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Abstract

Next generation sequencing has made it possible to perform differential gene expression studies in non-model
organisms. For these studies, the need for a reference genome is circumvented by performing de novo assembly on
the RNA-seq data. However, transcriptome assembly produces a multitude of contigs, which must be clustered into
genes prior to differential gene expression detection. Here we present Corset, a method that hierarchically clusters
contigs using shared reads and expression, then summarizes read counts to clusters, ready for statistical testing.
Using a range of metrics, we demonstrate that Corset out-performs alternative methods. Corset is available from
https://code.google.com/p/corset-project/.
Background
Next-generation sequencing of RNA, RNA-seq, is a
powerful technology for studying various aspects of the
transcriptome; it has a broad range of applications,
including gene discovery, detection of alternative splicing
events, differential expression analysis, fusion detection
and identification of variants such as SNPs and post-
transcriptional editing [1,2]. One of the advantages of
RNA-seq over older technology, such as microarrays,
is that it enables the transcriptome-wide analysis of
non-model organisms because a reference genome and
annotation are not required for generating and analyzing
the data. When no reference genome is available, the tran-
scriptome is de novo assembled directly from RNA-seq
reads [3]. Several programs exist for de novo transcriptome
assembly: Oases [4] and Trans-abyss [5], which extend the
Velvet [6] and Abyss [7] genomic assemblers, respectively,
as well as purpose built transcriptome assemblers such
as Trinity [8]. These programs are capable of assembling
millions of short reads into transcript sequences - called
contigs.
One common and biologically important application

of RNA-seq is identifying genes that are differentially
expressed between two or more conditions [9]. However,
performing a differential expression analysis on a de novo
assembled transcriptome is challenging because multiple
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contigs per gene are reported. Multiple contigs, with
shared sequence, arise because transcriptome assemblers
differentiate between isoforms of the same gene, and
report each separately. Furthermore, they often report
contigs that are not truly representative of different
isoforms but arise from artifacts such as sequencing
errors, repeats, variation in coverage or genetic variation
within a diploid individual or pooled population. As a
result, transcriptome assemblers often report fragmented
versions of a transcript, or repeated contigs that differ only
by a SNP or indel. Surprisingly, simulations have shown
that even the assembly of data without any sequencing
errors, SNPs or alternative splicing can generate multiple
contigs per gene [10]. Hence, the number of contigs
produced by a de novo assembly is typically large; for
example, assemblies with 80 million reads can produce
hundreds of thousands of contigs [11].
The inevitably long list of contigs generated by de novo

transcriptome assembly causes several issues for differential
expression analysis: i) reads cannot be aligned unambigu-
ously to duplicated sequences and determining the origin
of ambiguously aligned reads is error prone; ii) the statis-
tical power of the test for differential expression is reduced
as reads must be allocated amongst a greater number of
contigs, thus reducing the average counts per contig; iii),
the adjustment for multiple testing is more severe; and iv),
once differentially expressed contigs have been identified,
interpretation is difficult, as many genes will be present in
the list multiple times. Performing a differential expression
analysis on genes, rather than contigs, would overcome
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these difficulties. However, the procedure for estimating
gene-level expression from a set of de novo assembled
contigs is not straightforward and has not been thoroughly
examined in the literature.
Several steps are involved in identifying differentially

expressed genes from a de novo assembled transcriptome
(Figure 1): RNA-seq reads are first assembled, reads are
next mapped back to contigs, contigs are then clustered
into genes, after which the expression level for each gene
cluster is summarized, and statistical testing is performed
to detect differential expression.
Several studies have compared individual steps in this

analysis pipeline. For example, the relative merits of
different de novo assemblers and steps prior to assembly,
Figure 1 The pipeline for performing a count-based gene-level
differential expression analysis on non-model organisms.
Cleaned RNA-seq reads are first de novo assembled into contig
sequences. Reads are mapped back to the transcriptome and the
association between contigs and genes must be established (clustering
of contigs). Then the abundance of each gene is estimated. Finally,
statistical testing is performed on the count data to determine which
genes are differentially expressed. Corset performs the clustering and
counting (dashed box) in a single step.
such as quality control, have been examined [12–15]. Simi-
larly, the choice of method for performing count-based
statistical testing for differential expression has been
evaluated [16,17]. However, few studies have compared
or even suggested a path for obtaining gene-level counts
from transcriptome assemblies [18,19] and only a single
automated pipeline has thus far been implemented to
address this need [20]; it is provided by Trinity to run
RSEM [21] followed by edgeR [22] or DESeq [23]. This
pipeline is inflexible, however, to the choice of assembler.
In this paper we present Corset, a method and software

for obtaining gene-level counts from any de novo tran-
scriptome assembly. Corset takes a set of reads that have
been multi-mapped (multiple alignments per read are
reported) to the de novo assembled transcriptome and
hierarchically clusters the contigs based on the proportion
of shared reads and expression patterns. Expression
patterns allow for discrimination between genes that
share sequence, such as paralogues, if the expression
levels between groups are different. Using the mapped
reads, Corset then outputs gene-level counts. The gene-
level counts can then easily be tested for differential
expression using count-based frameworks such as edgeR
and DESeq. We demonstrate that Corset consistently
performs well compared to alternative clustering methods
on a range of metrics. Moreover, as it is an assembler-
independent method, it allows contigs and transcripts
from various sources to be combined. It is also simpler to
use, with the clustering and counting steps encompassed
in a single run of the software.

Results and discussion
Corset clusters contigs and counts reads
The first step in performing a gene-level differential ex-
pression analysis for a non-model organism is to assemble
the contigs, which can be performed using a variety of
software. As previously outlined, this process produces
multiple sequences or contigs per gene. Consequently, the
next step is to group, or cluster, the contigs into genes to
facilitate downstream differential expression analysis. This
clustering step is the first step of Corset.
Corset requires that, after transcriptome assembly, reads

are mapped back to the contigs allowing reads to map to
multiple contigs (multi-mapping). These multi-mapped
reads are then used as a proxy for detecting sequence
similarity between contigs, as well as providing informa-
tion about the expression level of the contigs. Corset also
uses the read information to filter out contigs with a low
number of mapped read (less than 10 reads by default).
Corset’s approach is in contrast to other tools used for
clustering contigs as the majority of other tools only use
the sequence information from the assembly.
Corset works by clustering contigs based on shared

reads, but separates contigs when different expression
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patterns between samples are observed. This is imple-
mented using an agglomerative hierarchical clustering
algorithm. The distance between any two contigs is
defined in relation to the number of reads that are shared
between contigs, such that a lower proportion of shared
reads results in a larger distance (see Materials and
methods). Genes that share sequence, such as paralogues,
are likely to have small distances, as many reads are
shared. As we do not want these contigs to be clustered,
Corset performs a test to detect whether the relative
expression levels between the pair of contigs is constant
across conditional groups (or experimental groups). If the
relative expression between the two contigs is not con-
stant, the distance between the two contigs is set to the
maximum. This is incorporated into the algorithm as a
likelihood ratio test where the null hypothesis assumes
that the ratio between counts from the two contigs are
equal across conditional groups, whereas the alternative
hypothesis allows this ratio to vary with conditional group.
The count data for this contig ratio test are modeled as
Poisson distributed and a P-value threshold of approxi-
mately <10-5 is applied by default (see Materials and
methods for a detailed description and justification of
thresholds).
The contig ratio test that separates contigs with shared

sequence but differing expression ratios is one of the novel
features of the Corset clustering algorithm. Although this
feature can be switched off - for example, to ensure differ-
entially spliced isoforms are clustered together - we find it
is effective in separating contigs from different genes
(Additional file 1: Figure S7). For example, Figure 2 shows
the human ATP5J and GABPA genes, which reside on
opposite strands but have overlapping UTRs. The assem-
bly of human primary lung fibroblast data produced eight
contigs for this region (see Materials and methods). While
there are contigs for each of the genes separately (contigs
1 to 3, and 8) the use of a non-stranded protocol results in
contigs with the two genes assembled together (contigs 4
to 6). When the contig ratio test is not implemented, all
these contigs are assigned to the same cluster and no
significant differential expression is detected between the
knock-down and wild-type conditions (false discovery rate
(FDR) = 0.053). However, examining the contig count
ratios between pairs of contigs tells a different story
(Figure 2B). The count ratios of contig 3 and contig 2
are constant across samples, implying they should be in the
same cluster. By contrast, the contig ratio between contig 3
and contig 4 is significantly different across conditions and
so Corset splits them into different clusters. When tests for
all pairwise combinations are performed, these eight contigs
are separated into four different clusters and statistical
testing for differential expression reveals cluster a and
d are significantly differentially expressed in opposite
directions (FDR = 10-11 and 10-7, respectively).
Once Corset is applied to the full dataset the contig
groupings that are representative of genes are reported
and will be referred to henceforth as clusters. Corset also
reports the number of read counts associated with each
cluster. All the reads are uniquely assigned to a cluster
(see Materials and methods); hence, each read is only
counted once, even though the reads were originally
multi-mapped to contigs. The read counts table can be
supplied to count-based differential expression programs
for statistical testing.

Testing Corset on model organism datasets
We tested the performance of Corset against other cluster-
ing and counting methods using three RNA-seq datasets:
chicken male and female embryonic tissue [24], human
primary lung fibroblasts, with and without a small inter-
fering RNA (siRNA) knock down of HOXA1 [25], and
yeast grown under batch and chemostat conditions [26].
We selected three model organisms in order to compare
our de novo differential gene expression (DGE) results
against a genome-based analysis (referred to herein as the
truth dataset). In the chicken dataset we tested for DGE
between males and females. The homology between
chicken genes, which is around 90% on the sex chro-
mosomes [24], offered a challenging test for clustering
algorithms. The human dataset was selected because
human is one of the best annotated species and the
yeast was used to assess whether clustering is beneficial
for organisms with minimal splicing. Each dataset was
assembled using Trinity and Oases, which have different
underlying assembly strategies, to ensure that the results
were consistent. Overall, six different assemblies were
used as a starting point for the evaluation of Corset.

Corset clustering results in a good balance between
precision and recall
We were initially interested in comparing the clustering
produced by Corset with other available methods. Both
Trinity and Oases provide some clustering information
with their output, which is based on the partitioning of
the de Bruijn graphs during the assembly (referred to as
components and locus, respectively). Standalone tools
based on sequence similarity are also frequently used
[27,28], with CD-HIT-EST a popular choice [29,30].
We evaluated Corset’s clustering against CD-HIT-EST

and the assemblers’ own clustering. For chicken, over
300,000 contigs were assembled while for human, over
100,000 contigs were assembled (Table 1). A large number
of clusters were reported by Trinity and CD-HIT-EST -
for example, over 200,000 clusters on the chicken dataset.
By default, Corset removes contigs with a very low num-
ber of reads supporting them, to give fewer clusters in all
cases (Additional file 1: Table S1). This makes the cluster
list more manageable, without compromising sensitivity



Figure 2 Corset uses expression information to tease apart contigs from different genes. (A) Assembled contigs from a region of the
human genome containing the two genes ATP5J and GABPA. Trinity assembles 8 contigs (bottom track), which are grouped into one cluster if the
contig ratio test is not applied. Including this test allows corset to separate this region into four clusters (boxes). Notably, contigs 4 to 6 are false
chimeras, caused by the overlapping UTRs of ATP5J and GABPA. These genes are differentially expressed, as shown by base-level coverage, averaged
over replicates (top track). (B) When clustering, Corset checks for equal expression ratios between conditions when calculating distances between pairs
of contigs: here we consider pairs contigs 2 and 3 (top) and contigs 3 and 4 (bottom). The ratio of the number of reads aligning to each contig is
plotted for each sample (dots). It can be seen that contig 2 and contig 3 have the same expression ratio across groups and so are clustered together
while contig 3 and contig 4 have different expression ratios between conditions and so are split. This feature helps Corset separate contigs that share
sequence but are from different genes.
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to detect differential expression. Oases also gave fewer
clusters than CD-HIT-EST, but it grouped many unrelated
contigs together, with the largest clusters containing many
thousands of contigs (Table 1).
Clustering was evaluated using precision (True positives/

(True positives + False positives)) and recall (True posi-
tives/(True positives + False negatives)) for each of the
six de novo assemblies. Positives and negatives were
calculated by taking all pairwise combinations of con-
tigs and evaluating if the contigs were correctly placed
in the same cluster (true positives), correctly separated
into different clusters (true negatives), incorrectly placed in
the same cluster (false positives) or incorrectly separated
(false negatives) [31]. Truth information was derived using
the appropriate reference genome annotation (see Materials
and methods). Contigs filtered out by Corset due to a low
number of mapped reads were also filtered out for the as-
sessment of competing methods.
We found that CD-HIT-EST was generally high in

precision but poorer in recall. In contrast, Oases’ cluster-
ing performed well in recall but had a precision around
zero in all cases. Conceptually, this again indicates that
Oases groups many unrelated contigs into the same clus-
ter (over-clustering). The clustering from Trinity showed
a better balance between precision and recall. Corset out-
performed both CD-HIT-EST in recall and the assembler’s
clustering in precision in all cases (Figure 3), indicating
that it provides a good balance between precision and
recall. In addition, in two out of the six assemblies, Corset
was the most precise (chicken-Oases and yeast-Oases).
Clustering performance is influenced by not only the

choice of clustering algorithms but also the choice of
assembler and the quality of the RNA-seq dataset. We
briefly investigated how certain aspects of the assembly
quality affect clustering recall and precision. We found
that recall decreases with greater fragmentation of genes
in the assembly. Contigs from a common gene that share
no sequence are unlikely to be clustered together by any
algorithm, whereas contigs that are almost fully redundant
should always be clustered together. The majority of genes
fall into one of these two extremes (Additional file 1:
Figure S2B). The assemblers’ clustering and Corset behaved
as expected, giving close to perfect recall for genes with
fully overlapping contig sequence and zero recall when
the contigs were disjointed. However, CD-HIT-EST failed
to achieve good recall even for genes with no fragmenta-
tion (Additional file 1: Figure S4). The fraction of fully
disjointed contigs appears to dictate an upper bound
on the best possible recall that can be achieved by any
clustering algorithm.
We found that poor clustering precision, whereby contigs

from different genes are grouped together, happens
when genes share sequence, such as paralogues, a com-
mon domain, overlapping UTRs or repeats. In some cases,
this can also result in a chimeric contig being erroneously
assembled (for example, Figure 2). It has previously been
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Figure 3 A comparison of the performance of different clustering approaches. For the assembler’s own clustering (Trinity or Oases), CD-HIT-EST
and Corset we show the precision against the recall. The precision is the ratio of true positives over true positives plus false positives and the recall is
the ratio of true positives over true positives plus false negatives. We show the results for six different assemblies: (A) chicken data assembled with
Trinity; (B) chicken data assembled with Oases; (C) human data assembled with Trinity; (D) human data assembled with Oases; (E) yeast data
assembled with Trinity; and (F) yeast data assembled with Oases. The X indicates perfect clustering.

Table 1 Statistics on the number of clusters for various clustering options compared to Corset

Chicken Human Yeast

Trinity Oases Trinity Oases Trinity Oases

Contigs 335,377 540,933 107,389 239,426 7,353 27,013

Trinity Clusters (Max.) 230,924 (302) 73,258 (91) 6,690 (45)

Oases Clusters (Max.) 87,639 (93,103) 55,746 (16,881) 3,140 (5,987)

CD-HIT-EST Clusters (Max.) 282,285 (81) 202,636 (116) 90,115 (29) 96,965 (74) 7,117 (8) 5,586 (39)

Corset Clusters (Max.) 91,653 (290) 67,826 (208) 43,663 (90) 38,476 (59) 3,796 (45) 4,324 (65)

Shown are the number of contigs (bold), number of clusters and the maximum number of contigs in a cluster (in parentheses). Corset removes contigs that have
less than 10 reads mapping to them by default, and hence has the least number of clusters in 5 out of 6 assemblies. This makes the final list of clusters more
manageable, with no detriment to the final DGE results. Oases grossly over-clusters as shown by the maximum contigs in a cluster.
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illustrated that there is a high rate of false chimeras in de
novo transcriptome assemblies [32] and we also observed
a high rate of false chimeras in our assemblies, around 5
to 15% of contigs for chicken and human, and 40% of
contigs for yeast (Additional file 1: Figure S3). Oases’
clustering precision on genes that share sequence or
have chimeric contigs was consistently worse than that
of Corset and CD-HIT-EST. Trinity was marginally
worse than Corset. For genes that had no shared se-
quence, perfect clustering precision was seen for Corset
and CD-HIT-EST (Additional file 1: Figure S5).
These results indicate that clustering performance is

influenced by the underlying assembly quality (which in
turn depends on the dataset), but that Corset clustering
is robust over a range of assembly qualities.

The effect of clustering on differential gene expression
results
Poor precision is akin to over-clustering, making some
differentially expressed genes impossible to detect because
contigs with different relative expressions are combined.
Moreover, the functional annotation of clusters becomes
ambiguous. Poor recall, however, is akin to under-
clustering. It extends the total length of the list of clusters,
which has several consequences: it is inconvenient for
follow-on studies (such as gene ontology), leads to greater
multiple testing corrections and increases statistical uncer-
tainty. To assess the extent of these effects on differential
expression results, we performed a gene-level differential
expression analysis using each of the clustering options.
The remaining steps in the pipeline, including count-based
abundance estimation, were identical in each case (see
Materials and methods) and testing for DGE was per-
formed using edgeR. Significantly differentially expressed
clusters were compared to genes tested for differential
expression using a genome-based mapping approach. A
cluster was deemed to be a true positive if it matched a
differentially expressed gene from the genome-based ana-
lysis. Regardless of the statistical test used to generate true
differentially expressed genes from the genome based ana-
lysis, Cuffdiff 2 [25] (Figure 4) or edgeR (Additional file 1:
Figure S10), we found similar results in the comparison of
Corset to other contig clustering options.
We looked at three different measures to assess the

impact of clustering on DGE results. Firstly, we examined
the cumulative number of unique true positive clusters as
a function of the total number of clusters (Figure 4). A
unique true positive refers to only counting the top ranked
cluster when there is more than one cluster assigned to
a gene. In four cases Corset performed better than the
alternatives (chicken-Trinity, chicken-Oases, human-Oases,
yeast-Oases) and in the remaining two cases it performed
equally well (human-Trinity, yeast-Trinity). This metric
penalized for reporting multiple clusters for a given gene
(that is, poor recall). It was also informative to examine an
alternative version of this metric that does not penalize in
this way: the number of unique true positives as a function
of the number of unique false positives (Figure 5). In this
instance, clustering algorithms with better precision do
better than the assembler’s clustering, which performed
better in recall. As a final assessment of clustering we
looked at the correlation in fold change between differen-
tially expressed genes from the truth analysis, and those
from the de novo assembly (Table 2). Corset was consist-
ently the most concordant with the genome-based truth
analysis.
The DGE results also illustrate the general importance

of clustering contigs into genes; the differential expression
analysis on contigs with no clustering resulted in a much
longer list for the same number of unique true positives
compared to clustering (Figure 4). This was even the case
for the Oases assembly from yeast, an organism with little
alternative splicing (Figure 4F), highlighting the import-
ance of removing redundancy from the assembly, even for
genomes where minimal alternative splicing is expected.
By all metrics, Corset was the best or close to best method
available. This indicates that the balance between preci-
sion and recall that Corset achieves translates into more
accurate DGE results.

Corset allows multiple transcriptomes to be combined
An ideal clustering tool would allow transcriptomes gen-
erated from different sources to be combined because
multiple transcripts from the same gene will be clustered
together regardless of their origin. However, this is only
possible for clustering that is independent of the de novo
assembler. While several publications have used CD-HIT-
EST for combining multiple transcriptome assemblies
[12,14,29], we have already shown that CD-HIT-EST is not
the most effective contig clustering tool. Corset, however,
provides a convenient method to cluster contigs generated
from different sources. Reads are first multi-mapped to
each transcriptome separately, and then all bam files are
processed together in one run of Corset.
Different assemblers have strengths and weaknesses

and it is often advantageous to combine the results from
several de novo assemblers. To demonstrate the utility of
Corset for this purpose we clustered together the Trinity
and Oases assemblies from the human dataset. This
combined dataset effectively doubled the number of con-
tigs. Corset was able to handle this level of redundancy to
give a combined transcriptome with fewer clusters, 37,741,
than either of the Trinity or Oases assemblies individually,
43,664 and 38,477, respectively. Furthermore, this com-
bined transcriptome contained contigs annotating approxi-
mately 200 additional genes not detected using either
constituent transcriptome alone. By contrast CD-HIT-EST
produced 115,980 clusters on the same combined dataset.
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Figure 4 The effect of clustering on differential gene expression rankings. The cumulative number of unique true positive differentially
expressed clusters against the number of top ranked clusters in the de novo analysis is shown. A unique true positive refers to only counting the
first instance of a gene that appears multiple times in the ranked list. Corset performed the same or better than CD-HIT-EST and the assembler’s
own clustering, in all cases: (A) chicken data assembled with Trinity; (B) chicken data assembled with Oases; (C) human data assembled with
Trinity; (D) human data assembled with Oases; (E) yeast data assembled with Trinity; and (F) yeast data assembled with Oases. For comparison,
we also show the results of no clustering, where the analysis was performed at the level of contigs rather than clusters.

Davidson and Oshlack Genome Biology 2014, 15:410 Page 7 of 14
http://genomebiology.com/2014/15/8/410
Another application for combining transcriptomes is
when a partially assembled genome or annotation is
available. Supplementing de novo assembled data with
genome-based data has several advantages: i) it increases
the amount of known transcript sequence, for example,
because genes, or regions of genes in the annotation, that
have little or no read coverage are absent from the assem-
bly; ii) de novo assembled contigs can be easily annotated
if they cluster with a known gene; and iii) it allows discon-
nected fragments in the assembly to be clustered together
if a transcript from the reference annotation overlaps
both. We demonstrated this final benefit by combining
the Trinity transcriptome from the human RNA-seq
dataset with the human Ensembl version 73 annotation
using Corset. We randomly sampled 50%, 25%, 12% and
6% (approximately 100, 50, 25 and 12.5 thousand tran-
scripts) of the full Ensembl transcriptome to emulate a
partial annotation. A significant improvement in cluster-
ing recall is seen for Trinity contigs with no detriment to
clustering precision (Figure 6A).
Finally, we extended this idea to the use of a reference

annotation from a related species [33]. The human RNA-
seq reads were mapped independently to the Trinity
assembly and Ensembl version 73 transcript sequences for
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Figure 5 The effect of clustering on differential gene expression receiver operating characteristic (ROC) curves. The unique true positive
differentially expressed clusters against unique false positive clusters in the de novo analysis is shown. A unique positive refers to only counting
the first instance of a gene that appears multiple times in the ranked list. Corset performed similarly to or better than CD-HIT-EST and the assembler’s
own clustering, in all cases: (A) chicken data assembled with Trinity; (B) chicken data assembled with Oases; (C) human data assembled with Trinity;
(D) human data assembled with Oases; (E) yeast data assembled with Trinity; and (F) yeast data assembled with Oases. For comparison, we also show
the results of no clustering, where the analysis was performed at the level of contigs rather than clusters.
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chimp, orangutan, macaque, marmoset and bushbaby, with
lower mapping stringency used for the related species
(see Materials and methods). Our results demonstrate
that an improvement in clustering recall is obtained
even using annotation from a related species, again
without loss of precision (Figure 6B). The effectiveness
of this strategy will depend on the divergence between
species, which in this example ranged from approximately
6 million years ago (My; chimp), 15 My (orangutan), 32
My (macaque), 46 My (marmoset) to 68 My (bushbaby)
[34]. In addition, the improvement will also depend on the
completeness of the annotation (these species had half to
one-third as many transcripts as the human Ensembl
annotation).

Corset summarizes reads into gene-level counts
As previously mentioned, Corset not only clusters contigs
but also produces expression levels for each cluster, in the
form of read counts that can be directly used by DGE ana-
lysis software. This feature is provided as a convenience
because it replaces the two-step process of clustering con-
tigs and estimating abundances with a single step.
We compared the performance of the counting aspect

of our software against three other pipelines for gene-level



Table 2 Pearson correlation in gene-level log2 fold
changes

Chicken Human Yeast

Trinity Oases Trinity Oases Trinity Oases

No clustering 0.720 0.734 0.884 0.835 0.968 0.958

Trinity 0.820 0.933 0.934

Oases 0.447 0.888 0.760

CD-HIT-EST 0.751 0.756 0.919 0.929 0.968 0.903

Corset 0.874 0.850 0.936 0.956 0.968 0.974

In previous validation results, we assessed clustering by examining the ranking
of true positives. Here we assess how well the fold change between
experimental conditions is recovered. For each contig matching a gene with
true differential expression, we compared its cluster-level log2 fold change
against its true gene-level log2 fold change. The Pearson correlation between
these quantities is shown. We assessed each clustering method in this way
and found corset clustering gave the highest correlation in all cases. The
highest Pearson correlation for each assembly is displayed in bold.
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count estimations: (1) RSEM [21]; (2) selecting the longest
contig from each cluster as a representative sequence and
mapping to that; and (3) mapping each read to all contigs,
allowing only a single alignment, then aggregating the
counts within a cluster (see Materials and methods). In
each case, the Corset clustering was used. We found that,
in general, all counting methods produced similar re-
sults to Corset; the Pearson correlation between counts
produced by Corset and other methods was consist-
ently high (Additional file 1: Table S2). Despite RSEM
and Corset reporting identical counts for up to 95% of
clusters (Additional file 1: Table S3), we found a significant
difference in counts for a small number of clusters. In these
clusters RSEM tended to report fewer counts (Additional
file 1: Figure S11A). Furthermore, for these clusters
Corset counts exhibited less variability between biological
replicates (Additional file 1: Table S4 and Figure S11B),
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calculated for Trinity contigs. (A) We randomly sampled transcripts from th
of all transcripts to emulate a partial annotation, mapped the human RNA-seq
to the Trinity assembly using Corset. (B) We mapped human RNA-seq reads o
and bushbaby, then clustered the reads together with those mapped to the
assembly on its own.
suggesting that they were more precise. As a final assess-
ment of the discrepancy, we compared RSEM cluster-level
counts against a truth set where the truth was constructed
by running RSEM on reads mapped to the gene anno-
tation (Additional file 1: Figure S12A). This confirmed
that RSEM was underestimating the counts for a small
proportion of clusters, resulting in missing true differential
expression in the downstream analysis (Additional file 1:
Figure S12B).
Hence, we found no evidence that there was a disadvan-

tage in using the counts produced by Corset over other
programs, such as RSEM, for gene-level analysis. On the
contrary, we found subtle hints that simple count-based
abundance estimation methods may be more robust for
detecting differential expression on de novo assembled
transcriptomes than methods that attempt to infer abun-
dance at the transcript level first. However, we reiterate
that all counting methods gave similar results.

Conclusions
Recently, there has been a focus on the potential for using
RNA-seq to analyze the transcriptomes of non-model or-
ganisms, with a number of studies exploring various steps
in the analysis pipeline, such as the effect of cleaning reads
[13], digital normalization [35], different assemblers [12]
and post-assembly improvements [36]. However, in many
applications of RNA-seq the outcome of interest is not the
transcriptome itself, but the detection of differentially
expressed genes between samples. To this end, there are
few tools or even guidelines on how to progress from
the assembled transcriptome to a list of differentially
expressed genes. This study presents a novel algorithm,
Corset, for clustering de novo assembled contigs and
generating gene-level counts. This study is also the first to
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compare various pipelines for DGE analysis of de novo
assembled transciptomes, demonstrating that it is advan-
tageous to perform a gene-level rather than transcript-
level analysis, even on species such as yeast, with minimal
alternative splicing.
However, performing a gene-level analysis requires the

de novo contigs to be clustered into genes. Prior to the
algorithm presented here, clustering options were limited
to either the assembler’s own groupings or a sequence-
based clustering tool. Furthermore, it was not clear how
well these methods performed in the context of a de novo
assembled transcriptome; specifically, their ability to deal
with issues such as the fragmentation of genes, erroneous
chimeras and repeats, all of which may lead to the
miss-clustering of contigs.
Our method, Corset, makes use of both the sequence

similarity and expression data available to cluster contigs.
The use of expression data means Corset has the power to
separate paralogues and contigs with erroneous chimeras
into different clusters. A possible consequence of separat-
ing contigs based on relative expression is that differen-
tially spliced isoforms of a gene may be split into separate
clusters. For gene-level differential expression analysis, we
see no disadvantage in this; either or both isoform clusters
should be detected as differentially expressed. However,
this option can be turned off should the user want to
ensure isoforms are clustered together. Overall, we found
the clustering provided by Corset performed better than
alternative approaches in several metrics we examined.
Similarly, the expression data provided as counts by
Corset gave results equal to, and sometimes marginally
more accurate than, all alternative estimates.
Thus, Corset provides new methods in a single software

tool that effectively replaces the often ambiguous, cumber-
some, multi-step process required to go from a de novo
assembled transcriptome to gene-level counts. Corset is
easy to run as no indexing or sorting of the bam files is
required and it can process single-end, paired-end or
mixed reads. Finally, Corset provides a convenient way to
merge the results from different de novo assemblies, refer-
ence annotations or genome-guided assemblies. We believe
these features will be of great benefit to RNA-seq analysis
in non-model organisms.

Materials and methods
Datasets
We performed differential gene expression analysis using
publicly available RNA-seq data from three model organ-
isms: chicken, human and yeast. All datasets consisted of
100-bp paired-end reads from an Illumina HiSeq 2000.
For each dataset we trimmed the reads [37] and then
performed three analyses: two on de novo transcriptomes
assembled using Oases and Trinity and one genome-based
analysis - the 'truth' - which was used for comparison. The
chicken dataset from Ayers et al. [24], Short Read Archive
(SRA) accession number SRA055442, consisted of approxi-
mately 1.2 billion reads. For the de novo analyses we used
only one lane of this data (approximately 320 million reads)
because the full dataset was computationally too large
to assemble. However, all the data were used for the
genome-based 'truth' analysis. This dataset consists of
eight samples - male and female blastoderms, and male
and female day 4.5 gonad tissue, in duplicate. The data-
set published by Trapnell et al. [25], Gene Expression
Omnibus accession GSE37704, is from human primary
lung fibroblasts with an siRNA knock-down of HOXA1.
The dataset contains three replicates of the knockdown
and three controls with more than 231 million reads in
total. Finally, we included a yeast dataset, SRA accession
numbers SRR453566 to SRR453571, published in Nookaew
et al. [26]. The dataset consists of approximately 36 million
reads. Three replicates were grown under batch conditions
and three under chemostat conditions.

Genome-based 'truth' analysis
To gauge the performance of different clustering and
abundance estimation algorithms, we derived a 'truth' set
using genome-based analysis.
To determine the correspondence between de novo

assembled contigs and reference annotation genes, we
aligned the assembled contigs against the annotation
using BLAT [38] (minimum length of 200 bases and
minimum identity of 98%). Chimeric contigs were treated
as having an unknown origin. We identified chimeric con-
tigs as those that matched two or more truth genes (as
above) with an overlap between the genes of less than 100
bases. For other cases where a contig aligned to multiple
genes, it was assigned to the gene with the longest align-
ment length. When comparing the differentially expressed
'truth' genes to de novo clusters, we assigned a cluster to
the same 'truth' gene as the majority of its contigs. Any
contig or cluster that could not be found in the 'truth' set
was excluded from the results shown. Contigs that were
removed by Corset due to a low number of reads mapping
were also excluded.
To calculate 'true' differential expression, reads were

first mapped using TopHat v2.0.6 [39] to either the
hg19, galGal3 or sacCer3 versions of the human, chicken
and yeast genomes, respectively. In all cases we provided
the gene annotation (RefSeq for human, Ensembl (v.70)
for chicken and Saccharomyces Genome Database for
yeast) to TopHat to support splice site detection. These
same gene annotations were processed by 'gffread –merge'
to give locus level annotations. Cuffdiff 2.1.1 was run to
detect differential gene expression (with the -u option).
We used 'significant' locus in 'gene_exp.diff' as true posi-
tives. As an alternative to cuffdiff 2 we also defined truth
using a genome based edgeR analysis (results shown in
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Additional file 1: Figure S10). EdgeR was run in the same
way as for the de novo assembly (see 'Statistical testing'
below).

De novo assembly
Oases 0.2.06 (with Velvet version 1.2.07) was used to
assemble the human and yeast data with kmer lengths of
19, 23, 27 and 31. For the chicken dataset we used kmer
lengths of 31, 41, 51, 61 and 71. The chicken Trinity
assembly was created using Trinity-r2012-10-05 and the
human and yeast assemblies using Trinity-r2013-02-25.
Default parameters were used in all cases, with a minimum
contig length of 200 bases. Additional file 1: Figures S1, S2
and S3 show the assembly quality.

Mapping
Reads were mapped to the de novo assemblies as paired-
end alignments using bowtie [40]. For single-mapping,
where only one alignment was allowed, we used the
bowtie option –best. For multi-mapped alignment, we
used the option –all. When mapping to related species
we used the bowtie settings, --all -m 6 -n 3 -e 1000 -X
1000, to allow for a great number of mismatches. For
the human dataset, this resulted in between 30% (bush-
baby) and 70% (chimp) of read pairs mapping, compared
to about 75% for the Trinity assembly.

Clustering
We clustered the transcriptomes using CD-HIT-EST
with default parameters. For the assembler clustering,
we extracted the clusters from the contig names in the
assembly fasta file. For example, for Trinity, the contig
'comp1_c2_seq3' belonged to the cluster 'comp1_c2'. For
Oases, 'Locus_1_Transcript_3/10_Confidence_0.000_-
Length_268' belonged to cluster 'Locus_1'. To obtain
the Corset clustering we multi-mapped the reads to the
transcriptome and executed Corset with the experimental
groups included as a parameter (-g option). For the differ-
ential expression results presented in Figures 4 and 5 and
Table 2, we estimated the counts using the 'single-map-
ping then summation' method described below.

Abundance estimation analysis
The four methods described below were compared to
assess which gave the best DGE results. In all cases the
clustering was identical and was generated using Corset
with the experimental groups passed through the -g
options and using the -m 0 option (so that all contigs
were reported). The statistical testing was performed
using edgeR.

RSEM
Multi-mapped bam files were converted to the format re-
quired by RSEM using the command, 'convert-sam-for-rsem'.
The transcriptome was prepared using 'rsem-prepare-
reference –no-polyA –no-bowtie –transcript-to-gene-map'
with Corset clustering passed as a parameter. The gene
abundance was estimated using 'rsem-calculate-expres-
sion –bam –paired-end' and the 'expected_counts' were
extracted from the '.genes.results' files.

Representative contig method
The longest contig was selected to represent each cluster.
Reads were single-mapped back to these contigs. The
number of reads mapping to each representative contig
was counted using the samtools idxstats command. Be-
cause these count data were per read, we divided by
two to get the counts per fragment.

Single-mapping then summation
We single-mapped reads to all contigs and counted the
number overlapping each using samtools idxstats [41].
To obtain gene-level counts, we summed the counts for all
contigs within a cluster. Because these count data were per
read, we divided by two to get the counts per fragment.

Corset
We multi-mapped the reads to the transcriptome and
executed Corset with the options described above.

Statistical testing
The cluster-level count data were processed using
edgeR. For the chicken data, we modeled the data with
four conditional groups (two sex and two time-points) as
in Ayers at al. [24], but tested for a difference between
males and females from the later time-point only. The
other datasets had two conditional groups each (with
three replicates for a total of six samples) and the statis-
tical testing was performed for differences between these
groups. We used the edgeR GLM framework in all cases
with tagwise dispersion estimation [42]. The statistical
testing was performed in the same way for all de novo as-
semblies. Statistical testing for the 'truth' genome-based
analysis was done using Cuffdiff 2 (Figures 4 and 5) and
edgeR (Additional file 1: Figure S10). While these gave a
slightly different list of significant truth genes, the results
comparing Corset to alternative clustering methods were
similar.

The Corset algorithm
Our software accepts a set of multi-mapped read align-
ments in bam format (one or more files per sample) as
input. The algorithm then proceeds in the following
way:

1. Each read alignment is parsed and the read and contig
IDs are extracted. For each read we store the set of
contigs that it maps to.
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2. Contigs with 10 or fewer reads are filtered out. This
step is not essential to the algorithm, but has the effect
of reducing the final total number of clusters as well as
the average number of contigs per clusters, which can
simplify the subsequent steps in the analysis.

3. The read data are parsed and super clusters are
formed. Each super cluster contains all contigs that
share one or more reads with another contig in the
same super cluster.

4. Then for each super cluster we perform agglomerative
hierarchical clustering similar to the algorithm in [43],
but with distance and linkage described below.
Hierarchical clustering is used rather than other
clustering approaches because it is computationally
tractable.
4.1 We create a distance matrix using the metric:

distance ¼ 1−
Rab

min Ra;Rbð Þ ; contig ratio the same

1; contig ratio different

8<
:

where, Ra is the total number of reads that map to
contig a across all samples, and Rab is the total number
of reads that map to both contig a and contig b, across
all samples. The distance is therefore bounded between
zero and one, with zero indicating a pair of redundant
contigs and one indicating no similarity. 'Contig ratio'
refers to the expression of contigs a and b being propor-
tional to each other as measured across conditional
groups. We make the assumption that this is true when
two contigs originate from the same gene, and there is no
alternative splicing. Alternatively, if the contigs do not
come from the same gene or if there is alternative splicing,
then their expression is not necessarily proportional, as
can happen if one contig is differentially expressed. We
test these scenarios using the 'contig ratio test', which pro-
ceeds in the following way. Let raij be the number of reads
that map to contig a under condition i, for the jth repli-
cate. We then approximate the number of reads that map
to contig a, under condition i as:

Xai ¼ 1þ
X
j

raij þ 0:5rabij
� �

The shared reads term, rabij, is used here to avoid
double counting of reads. One is added as an offset to
ensure that X > 0.
The contig-wise counts are then modeled as Poisson

distributed. Note that we used a Poisson model for
computational speed:

Xai e Pois μai ¼ f iμbið Þ
Xbi e Pois μbið Þ;

where μai is the mean count for contig a under condition
i and f is a proportionality constant. Define fi = μai/ μbi as
the true measure of proportional expression between
contig a and b under condition i. We want to test the
null hypothesis, H0: fi = fi’ = f, that the proportionality
constant is independent of condition, against the alter-
native, H1: fi ≠ fi’.
Estimates of the proportionality constants for condition

i are obtained from the contig-wise counts, that is:

f̂ i ¼
Xai

Xbi

and the common proportionality constant is estimated by:

f̂ ¼
X

i
XaiX
i
Xbi

We can test the null hypothesis using a likelihood ratio
test with test statistic:

D ¼ −2 lnl0− lnl1ð Þ;
which is approximately chi-square distributed on

nconditions - 1 degrees of freedom under the null hypoth-
esis. Here nconditions is the total number of conditions, l0 is
the likelihood under the null hypothesis and l1 is the likeli-
hood under the alternative hypothesis.
Any pair of contigs for which the null hypothesis is

rejected is defined as having a 'contig ratio difference'
and will have its distance increased to the maximum
value of 1. We found it convenient in terms of computa-
tion time to set a threshold on D that is equivalent to a
P-value threshold of 10-5. The relationship between
threshold and number of conditions is parameterized as
Dthreshold = 15 + 2.5 × nconditions. This relationship is only
approximate and is valid when nconditions < 10. This
approximation should not affect the clustering, as we
found the DGE results to be robust over a wide range of
P-values (Additional file 1: Figure S7).

4.2 The hierarchical clustering proceeds by merging the
two contigs with the smallest distance together. The
number of reads that align to this new cluster is then
updated, using the linkage criterion below, and the
distance matrix is recalculated (as in step 3). Note
that the linkage used by Corset differs from standard
linkage approaches, such as single linkage, because it
relies on information outside the distance matrix:

Ra’ ¼ Ra þ Rb–Rab

Ra’c ¼ Rac þ Rbc−Rabc

where contigs a and b are those being merged into
cluster a’. Rabc is the number of reads mapping to all of
contigs a, b, and c.
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4.3 Steps 4.1 and 4.2 are iteratively repeated until either
all the contigs have been grouped into a single
cluster or the current minimum distance increases
over the distance threshold. The clustering and
number of reads per cluster is then output. Reads
that align to multiple clusters are randomly assigned
to one of the groups they align to. This accounted
for only 1 to 5% of the 100-bp paired-end reads in
our tests.

Our results were robust against the choice of distance
threshold. The default value of 0.3 was chosen empirically
because it was subtly better for DGE results (Additional
file 1: Figure S9), but did not give significantly different re-
sults from any threshold between 0.1 and 0.9 (Additional
file 1: Figures S8 and S9). The robustness with respect to
threshold can be explain by most contigs pairs having a
distance close to either 0 or 1 (for example, Additional
file 1: Figure S2B).
The default P-value threshold for the likelihood ratio

test, 10-5, was selected to account for the high level of
multiple testing. This value was designed around the
number of genes expected in a typical annotation. Again,
we found that our results were robust against the choice of
this parameter over a wide range, 10-3 to 10-8 (Additional
file 1: Figure S7).
Our software is open source and is available as a C++

source code tar ball from [44]. It has been compiled and
tested on Linux x86 and Mac OS X 10.7 operating sys-
tems. The duration of time needed for the code to
complete varied from 5 minutes to 5 hours using one
core of an Intel Xeon E7-8837 and was generally faster
than the alternative pipelines. Memory consumption
was less than 60 GB in the worst case, where over
200 GB of bam files were parsed by the program. The
memory requirements were higher than other cluster-
ing and abundance estimation tools, but considerably
less than the requirements for de novo assembly of the
datasets we tested.

Additional file

Additional file 1: Supplementary figures and tables.
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