular bed, to the target tissue at risk of
severe ischaemia and reperfusion (I/R) injury [7, 80]. Whilst
many potential humoral factors have been proposed such as
nitric oxide (NO) and nitrite, adenosine, stromal-derived fac-
tor la (SDF-1a) and glucagon-like peptide-1 (GLP-1); the
underlying immunological pathways remain poorly defined
[8,27, 58, 80, 118].

The effectiveness of RIC in preventing myocardial I/R
injury in humans has been assessed in numerous studies,
most notably the CONDI-2/ERIC-PPCI trial, an interna-
tional, prospective, single-blind, randomised controlled
outcome trial in 5,401 patients with ST-elevation myocar-
dial infarction (STEMI) undergoing primary percutaneous
coronary intervention (PPCI), in which no improvement
in clinical outcomes (cardiac death or hospitalisation for
heart failure) were seen after 12 months [48]. Importantly,
however, no harmful effects were seen. Many theories have
sought to explain why the success of RIC in animal models
has not been directly translatable to humans [58, 64]. One
important observation, highlighted in two recent articles,
is that the population studied in the CONDI-2/ERIC-PPCI
trial may not have been significantly ‘high-risk’ enough, to

@ Springer


http://orcid.org/0000-0001-7791-9320
http://crossmark.crossref.org/dialog/?doi=10.1007/s00395-021-00852-0&domain=pdf

12 Page2of20

Basic Research in Cardiology (2021) 116:12

demonstrate an improvement in the primary outcome meas-
ures of infarct size and survival [11, 49, 65]. It is likely,
however, that a plethora of factors make the human model of
cardioprotection more complex than the animal population,
who are often devoid of chronic endothelial dysfunction and
medical co-morbidities [57, 65]. Moreover, the timing and
size of an experimentally induced infarct in animals can be
carefully predicted and is reproducible. The key to transla-
tion may lie in better understanding of the underlying mech-
anisms, and how these can be applied to human physiology
in individual conditions.

We have embarked upon a new era of inflammation in
cardioprotection. With the arrival of novel diseases such
as COVID-19, and its associated cardiovascular complica-
tions, there is a need to re-fashion current cardioprotective
strategies. Moreover, the pandemic has identified the need
to further investigate the effects of infection on the heart in
addition to ischaemia. Whilst many reviews have considered
RIC as an infarct limiting intervention, the effects on the
innate immune system are less well documented. We present
this review of the anti-inflammatory effects of RIC, and the
implications for future organ-protective therapies (Fig. 1).

The inflammatory hypothesis of organ
protection

The ‘Inflammatory Hypothesis’ is a term used to define the
role of the innate immune system in I/R injury. Following
reperfusion in myocardial infarction, acute inflammation
contributes to endothelial dysfunction, the development of
cardiac failure and poor left ventricular remodelling [99,
109, 157]. Such damage persists well after the initial ischae-
mic insult has ended, and the infarct related territory has
been reperfused [148]. Upon reperfusion, resident immune
cells detect the presence of danger-associated molecular pro-
teins (DAMPs) and necrotic tissue in the area of infarction
[157]. DAMPS combine with other ‘alarmin’ molecules,
such as high mobility group box one protein (HMGB1),
extracellular DNA and histones, to trigger the secretion of
pro-inflammatory cytokines via the cell-mediated nuclear
factor kappa beta (NF-xB) pathway (Fig. 2) [128, 157]. Mac-
rophages, which engage with DAMPs via toll-like receptors
(e.g. TLR4), are also responsible for the synthesis of pro-
inflammatory molecules including cytokines and the NLRP3
inflammasome (Fig. 2).

Following myocardial ischaemia, four varieties of pro-
grammed cell death are observed, including apoptosis,
necrosis, necroptosis and pyroptosis [21, 61]. Apoptosis
is triggered by death receptors (DR) and intracellular sig-
nals, and does not induce the release of cellular contents
beyond the confines of the cell. It is largely mediated via
caspase-8, 9 and Bc12. Both necroptosis and pyroptosis,
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enhance inflammation by facilitating the release of interleu-
kins such as IL-1p and IL-18. [61, 135]. Pyroptosis is a type
of programmed cell death (PMD) which is closely related
to activity of the NLRP3 inflammasome and NF-«kf. Here,
activated caspase-1 facilitates the release of interleukins via
the Gasdermin (GSDMD) membrane pore. Not only does
inflammasome activation contribute to cytokine release and
extent of inflammation, but also to infarct size, following
myocardial ischaemia [29, 135]. The latter is, therefore, an
attractive target for cardioprotection [1]. Whilst there are
clear associations between RIC and anti-apoptotic path-
ways [122], it remains unclear whether remote condition-
ing can directly limit pyroptosis (and at which step). There
is, however, evidence for bi-directional cross-talk between
caspase-1 and caspase-8 (anti-apoptotic) suggesting that
inhibition of apoptosis might also influence other forms of
cell death [29].

The microvasculature has a central role in mediating
inflammation during I/R, and endothelial cells are notori-
ously more resistant to hypoxia than other cell types [109,
137]. They are, however, sensitive to the presence of reactive
oxygen species (ROS) and the changes in NO metabolism
that accompany an ischaemic challenge [4, 47, 125]. The
coronary endothelial system has an important role in detect-
ing mechanical and flow-mediated changes post-infarct, in
addition to mediating the vascular immune response. In the
case of myocardial infarction, within the coronary arteries,
exposed atherothrombotic plaque causes cells of the innate
immune system to migrate to the inflamed vessel, prompting
further cytokine release. Increased neutrophil recruitment to
the area of vascular inflammation is mediated by cytokines,
the complement cascade (including IL-8; C5) and directly
via ROS [109, 125]. Polymorphonuclear neutrophils (PMN5)
are attracted to the endothelium via selectins and proceed to
adhere and transmigrate into the microvasculature by bind-
ing to integrins and ICAM adhesion molecules [115].

As the inflammatory hypothesis has evolved, immune-
modulating therapies have been extensively investigated in
both myocardial and cerebral infarction, and have finally
met with some recent success. The CANTOS trial dem-
onstrated that the IL-7f blocker, Canakinumab, was able
to reduce the risk of future coronary and cerebral athero-
sclerotic events [120]. This benefit was, however, associ-
ated with a mild increase in fatal infection, which should
not be disregarded. Nevertheless, the CANTOS trial was
important in measuring outcomes of inflammation in car-
diac protection, and included measurements of cytokines
involved in IL-6 signalling and C-reactive protein (CRP)
[120]. Both biomarkers were deemed to be prognostic,
with respect to the primary end-point of non-fatal ath-
erosclerotic events. This might suggest that cytokines are
valuable biomarkers in predicting future adverse events
in patients with myocardial infarction [120]. As further
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Fig.1 RIC mediates inflamma-
tion in vivo by immune condi-
tioning and cytokine inhibition,
anti-apoptotic pathways and the
reduction of NLRP3 inflammas-
omes, (pyroptosis). Decreased
oxygen tension adjusts cell
metabolism and limits apop-
tosis. Shear stress induces
flow-mediated dilatation, which
enables the transfer of exosomes
carrying anti-inflammatory,
chemo-active compounds.
RISK reperfusion injury salvage
kinase, ERK extracellular signal
related kinase, SAFE survivor
activating factor enhancement,
MTP mitochondrial transition
pore, HIF-1a hypoxia inducible
factor 1 alpha, NFkf nuclear
factor kappa beta

Flow Mediating
Vasodilation — increased
blood flow enables
transfer of humoral
factors

justification to pursue cytokine inhibition in I/R, two
recent clinical studies of STEMI patients have demon-
strated that IL-6 and IL-8 are associated with worsening
clinical outcome [42, 129].

In the VCUARTS3 trial, the recombinant interleukin-1
receptor antagonist, Anakinra reduced CRP levels at 14-days
post STEMI, and significantly reduced mortality and re-
hospitalisation. Unlike CANTOS, there was no increase in
severe infection reported following administration [2]. Simi-
larly, IL-1 inhibition was well tolerated when administered
subcutaneously to patients with acute cerebral infarction,
in the SCIL-STROKE trial. In this study, Anakinra signifi-
cantly lowered levels of IL-6 and plasma CRP (p <0.001)
[132], suggesting that it is a key mediator of the inflamma-
tory response in cerebral ischaemia [72]. Although experi-
mental results are promising in both myocardial and cerebral
infarction, immune modulation is not currently used as rou-
tine in STEMI patients. Inhibition of individual cytokines
must be carefully risk stratified, due to the close association
between innate immune suppression and the development of
humoral immunity [126].

Cytokines in myocardial infarction
and infection

The pro-inflammatory cytokines released in response
to myocardial infarction include IL-1a, IL-1f, IL-6,
TNFa, IL-8, IL-18 and small chemokine molecules
such as monocyte chemoattractant protein 1 (MCP-1).
These cytokines are released by a mixture of damaged

Immune Conditioning
Cytokine inhibition
Reduced NF-kB

inflammatory signalling | 7}

Hypoxia Tolerance
Tissue hypoxia

Increased HIF-1a
Metabolic shift
Hypoxic conditioning

Pro-survival
Activation of
RISK/ERK/SAFE
Closure MTP
Reduced NLRP3
infllammasome activity

cardiomyocytes, macrophages and activated endothelium
[109, 115]. The primary aim of cytokine release is to
activate and attract immune cells to the area of inflam-
mation, to enable the removal of damaged products via
phagocytosis [5]. In the infarcted heart, cytokine release
is triggered by TLR4 signalling pathways, the activation
of NF-«kB in circulating macrophages and by reactive oxy-
gen species (ROS), which interact with IL-6. The result-
ant release of IL-1p further stimulates additional pro-
inflammatory molecules [17, 107]. Cytokine ‘cross-talk’
exists between immune cells and the activated endothe-
lium, which maintains the amplitude of the acute inflam-
matory response [133].

There are two distinct phases of inflammation follow-
ing myocardial infarction: an initial, pro-inflammatory
phase in which damaged cells and debris are eliminated,
and a second, anti-inflammatory reparative phase leading
to wound healing and scar formation. Cytokines also have
a key role in tissue repair. IL-6, (in a second window of
cytokine release), IL-10, transforming growth factor beta
(TGF-pB) and a sub-population of T-lymphocytes known
as ‘T Regulatory cells’ (Treg) have all been associated
with supressing the pro-inflammatory response and steer-
ing the immune system towards repair and resolution fol-
lowing I/R [99, 107]. Macrophages expressing altered
interleukin signals (such as IRAK-M) are able to down-
regulate other macrophages, contributing towards anti-
inflammatory ‘stop’ signals [107, 155]. For suitable heal-
ing to take place, the amplitude of the initial macrophage
activation syndrome must not outweigh that of regulatory
immune cells. In myocardial infarction, cytokine release
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predominantly occurs on the border of the infarct zone,
but can also be present in non-ischaemic tissue [17].

The cardiovascular system is vulnerable to inflamma-
tory insult induced by infection and cytokine damage,
including viral myocarditis, septic cardiomyopathy and
recently the acute cardiovascular syndrome of COVID-
19 [40, 68, 86]. The latter encompasses thrombotic acute
coronary syndromes, myocarditis and pulmonary emboli,
amongst other complications of pre-existing cardiac dis-
ease [40]. The cytokine response to infection is similar in
the acute phase to myocardial infarction, and is triggered
by DAMPS and danger signals following pathogenic inva-
sion (stimulating IL-6, TNFa and IL-1p). In some indi-
viduals, following exposure to endotoxins or viral anti-
gens, the innate immune system becomes hyper-active
and a ‘cytokine storm’ develops. Here, further cytokines
are secreted (IL-17, IL-8, G-CSF, MCP-1, CCL1-3, IFN-
y) and re-circulated via the dysfunctional endothelium.
The following present an in-depth review of cytokine
response during infection [84, 112, 153]. This has been a
topic of much importance in COVID-19 and culminates
in pan-vascular and multi-organ damage [102].

Given that multiple pathologies affect the heart in this
pandemic era, it is important to consider protective strate-
gies which will target the inflammation of both I/R and
pathogenic invasion. Below we will consider the evidence
for RIC as a cytokine mediator in both animal and human
studies.

Animal studies of RIC and inflammation

Table.1 demonstrates the animal studies of RIC and cytokine
release, performed within the last 5 years, following myocar-
dial infarction and reperfusion [9, 15, 33, 114, 136, 141, 152]
Across several studies, RIC was associated with reduced
levels of the pro-inflammatory cytokines, IL-1f, TNF-a and
HMGBI following reperfusion [114, 152]. Likewise, RIC
applied 24h prior to myocardial I/R, appeared to increase
levels of the protective cytokine IL-10 [15], which governs
the amplitude of the cytokine response [34, 127]. In vivo,
this increase in IL-10 was STATS mediated [15]. STATS is
linked to the survivor activating factor enhancement pathway
(SAFE) and operates downstream of JAK (Janus Kinase) in
human myocardial injury [66]. Similarly, previous litera-
ture has discussed the protective effects of IL-10, limiting
I/R injury via STAT3 [44, 79, 100]. In another study, RIC
was associated with an increase in IL-6 (which the authors
propose has reparative function within the infarcted myocar-
dium) via early growth response protein 1 (EGR-1), a mol-
ecule upstream of many apoptotic pathways [9]. In animal
models of myocardial infarction, RIC combined with other
therapies such as sevoflurane post-conditioning (anaesthesia
following ischaemia and prior to onset of reperfusion) vagal
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nerve stimulation or atorvastatin (HMG-CoA reductase
inhibitor), provided additive organ protection and reduced
inflammation [33, 141, 152].

RIC has proven effective at attenuating pro-inflamma-
tory cytokine release in animal models of cerebral infarc-
tion, renal, pulmonary and hepatic reperfusion injury [31,
70, 83, 145, 156]. In a population of aged rats undergoing
middle cerebral artery occlusion (mCAO), RIC significantly
reduced levels of IL-1, IL-6 and IFN-y in both plasma
and the brain, whilst reducing the expression of hypoxia
inducible factor (HIF-1a). Although HIF-1a is linked to
cardioprotection by stimulating pro-survival pathways, it
can equally induce a shift towards anaerobic glycolysis in
macrophages resulting in increased cytokine manufacture
[19]. It is previously discussed that the role of HIF-1a in
cardioprotection is not fully understood, although deficiency
in mice appears to dampen a reduction in infarct size [59].
In a murine model of hepatic I/R injury, RIC significantly
reduced levels of intrinsic liver enzymes, IL-6 and TNF-a
[150]. Furthermore, this anti-inflammatory effect was medi-
ated by the HMGB 1/TLR4/NF-«kB pathway, an established
mechanism of cytokine release [150]. Pro-inflammatory
pathways involving NF-xB, including notch signalling [67,
121] will be considered in greater detail below.

RIC reduces inflammatory cytokine levels and improves
survival in rodent models of lipopolysaccharide (LPS)
induced endotoxaemia [68, 74, 76]. In mice receiving three
cycles of hind limb I/R (10 min ischaemia/10 min reperfu-
sion) prior to LPS exposure, there was a significant survival
benefit from RIC (10% of the control group survived vs 60%
of the intervention group; p < 0.001). In the same study, his-
tology revealed a reduction in the diffuse parenchymal pul-
monary inflammation associated with LPS-induced acute
lung injury, and a reduction of cytokines in bronchoalveolar
fluid (TNF-a, IL-1p and IL-6). It was further demonstrated
that RIC mediates cytokine reduction via a downregulation
of NF-xB and myeloperoxidase (MPO) pathways [76]. MPO
is associated with increased neutrophil influx to areas of
inflammation and, therefore, promotes the release of pro-
inflammatory cytokines from neutrophils, which are sentinel
cells in the inflammatory response [78].

LPS induces a potent inflammatory state, and causes
cytokines and alarmins (e.g. HMGB1, HSP70, histones)
to be released in response to infection. Bacterial DAMPs/
LPS trigger NF-kB activity via TLR4, which potentiates
further inflammasome and cytokine release (Fig. 2) [77]. In
septic cardiomyopathy, the myocardial depressant cytokine
HMBGT1 is central to the stimulation of inflammation and
upregulates the coagulation cascade [68, 94]. There is also
evidence to suggest that the cytokines IL-1, TNF-a, and IL-6
play a pivotal inflammatory role in endotoxaemia, and this
has also been observed in COVID-19 hyper-inflammation
[113]. IL-6 in particular, can target the vasculature to induce
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vasodilatation and disruption of endothelial tight junctions,
which results in capillary leak and circulatory collapse [138].
In view of the above, RIC may be a novel treatment modality
with cytokine-modulating potential, without the associated
side effects of immune-modulating pharmacotherapy.

Human studies of RIC and cytokine response

Contrary to the findings in animal models, the majority of
recent randomised control clinical trials have been unable
to demonstrate a clear effect of RIC on pro-inflammatory
cytokine release (Table.2) [37, 39, 105, 106, 108, 149,
158]. However, to date, cytokines have predominantly been
measured in small studies only (Iess than 100 participants).
Despite this, the largest two trials (n =65, n=90 partici-
pants) demonstrated cytokine attenuation in the treatment
group undergoing RIC prior to off-pump CABG and colo-
rectal surgery, respectively [53, 140]. In the latter study, lev-
els of IL-1p and TNF-a were significantly reduced for up to
3 days post-operatively (p <0.01) in patients receiving RIC,
compared with controls. Surgery was performed for a range
of pathologies, including colorectal neoplasm [53]. Consid-
ering that RIC has conferred a profound survival benefit in

TLR4
DAMPS: HMGB1,

TNF-a, LPS |

o MyDS8
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) TAK1
0" NLRP3
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IL-6, IL-1B, TNF-gt, IL-18

Fig.2 Cytokine release in inflammation is mediated by DAMPS
binding to TLR4/RAGE receptors on the cell membrane. Both path-
ways activate NF-kB and NLRP3 inflammasome production, result-
ing in secretion of pro-inflammatory cytokines [75, 150]. RAGE
results in further production of HMGB1 [151]. NLRP3 inflamma-
some activation results in caspase mediated cell death [119]. Several
studies haves demonstrated that RIC modulates NF-xB activity via
in both ischaemia and endotoxaemia [74, 76, 92, 117, 130]. TLR4

animal models of intra-abdominal injury, it could be sug-
gested that the inflammatory benefits in humans might differ
between clinical conditions [110].

Humoral pathways of inflammation and cell
survival

RISK, SAFE and HIF-1a

Many studies have demonstrated, that RIC reduces cardio
myocyte cell death in I/R and other pathologies [31, 63,
69, 73, 154]. The reperfusion injury salvage kinase (RISK)
and survivor activating factor enhancement (SAFE) path-
ways, are fundamental in protecting the heart from I/R injury
[44, 122]. The RISK pathway acts to prevent opening of
the mitochondrial permeability transition pore (MTP), when
activated before reperfusion [50]. There is a clear role for
RIC and protein kinase C (PKC), which has cardioprotective
actions in both ischaemia and reperfusion [63]. PKC regu-
lates the opening of the MTP by mediating K, depend-
ent channels and controlling calcium influx [51]. The RISK
pathway is also activated by adenosine, bradykinin, and

RAGE

«— HMGB1
YT > =
\“.:';:"‘I‘ ",

, / " A {
ERK 1/2/MAPK @ ¥

EGR-1

NF- kP » HMGB1 .

Toll-like receptor 4, DAMPS damage associated molecular patterns,
HMGBI high mobility group box 1, TNF-a tumour necrosis factor
alpha, LPS lipopolysaccharide, RAGE Receptor for advanced glyca-
tion end-products, ERK extracellular signal related kinase, MAPK
mitogen activated protein kinase, EGR-1 early growth response 1,
TAK]I transforming factor-p-activated kinase 1, /kf inhibitor kappa
beta kinase, NF-«f nuclear factor kappa beta
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sphingosine which bind to receptors on the cell membrane
[122]. This leads to upregulation of endothelial nitric oxide
synthase (eNOS) and nitric oxide (NO) which induces vas-
cular vasodilatation in the heart and vasculature. Cross-talk
exists between the RISK and SAFE pathways to augment
cell survival, and this has been demonstrated across different
species in studies of RIC and I/R [131].

The SAFE pathway (first described by Lecour in 2009) is
an alternative pro-survival axis to RISK. SAFE was found to
act on the MTP when ERK/MAPK (RISK) were inactivated
and thus its independent actions were demonstrated [44,
88]. SAFE describes the pathway initiated by the binding of
TNF- a to the plasma membrane and the subsequent activa-
tion of JAK/STAT transcription factors [60]. In experimental
studies of myocardial I/R, SAFE has upregulated STAT3,
(likely via the Sphingosine Kinase 1 enzyme) [44, 79]. In
human studies, RIC is associated with the upregulation of
myocardial STATS [66]. STAT is able to activate NF-kB
to influence the MTP and promote cell survival; however,
NF-«B is itself pro-inflammatory, and coupled to cytokine
secretion and pyroptosis/the NLRP3 inflammasome (Fig. 2).
This presents somewhat of a conundrum in the treatment
of inflammatory cardiac conditions. JAK/STAT can further
evoke ‘notch’ signalling between local monocytes, which
is directly linked to increased IL-6 manufacture and down-
regulation of the anti-inflammatory M2 macrophage/IL-10
[67, 121]. As the SAFE pathway can activate JAK/STAT and
NF-kB, it can also promote adverse cardiac remodelling and
heart failure [44]. With this in mind, other humoral factors/

RIC significantly reduced plasma
concentrations of IL-1p, TNF-« up to
3 days post-surgery (p <0.001)

Inflammatory findings

inflation to 200 mmHg (5/5 min)

Method of RIC

Patients 65-75 years undergoing RIC 3 cycles of UL ischaemia with cuff

prior to elective colorectal surgery vs

2 pathways must be triggered by RIC to account for a reduc-
P [ tion in pro-inflammatory cytokines.
i P The molecule hypoxia inducible factor (HIF-1a) has
g é been linked to pro-survival signalling in I/R [63]. During
A 8 periods of reduced oxygen tension, HIF-1a mediates a shift

in mitochondrial metabolism towards anaerobic glycolysis,
which induces production of pyruvate dehydrogenase kinase
1 (PDK1) and limits entry of acetyl-CoA into the TCA cycle.
This acts to preserve cellular energy and limit apoptosis [19,
90]. In differentiated macrophages, however, this metabolic
change results in increased synthesis of cytokines such as
IL-1P and IL-18 via the NF-xB pathway [19, 143]. This
is somewhat paradoxical, as increased levels of HIF-1a
have been associated with cardioprotection following RIC
[59, 147]. It is possible that repeated stimulation of HIF-
la causes uncoupling of cytokine synthesis and immune
tolerance; as is the case in other TLR4-dependent pathways
[6]. It is already established that persistently elevated lev-

Randomised, double-blind, control trial

Study design

S els of HIF-1a can induce hypoxia tolerance [89]. Again,
é HIF-1a alone cannot explain the interaction between RIC
g ) and cytokine levels observed in animal studies [114, 152].

g P Stromal-derived factor (SDF-10/CXCR4) has also been
% ::f % associated with HIF-1a and cardioprotection secondary
e | 2|2 to reduced apoptosis and upregulation of PI3K/ERK1/2
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(RISK). Exogenous SDF-1a protects human myocardium
from I/R injury [98] and is released from endothelial cells
during RIC [12, 27]. In a rodent model of spinal cord injury,
infused SDF-/a reduced levels of IL-1p, IL-18, TNF-a, and
NLRP3 inflammasome production, suggesting that it has
anti-inflammatory actions [150].

NF-kP and associated inflammatory pathways

NF-kf is an important molecule and transcription factor,
involved in all aspects of inflammation and tumour activ-
ity. In addition to stimulation of the NLRP3 inflammasome
and pyroptosis (discussed extensively above) it has many
anti-apoptotic actions, making upstream inhibition problem-
atic in inflammatory diseases [134, 146]. In response to this
observation, strategies such as IL-1 inhibition and caspase-1
inhibition have been proposed in the treatment of cardiac
inflammation [1]. NF-xf is coupled to other proteins such
as Ikp (inhibitor of kappa beta) which enable self-regulation.
Well-known anti-inflammatory drugs such as glucocor-
ticoids e.g. dexamethasone can interact with inhibitors of
NF-«p, to reduce cytokines and the inflammatory response
[146]. It is interesting then to note that RIC has also modi-
fied Ixpa proteins in a rodent model of acute lung injury,
leading to reduced activity of NF-kf} and reduced TNF-a,
IL-1p and IL-6 secretion [76].

Several other studies have proposed that RIC can suppress
the TLR4/NF-kB/inflammasome axis and reduce cytokine
secretion [74, 130]. Moreover, there are multiple pathways
that are linked to NF-kB which are mediated by TLR recep-
tors, and HMGBI1 [3, 121]. Activity of the JAK/STAT
pathway has been coupled to RIC-mediated cytokine modi-
fication as described [15, 124]. The receptor of advanced
glycosylation end-products receptor (RAGE) pathway is
associated with inflammasome production and HMGBI,
(Fig. 2). Activation of RAGE is pro-inflammatory, and this
can also downregulate RISK [124]. In mice undergoing RIC
following myocardial ischaemia (RICPost), a decrease in
infarct size was associated with a decrease in cardiac RAGE
expression and levels of HMGB1 [142]. This may indicate
that (as yet unidentified) humoral factors stimulated by RIC,
can inhibit RAGE. The evidence at present for this is limited
and further research is required.

To summarise, further humoral intermediaries may exist
to link the vascular phenomenon of RIC to the above inflam-
matory pathways, and the findings of pre-clinical studies
cannot be explained by RISK/SAFE alone. It seems most
feasible, that such circulating anti-inflammatory factors
might originate from the local trigger vessel; however, it is
also recognised that there is a role of regional and distant
vasculature [123]. Identifying these intermediate compounds
and their mechanisms, remains a priority; as targeting both

@ Springer

pro-survival and anti-inflammatory pathways in synergy
could result in maximum cardiac protection.

Micro and macrovascular humoral factors

Following myocardial I/R, an increased number of neutro-
phils in the resistance vessels contribute to local vasocon-
striction, microvascular obstruction and ‘no reflow’ [57].
Meanwhile, there is further immune cell influx (including
mast cells), platelet activation and upregulation of the clot-
ting cascade via tissue factor and Von Willebrand’s factor
[56, 101]. Cytokines induce disruption of endothelial tight
junctions and this culminates in leakage from capillaries into
the extracellular space and the concurrent presence of micro-
vessel haemorrhage and thrombi. Both no reflow and MVO
post STEMI are considered prognostic, and this relationship
is independent to infarct size [82]. It is, therefore, impor-
tant to investigate ways to target this phenomenon [57]. In
a large clinical trial of 696 STEMI patients (LIPSIA CON-
DITIONING), neither RIC alone nor in combination with
post-conditioning following PPCI, demonstrated any reduc-
tion in MVO following cardiac MRI. There was, however, a
significant improvement in myocardial salvage index in the
cohort who received RIC and post-conditioning in combina-
tion (p=0.02) [32].

Despite these results in larger clinical trials, RIC has
increased both macro and microvascular flow on ultrasound
Doppler, in two studies [85, 95] and improved forearm blood
flow (venous occlusion plethysmography) in healthy male
volunteers [47]. Both RIC and NO donors such as glycerin
trinitrate (GTN) improve endothelial-mediated dilatation and
reduce vascular reperfusion injury. Given that GTN in com-
bination with RIC confers no additional endothelial protec-
tive benefit, it is hypothesised that conditioning utilises NO
pathways to induce vasodilation and organ protection [47].
The vascular release of extracellular vesicles and exosomes in
response to RIC is further considered below.

Does RIC mediate innate immune cell
activity?

NETs and neutrophil recruitment

Neutrophils are a considerable driver of the inflammatory
process, and are responsible for significant cytokine release
and tissue damage [34, 111]. Activated neutrophils release
neutrophil extracellular traps (NETs), which are structures
containing DNA and histones, amongst other inflammatory
molecules. Neutrophils are stimulated to release NETs fol-
lowing exposure to alarmins and defensins, and this is medi-
ated by neutrophil elastase (NE), myeloperoxidase (MPO)
and activated platelets, which bind to cellular HMGB1
receptors. NETs can induce host cell death in response
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to immune invasion, in a slow apoptotic process called
NETosis [10, 104, 111]. NETSs can also cause inflamma-
tory obstruction within the microvasculature, contributing
to MVO. NETosis is associated with worsening outcomes
post STEMI [54].

The impact of RIC on neutrophils, adhesion molecules
and enzymes such as MPO, has predominantly been inves-
tigated in animal models of I/R injury, endotoxemia and
acute kidney injury [30, 69, 76]. In rats undergoing RIC by
femoral artery occlusion, prior to 45 min of left renal ischae-
mia, RIC significantly reduced expression of ICAM-1 adhe-
sion molecules, in addition to pro-inflammatory cytokines
(TNF-a, IL-1B) [69]. In humans with ulcerative colitis and
moderate disease activity, however, RIC did not reduce neu-
trophil infiltration or other markers of inflammation such as
CRP, following rectal biopsies [39]. Conversely, in a large
randomised control trial (n =206 participants) of patients
undergoing ablation for atrial fibrillation, RIC significantly
reduced neutrophil-lymphocyte ratio and levels of CRP up
to 48 h post-operatively (p <0.05) [71]. A recent review
has recognised neutrophils as important targets in cardio-
protection [5], especially considering that these cells have
the potential to polarise macrophages and enhance the acute
inflammatory response.

Lymphocytes, monocytes and splenic response
to RIC

In animals, RIC influences both circulating leucocytes and
immune precursors in the spleen in models of cerebral
ischaemia [14, 96]. In rats undergoing middle cerebral artery
infarction, RIC was associated with increased splenic vol-
ume and lymphocytes, with reduced cytotoxic T cells and
natural killer cells (NK) in cerebral tissue at day 3 [14].
These changes were negated when animals underwent sple-
nectomy, suggesting an underlining mechanism of splenic
conditioning. Similarly, in a second study, RIC increased a
colony of non-inflammatory monocytes (CD43/CD172a%),
in addition to increasing circulating B lymphocytes [96].
This is interesting given that in infection and immunity, B
lymphocytes are central to immune conditioning and ‘immu-
nological-memory’ [77]. Others have proposed that RIC uti-
lises a ‘splenic-vagal nerve’ axis of cardioprotection, given
that the cardioprotective effects of RIC are abated in ani-
mals undergoing splenectomy and vagotomy. Splenectomy is
associated with reduced amounts of STAT3 (SAFE pathway)
but not all related humoral factors have been fully identified
[62, 93]. It is proposed that the anti-inflammatory cytokine,
IL-10 may be important in an RIC-mediated splenic axis of
cardioprotection [62].

Platelets and the coagulation cascade

With respect to platelet function and the coagulation cas-
cade, animal models have demonstrated the fibrinolytic and
anticoagulant benefits of RIC [97]. However, this benefit has
not been observed in humans [41, 46, 52, 116]. Following
the ERIC-PPCI/CONDI-2 trial, a subsequent sub-analysis of
the study population was performed to look for fibrinolysis
benefit, but no firm trends were observed, with the exception
of a reduction in time to thrombosis at 48 h [41]. However,
a recent study of patients with underlining coronary artery
disease has demonstrated that whilst RIC cannot influence
platelet aggregation alone, when combined with dual anti-
platelet therapy (DAPT) in vitro, there is significant de-acti-
vation of collagen-dependent, platelet glycoprotein integrin
molecules [87]. Further studies showing clear fibrinolytic
benefit post-RIC vs controls are, however, necessary to reaf-
firm this.

Extracellular vesicles (EVs) in inflammation
and immunity

It has long been proposed that the organ-protective effects
of RIC can be attributed to the release of humoral factors by
the ‘trigger vessel’, which reach the target tissue to reduce
inflammation and cell death. Recently, endogenous nano-
particles known as exosomes have been thought to facilitate
this transfer, perhaps aided by an improvement in vascular
flow, secondary to the release of vasoactive compounds [28,
35, 38, 139].

Exosomes represent the smallest size of extracellular
vesicles (measuring 50-100 nm in diameter) and have a
wide variety of functions in ischaemia and inflammation.
Such nanoparticles can be derived from many types of cells
including endothelium, haematopoietic cells and platelets,
and their function is defined by the underlying pathology
and cell of origin [22]. Exosomes carry chemokines and
genetic material such as microRNA, which permits distant
genetic transcription and cellular cross-talk. Such exosomes
engage with target cells using a range of surface molecules
expressed on their lipid bi-layer including tetraspanins,
annexins, integrins and receptors of the major histocompat-
ibility complex (MHC) [18, 26, 55]. They are distinct from
other small extracellular vesicles and apoptotic bodies as
they are smaller and carry different contents; which can be
both anti and pro-inflammatory, depending on their stimulus
[22].

It is necessary to define which contents may be most
implicated in the inflammation of I/R and other conditions
(Table.3). Exosomes carrying microRNA-21 (miR-21)
have been identified in two recent RIC studies [35, 110]
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as limiting apoptosis and infarct size, respectively. In a
rodent model of endotoxemia induced by LPS, mice under-
going RIC prior to caecal puncture were found to secrete
organ-protective exosomes carrying miR-21, which medi-
ated HIF-1a and led to cytokine attenuation (reduced lev-
els of IL-6 and TNF-o) [110]. In addition to apoptosis and
cytokine release, it has been demonstrated that endothelial-
derived exosomes can mediate angiogenesis (via VEGF
and eNOS) in response to RIC [16], and, therefore, pro-
mote cytokines and endothelial growth factors. Again, this
illustrates their breadth of function, in different pathological
conditions.

Regarding the anti-inflammatory actions of exosomes,
(reductions in apoptosis and cytokine release), many of these
benefits were negated in a study of diabetic rats vs normo-
glycaemic animals [144]. This suggests that animals with
underlining co-morbidities and endothelial dysfunction, are
unable to generate effective vesicles. However, when receiv-
ing exosomes from non-diabetic rats they can be rescued
and protection is conferred [25, 144]. The authors of the
latter study, make the important observation, that although
RIC appears to generate cardioprotective exosomes in vivo,
similar benefits can also be derived from the exosomes of
control animals in absence of pre-conditioning [144]. This is
re-enforced by a recent clinical study of patients undergoing
RIC prior to treatment for STEMI, where no significant dif-
ferences were found in the release of platelet-derived extra-
cellular vesicles or other leucocyte derived vesicles in the
intervention group [45].

The study did, however, suggest that whilst there was
no increase in cardioprotective vesicles, there was also no
increase in pro-inflammatory EV’s. The trial was limited
by an absence of inflammatory and traditional end points
in cardioprotection, such as infarct size and CRP. It is
also noted that larger extracellular vesicles, as opposed to
exosomes, may also be more likely to carry pro-inflamma-
tory chemokines [22].

Does RIC reduce inflammation? Summary

There was never a more appropriate time in this COVID-19
era, to consider therapies which can treat the over-activity
of the innate immune response and hyper-inflammation
[112, 127]. Considering the above evidence, it is clear that
RIC has anti-inflammatory benefits in vivo, across a wide
range of different pathologies, at least in animal models.
Perhaps the strongest evidence relates to the effects of RIC
on pro-inflammatory cytokine release in endotoxaemia [68,
74, 110]; however, this has also been observed in models
of myocardial and cerebral infarction (Table.1). In animals,
it is proposed that RIC mediates inflammation by cytokine

@ Springer

inhibition, regulation of anti-apoptotic pathways and possi-
bly the reduction of NLRP3 inflammasome production and
pyroptosis.

Most evidence from animal studies demonstrates that
RIC is able to inhibit NF-kB related cytokine release, either
by TLR4 receptor pathways, or other currently undefined
mechanisms [134]. Further work is required to establish
whether there is a clear link between RIC and other known
mechanisms of cytokine release in inflammation, such as the
RAGE pathway. It is recognised that, as a result of the nature
of the NF-xB pathway, cell survival and cytokine release are
closely related [99, 134] and, therefore, it can be difficult to
establish if reduced cytokine concentrations are secondary
to reduced cell death. Nevertheless, cytokine inhibition in
cardioprotection remains a desirable goal, with prognostic
value [4, 120].

Previous literature has discussed that an increase in the
levels of HIF-1a in response to ischaemia, can stimulate
affected tissue to maintain metabolic function upon further
hypoxic insult [19]. As RIC has been shown to upregulate
HIF-1a, it might, therefore, be suggested that this could
induce hypoxic tolerance of both vascular endothelium and
target tissue. Both HIF-1a and SDF-1 limit apoptosis follow-
ing RIC [27, 63]. Shear stress and mechanical stimulation of
the trigger vessel, induce flow-mediated dilatation (via NO/
adenosine/COX), and stimulate the release of exosomes car-
rying chemo-active compounds to target tissue [38, 85, 95].
Exosomes can also carry pro-inflammatory compounds and
chemokines in addition to cardioprotective substances, and
are, therefore, ‘a double-edged sword’ in inflammation [45,
55]. Despite this, the aforementioned studies investigating
RIC and exosome release have reported protective effects
(Table.3).

Although there is some evidence that RIC can modulate
immune cell response in animal studies (e.g. neutrophil/
lymphocyte ratio) the authors concede that there is a lack
of consistent clinical data. The role of immune cells in car-
dioprotection is an emerging and novel field on which to
base further work, and the effects of RIC should continue
to be investigated. Other potential immune targets such as
fibroblasts, pericytes and mast cells have also been identified
for further study [5]. Consistent with other aspects of RIC,
it would be misleading to suggest that the anti-inflammatory
effects have proven profound in humans, although there is
a lack of large-scale focused RCT’s in patients with hyper-
inflammation. Moreover, a select few studies have offered
some hope that under the right circumstances, clinical trans-
lation could be achieved [53, 140]. A further step in address-
ing this might be to consider whether we have measured
inflammatory outcomes in the correct clinical setting to date.
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Future considerations: towards a higher risk
patient cohort

Reflecting on clinical challenges to date, it is suggested
that the impact of both baseline and peak inflammation in
clinical trials of RIC has been underestimated. For example,
individuals with chronic inflammatory disease and persistent
low levels of inflammation at baseline, may already be resist-
ant to remote conditioning [39]. The exact reasons for this
remain elusive, but may be related to persistent endothelial
activation, chronic cytokine release and defective exosome/
humoral factor production, (as observed in diabetic animals)
[25, 144]. With respect to the STEMI patients of CONDI-2/
ERIC-PPCI, it is possible that the outcomes do not repre-
sent a failure of RIC to show significant benefit, but instead
a success of modern primary percutaneous cardiovascular
intervention (PPCI) in this cohort [11, 49]. Le. it is not clear
whether the ‘inflammatory peak’ following successful PCI,
was significant enough to demonstrate an improvement in
the primary outcome measures of the trial (cardiac death/
hospitalisation at 12 months) [48].

As proposed by several authors [11, 49, 65], higher risk
patients with amplified inflammatory response to STEMI,
might be proposed as the appropriate target for RIC e.g.
those with large anterior infarcts who are late presenting,
patients in cardiogenic shock, out of hospital cardiac arrest,
those who develop angiographic no reflow of a large culprit
vessel and those who are only able to receive thromboly-
sis and not primary PCI [49, 81]. Global inflammation is
observed in patients with endotoxaemia and viral infec-
tion—these patients may also be favourable candidates for
RIC [43]. Moreover, remote conditioning in combination
with pharmacotherapy may be of benefit in preventing the
development of a cytokine storm.

Given the challenges in clinical translation [65], RIC
should be trialled as an adjunctive therapy in combina-
tion with gold-standard treatments in the above ‘high-risk’
cohort. It has been demonstrated above, that RIC can act
synergistically to reduce inflammation when combined with
pharmacotherapy and activation of neuronal pathways [24,
33, 141].

The difficulty in predicting the timing of a major inflam-
matory insult remains a significant dilemma for human inter-
ventional studies. However, given the reproducibility and
extent of the survival benefits observed in animal models;
the anti-inflammatory effects of RIC warrant further clini-
cal pursuit.
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