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Abstract: While even the most common definition of pain is under debate, pain assessment has
remained the same for decades. But the paramount importance of precise pain management for
successful healthcare has encouraged initiatives to improve the way pain is assessed. Recent ap-
proaches have proposed automatic pain evaluation systems using machine learning models trained
with data coming from behavioural or physiological sensors. Although yielding promising results,
machine learning studies for sensor-based pain recognition remain scattered and not necessarily
easy to compare to each other. In particular, the important process of extracting features is usually
optimised towards specific datasets. We thus introduce a comparison of feature extraction methods
for pain recognition based on physiological sensors in this paper. In addition, the PainMonit Database
(PMDB), a new dataset including both objective and subjective annotations for heat-induced pain in
52 subjects, is introduced. In total, five different approaches including techniques based on feature
engineering and feature learning with deep learning are evaluated on the BioVid and PMDB datasets.
Our studies highlight the following insights: (1) Simple feature engineering approaches can still
compete with deep learning approaches in terms of performance. (2) More complex deep learning
architectures do not yield better performance compared to simpler ones. (3) Subjective self-reports
by subjects can be used instead of objective temperature-based annotations to build a robust pain
recognition system.

Keywords: pain recognition; machine learning; deep learning; physiological signals; pain perception

1. Introduction

Pain can indicate health problems of various kind and serves as natural protective
mechanism against harm. It is especially important in medicine, as it comprises both
symptom and disease [1]. One of the most common definitions of pain dates back to
1979 and is defined by the International Association for the Study of Pain (IASP) as “an
unpleasant sensory and emotional experience associated with actual or potential tissue
damage, or described in terms of such damage” [2]. While even this fundamental spec-
ification is under debate for revision [3–5], pain assessment has remained the same for
decades, despite the fact that precise pain management is essential in successful health
care. As a matter of fact, pain assessment is not ideal and treatment remains sub-optimal
quite often [6–8]. The current gold standard for pain assessment consists of self-report [9].
Here the subjective impression of the patient is communicated and shared with clinicians.
Often, pain is verbally rated on a Numerical Rating Scale (NRS), where 0 is “no pain” and
10 corresponds to “worst pain imaginable” or located on a Visual Analogue Scale (VAS),
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a visual line with verbal anchors “no pain” to “worst imaginable pain” at either end [10].
Although being the current gold standard, self-reports come along with major drawbacks
in clinical practice [11]. With pain being “a highly individual experience” ([12], p. 5),
self-reports constitute a subjective snapshot of patients’ level of pain, resulting in mainly
four disadvantages. (1) Subjectivity: The comparability of self-reports is complicated by
the fact that pain represents a subjective experience. Individual differences in pain result
from expectation and empirical knowledge and are additionally influenced by genetic
and sociological factors [13]. Thus, outcomes of self-reports have a large variance across
individuals. (2) Consciousness: To be able to communicate pain, subjects need to be ca-
pable of expressing their experience. Children and patients affected by certain diseases,
for example, Alzheimer, may have difficulty communicating their concerns explicitly. In ad-
dition, patients need to be conscious which is not the case in all medical settings (e.g.,
coma patients). (3) Expenditure of time: Retrieving a pain estimation via self-reports is
time-consuming for medical staff. A continuous measurement is nearly impossible in
real life. (4) Validity: It is questioned whether simple one-dimensional ratings of pain can
describe the symptom accurately enough, as they greatly simplify its complexity [14,15].
Newer concepts using graphical faces with different pain expressions for children [16] and
more complex questionnaires, like the McGill Pain Questionnaire [17] and a nociception
coma scale [18] have been introduced but cannot overcome the aforementioned problems
nor did they enhance the current gold standard. Especially the issue of nonverbal patients
unable to self-report led to clinical practice recommendations to evaluate pain [19].

These observations underline the clear need for an objective, continuous and au-
tomatised pain measurement to improve health care and support medical staff. Recent
attempts tried to address this issue by applying machine learning approaches on recorded
and annotated pain data. Several approaches on how to induce pain to acquire such data
have been introduced, ranging from physical exercises for patients with shoulder pain
to various stimulus types. While being different from clinical pain, heat-induced pain
using a thermode has become dominant as it is one of the most commonly used stimuli to
induce experimental pain (for example, 10 years of laboratory research include 34 different
studies emphasising heat pain [20] out of 105 various studies on pain) and it is simple to
perform. Moreover, it was shown that heat-induced pain is comparable to clinical pain,
for example, sharing common mechanisms with postoperative pain [21] and “that the same
factors shaping response to experimental pain stimuli also contribute to the experience
of clinical pain” [22]. Pain recognition from the machine learning perspective is usually
translated either into a classification problem where each class represents a certain level of
pain (e.g., no pain, low, or high pain) or into a regression problem where models estimate
pain intensity. Typically, the implementation of such classification systems follows the
Pattern Recognition Chain, a standardised procedure illustrated in Figure 1, that includes
the following steps: (1) Data acquisition: Starting by acquiring a dataset of the phenomena
to be recognised for training and evaluation purposes. (2) Pre-processing: Data is then often
pre-processed to reduce noise and remove artefacts. (3) Segmentation: Afterwards, the initial
data records are segmented into shorter data segments. (4) Feature extraction: Often, classi-
fiers are trained on features instead of the raw data. These features try to outline a dense but
still informative representation of the input. (5) Classification: The sequence is finalised by
training a classification model on the retrieved characteristics that is evaluated at the end.
While all the distinct steps contribute to the performance of the systems, especially the data
acquisition and feature extraction remain crucial to build a successful classification model.
Being the first step, poor data collection can form a bottleneck in the chain that later parts
suffer from. Especially, small datasets make it difficult to create a generalising classification
model that would perform sufficiently on unseen data and training data including outliers
and artefacts further complicate the classification task. Moreover, as classifiers are trained
based on features instead of the raw data, the transformation in-between is particularly
important. Wrongly engineered features can distract classifiers from the actual task, while
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proper ones comprise the underlying information yet greatly reducing the dimensionality
of the data.

Data acquisition Pre-processing Segmentation Feature extraction

f1(1)

f2(1)

fn(1)

f1(2)

f2(2)

fn(2)

f1(m)

f2(m)

fn(m)

Classification

Figure 1. Pattern recognition chain including several steps that should be optimised in parallel to
yield the best performance.

Recent studies on automated pain recognition have proposed their own approaches
on the existing benchmark datasets (in particular BioVid Heat Pain Database (BVDB)) but
remain scattered and difficult to compare because of divergent evaluation frameworks.
Besides various pre-processing steps, varying segmentation techniques, and mixed clas-
sification models have been introduced which make it complicated to account for the
best feature extraction method. Thus, we introduce an experimental setup allowing a
fair comparison of feature extraction approaches, that we used on several datasets with
different labelling strategies. The pattern recognition chain was kept identical to capture
the influence of several feature extraction approaches on the evaluation results. In detail,
pre-processing, segmentation, and classification steps were kept the same in all setups.
Moreover, to ensure generalisation of our findings, experiments were carried out on two
benchmark pain datasets: the BVDB and the PainMonit Database (PMDB), a newly intro-
duced dataset gathering physiological data of 52 participants subjected to heat-induced
pain and annotated with both subjective and objective pain labels. To the best of our
knowledge, we are the first to also record the subjective feedback of participants allowing
us to create further findings in the research field of automated pain recognition.

The remainder of the work is organised as follows. Section 2 provides an overview
of past approaches addressing the problem of automated pain recognition. In Section 3
the used material and methods are presented. The two pain databases with the BVDB and
newly recorded PMDB dataset, pre-processing, segmentation, feature extraction, classifi-
cation, and evaluation procedures and details on implementation are described in detail.
The experimental results are summarised in Section 4. A discussion of the work is ex-
pressed in Section 5. Finally, Section 6 concludes the paper and displays some insights into
future work.

2. State of the Art in Pain Recognition

Since high-quality annotated data is important to successfully perform supervised
learning, many researchers have built and proposed their own benchmark datasets in the
past pain literature. Such datasets mainly differ in terms of sensor modalities used to
record the data and in terms of pain induction methods. Two main categories of modalities
can be found: behavioural modalities record the manner and reactions of the participants,
for example, with the use of video cameras. On the other hand, physiological sensors aim
to capture biological responses of the body to pain. These reactions mainly arise from the
autonomic nervous system and cannot be controlled consciously. The past literature has
shown that: (1) pain influences the conductance of the skin, the heart rate, and specific
muscles related to the inner tension measured as Electrodermal Activity (EDA), Electrocar-
diogram (ECG), and Electromyogram (EMG) respectively. (2) physiological signals seem to
consistently perform better than behavioural modalities in automated pain recognition [23].
For those reasons, the work presented in this paper focuses on physiological sensors only.
Various pain induction approaches have been used with physiological modalities in the
past. Examples include stimuli-based methods, for instance using heat, electrical or cold
pressure pain, or pain through exercises, for example, for people with shoulder trouble.
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The most famous and widely used of all pain benchmark datasets is the BioVid Heat
Pain Database (BVDB), published by Walter et al. [24] in 2013, which was the first dataset
dedicated to the classification of heat-induced pain using physiological sensors and RGBD
video recordings. In the following years, researchers evaluated various feature extraction
methods on it. Most past work investigating feature extraction can be categorised into two
classes: (1) Feature engineering strategies focus on manually extracting features of the data
based on expert knowledge, thus referring to Hand-Crafted Features (HCF). Because of
good performances and simplicity, these approaches were the standard techniques for a
long time. (2) Feature learning involves algorithms automatically learning features from
the given input data. Nowadays, the most popular feature learning approaches are based
on deep learning that aims at solving machine learning tasks with Neural Networks
(NNs). NNs are mathematical models composed of simple non-linear computational
units called artificial neurons, organised in a layer-wise structure, that can be used for
various tasks including classification and regression. Past research (in particular in image
classification) has shown that training a NN for a classification problem makes its neurons
learn specific features (increasingly abstract the deeper the layer is) [25]. To achieve learning
of meaningful features, models are trained in an end-to-end manner and have recently
achieved outstanding performance in various classification tasks.

The first evaluation of the performance of a Support Vector Machine (SVM) exclusively
based on HCF derived from physiological modalities was carried out by Walter et al. [26].
135 features in 6 mathematical categories (amplitude, frequency, stationarity, entropy,
linearity, and variability) were derived from the pre-processed signals. Moreover, a forward
selection and backward elimination performed on the feature set was implemented. While
the forward selection outperformed the backward one, a best accuracy of 77.05% for the
task no pain vs. high pain in a Leave-one-subject-out (LOSO) setup could be obtained. One
year later, Gruss et al. [27] strove to improve those results by extending the feature set with
similarity features that try to estimate the resemblance between the mean baseline signal
and sensor data under pain of the subject and helped to increase classification performance.
Unfortunately, no LOSO results were published which makes a comparison to other work
difficult. Kächele et al. [28] expanded the processing pipeline by a post-processing step
where features were standardised per person and signal. Furthermore, a personalisation
step by training only on the most similar person to the test set was implemented. A best
accuracy of 85.7%. in a LOSO was reported. While it could be shown that the procedure
improves the performance greatly, it relies on an offline setup. Real-time classification of
unseen data is not possible as the complete database must be seen and processed first.
Individual sensor analysis concluded that EDA yields the best performance and thus
contains the most information of pain analysis. Amirian et al. [29] were the first to try
feature learning using Radial Basis Function neural networks. Using EDA decomposition,
a best accuracy of 85% for a LOSO was retrieved. In addition, a regression task was also
tested and yielded a 6.7175 Root Mean Square Error (RMSE). Recent papers have aimed
at finding more elaborate feature learning approaches purely based on deep learning.
In [30] the authors evaluated several Convolutional Neural Network (CNN) architectures
using different fusion approaches for the first time. It could be shown that previous
approaches relying on HCF [28,31,32] can be outperformed and that the EDA signal was
contributing the most. A CNN model trained on the EDA signal exclusively and a fusion
approach consisting of a trained average weighting of three CNNs (one for each sensors
modality) yielded 84.57% and 84.40% in a LOSO, respectively. Moreover, Thiam et al. [33]
tested feature learning using Deep Denoising Convolutional Autoencoders (DDCAEs) and
evaluated three distinct architectures using different embedding approaches. A single
representation for each channel, a single and shared representation for all input channels,
and a single representation using a gating layer to create a weighted output across channels
were used as layers to embed features in a single feature vector. The DDCAEs were trained
simultaneously with an additional NN classifying data samples based on the output of
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the encoder part. Significantly superior results were achieved with the gated latent space
model and a best accuracy of 83.99% in a LOSO could be yielded.

3. Materials and Methods

The following section introduces the evaluation framework used to compare various
feature extraction approaches in detail. To create a fair comparison of feature extraction
methods we defined an experimental setup, that is used on several datasets with different
labelling strategies. The data acquisition, pre-processing, segmentation, and classification
steps of the pattern recognition chain were fixed (for each dataset) to capture the impact of
different feature extraction approaches on the evaluation result.

3.1. Data Acquisition

During data acquisition, a dataset is gathered with a fixed sensor setup. Such data is
indispensable for the later processing and training of the classification system. Moreover,
ground truth is acquired to provide annotations - also referred to as labels - to the data.
Labels provide information about which class each data example can be associated with.
Sections 3.1.1 and 3.1.2 respectively introduce the BVDB and PMDB datasets used in
our experiments.

3.1.1. BioVid Heat Pain Database (BVDB)

The BioVid Heat Pain Database (BVDB), published by Walter et al. [24] in 2013,
represents the first machine learning dataset dedicated to the classification of heat-induced
pain using physiological sensors and video recordings. 90 subjects with 30 people in each of
the age groups 18–35, 36–50, and 51–65 participated in the experiment. Care was also taken
to ensure that each age group consisted of the same number of males and females. Pain
was induced via a thermode (Medoc, Ramat Yishai, Israel) at the right arm. The complete
experiment consisted of 6 individual steps. During a calibration phase, pain (TP) and
pain tolerance (TT) thresholds were found initially by slowly increasing the temperature
beginning from 32 ◦C. TP and TT describe the temperature when changes from heat to
painful and bearable to unbearable pain happen for each subject, respectively. The interval
[TP, TT ] was then divided into four sub-intervals [Ti, Ti+1] where Ti = TP + ((i− 1)× R)
for i ∈ {1, 2, 3, 4} with R = (TT − TP)/4. All temperatures Ti defined this way were used
during the stimulation phase to induce pain of variable intensity. Pain stimulation was
performed by applying the 4 different temperature stimuli over the course of 25 min. Each
temperature was applied 20 times for 4 s with an 8–12 s randomised pause in-between.
Afterwards, a second Pain stimulation (II) phase with a different sensor setup was performed,
resulting in the two available parts A and B of the BVDB. While Part A contains video, Skin
Conductance Level (SCL), ECG, and EMG (Trapezius) information, Part B added EMG for
the Corrugator and Zygomaticus muscles and dropped video sources as wires occluded
parts of the faces. Since Part A represents the most commonly cited one, we decided to
evaluate our models on this fraction of the dataset for better comparability. Thus, when
speaking about BVDB, we refer to part A from now on.

To acquire a dataset with rich information, a camera setup and various physiological
sensors were used to record pain responses. A setup of three AVT Pike F145C cameras and
one Kinect Sensor was used. One camera with the Kinect sensor on top was placed directly
in front of the participants to record RGB and depth information, respectively. To ensure
that subjects were able to move their heads freely and while properly capturing facial
expressions at all times, two additional cameras were placed at a 45◦ angle to the left and
right of the subject. Moreover, various physiological sensors were registered with the help
of a Nexus-32 amplifier. The different modalities used for pain recognition are listed below:

• Electrodermal Activity (EDA): Two electrodes were placed on the index and ring
finger to measure the skin conductance level also referred to as Galvanic Skin Response
or SCL.
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• Electrocardiogram (ECG): The participants’ heart rate activity was recorded using
two electrodes, one on the upper right and one on the lower left of the body.

• Electromyogram (EMG): Muscle activity of 3 different sites were captured using two
channel surface Electromyogram (sEMG). Electrodes were placed on two muscles in
the face (Corrugator, Zygomaticus) and one on the shoulders (Trapezius).

Moreover, the data of three subjects were removed due to technical issues during the
recording [31], resulting in a dataset of a total of 87 subjects. All sensor channels were
resampled to a common sampling rate of 512 Hz. The dataset consists of already segmented
windows of length of 5.5 s with a 3 s delay after the stimulus onset. Thus, a training sample
of one sensor channel forms a vector with a length of samplingrate(512)× seconds(5.5) =
2816. Additionally, each window of data was associated with a pain label between 1 (low
pain) and 4 (high pain) depending on which stimuli Ti (for i ∈ {1, 4}) was applied during
its acquisition. A baseline temperature T0 set to 32 ◦C was also used to obtain data related
to no pain, leading to a total of five pain levels. By applying each temperature 20 times,
there are 100 (stimuli (5) × repetitions (20)) data samples per subject.

3.1.2. PainMonit Database (PMDB)

The PainMonit Database (PMDB) was acquired at the Institute of Medical Informatics,
University of Lübeck, Germany, following the findings of a preliminary study investigating
heat-induced pain in a small dataset containing 10 subjects in Gouverneur et al. [34].
A Pathway CHEPS (Contact Heat-Evoked Potential Stimulator thermode, Medoc, Ramat
Yishay, Israel) with a 27 mm diameter contact surface was attached to the non-dominant
forearm interior site (10 cm below the elbow) of participants to induce pain by thermal
stimuli as it is one of the most commonly used stimuli to induce experimental pain. In total
55 subjects (21 male and 33 female with an average age of 27.35± 6.88) participated in
the study. Healthy people between the age of 18 and 65 were recruited. In contrast,
chronic pain disorders, acute pain, skin diseases that could be a contraindication to the
thermode, pregnancy, neurological, psychiatric or psychological diseases, and regular use of
medications (except contraceptives) were defined as exclusion criteria. The main difference
between PMDB and existing benchmark in the literature is the presence of subjective pain
annotations in addition to the objective temperature-based ones. Subjective feedback was
obtained using a Computerised Visual Analogue Scale (CoVAS) slider (Computerized
Visual Analogue Scale, Medoc, Ramat Yishay, Israel), a simple slider whose position is
digitalised and returns ratings between 0 and 100. Like an ordinary VAS, the far left
location represents no pain while the far right is associated with the worst pain imaginable.
The pain induction machine, the thermode and slider can be seen in Figure 2a, Figure 2b
and Figure 2c, respectively.

The new data acquisition protocol includes a calibration and induction phase. The cal-
ibration is based on recording the parameters pain threshold (TP, threshold when heat
stimulus becomes painful) and pain tolerance threshold (TT , threshold when pain becomes
unbearable) individually for each subject. Following a staircase calibration method, in-
creasing 10-s temperature stimuli with 5 s pause in-between were given to the subject.
The protocol started with a temperature of 40 ◦C and increased the stimulations by 1 ◦C
each time up to a maximum of 49 ◦C . Participants were asked to continuously rate their
pain perception utilising the CoVAS. Temperatures exceeding 0 and 90 in CoVAS rating for
the first time were noted as TP and TT , respectively. To ensure further robustness of the cali-
bration, these parameters were recorded twice for each subject and averaged. Subsequently,
the thresholds were further tested to check their validity. During a calibration check, TP
and TT were once again applied and rated by participants. If the former threshold was
perceived as vigorously painful (CoVAS above 10), it was adjusted by reducing it by 1 ◦C .
Equally, TT was raised by 1 ◦C if its initial value did not retrieve CoVAS values above 90.
Four painful temperature stimuli Pi were then defined using the thresholds TP and TT with
the following equation:

Pi = TP + (i× R) (1)
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with i ∈ {1, 2, 3, 4} and R = (TT − TP)/4. Moreover, a non-painful temperature NP
was defined by NP = TP − R. Figure 3 illustrates baseline, non-painful and painful
temperatures with the associated thresholds.

(a)

(b)

(c)

Figure 2. The Medoc devices used during data acquisition. (a) Medoc Pathway system. (b) Cheps thermode.
(c) Computerised Visual Analogue Scale (CoVAS) slider.

TP TT

NPB

32°C

P1 P2 P3 P4

Temperature
R

PainNo Pain

Figure 3. The 5 temperature intervals defined by the temperature range R in dependency of TP and
TT . While the first temperature resembles a non-painful stimulus, the last 4 are meant to evoke pain.

During the pain induction phase, eight 10-s stimuli were applied for each of the
temperatures Pi defined previously. Between randomised stimuli, the temperature re-
turned to the baseline at 32 ◦C, and a resting phase of random duration between 20 to 30 s
was applied. Participants were asked to rate their pain continuously using the CoVAS.
To avoid any possibility of harm and sensitisation or habituation effects the thermode was
repositioned after half of the impulses.

During the pain induction phase, various physiological sensors were recorded by two
different wearable devices. Data of both were transferred via Bluetooth to one machine
in real-time. On the one side, the wristband Empatica E4 (E4) (Empatica E4, Empatica
Inc., Boston, United States) was worn on the non-dominant arm to avoid movement
artefacts and recorded Blood Volume Pulse (BVP) from which Heart Rate (HR) and Inter-
Beats-Interval (IBI) are computed, EDA, Accelerometer (ACC), and skin temperature in
64, 4, and 32 Hz, respectively. On the other side, respiBAN Professional (RB) (respiBAN
Professional, Plux, Lisbon, Portugal), a chest-worn device registering respiration and
various physiological modalities with a sampling rate of 1000 Hz, was included. Two
electrodes were placed at the medial phalanx of the index and middle finger of the non-
dominant arm to capture EDA. Moreover, the activity of the heart was measured by
monitoring ECG with a positive electrode at the upper left, a negative electrode at the upper
right pectoral and a reference electrode placed at the right waist. In addition, an electrode
placed on the skin above the trapezius muscle recorded its activity via Electromyography
(sEMG). To further reduce noise and artefacts a reference electrode was placed above the
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7th cervical vertebrae. Moreover, the same self-adhesive disposable electrodes (Kendall
Covidien H124SG �24 mm, Wolfram Droh GmbH, Mainz, Germany) were stuck on all sites.
No additional gel or other substance was needed, as the Ag/AgCl sensor is embedded in
an adhesive ad conductive hydrogel. While the application takes a little longer than simple
dry electrodes with a Velcro strap, Ag/AgCl hydrogel electrodes stick safely and provide
the most reliable EDA signals [35]. As washing hands decreases skin conductance because
it removes sweat and other conductance increasing substances, participants were asked to
wash their hands with simple soap immediately before the procedure to standardise the
time since the last handwashing ([36], p. 657). To further restrict the noise level, EMG and
ECG sites were cleansed with simple alcohol pads [37].

In addition to the physiological sensors, behaviour responses were also recorded.
An HD Webcam Pro C920 (C920, Logitech, Lausanne, Switzerland) placed in front of the
subjects, captured RBG-video information incorporating facial movements. Moreover,
depth information was gathered using an Intel® RealSense™ D435 (D435, Intel Corporation,
Santa Clara, CA, USA) camera. To ensure consistent and sufficient lighting, two light boxes
were setup in a 45◦ to the left and right in front of the participant and shutters of the
windows were closed. While aiming for a comparable setup, the same video modalities
like BVDB (RGB and depth information) were recorded, but differences in devices (e.g.,
D435 vs. Kinect) could introduce differences in the resulting datasets. Subjects were asked
to sit comfortably, rest the non-dominant arm and use the other to rate their pain using
the CoVAS. The study took roughly one hour for each subject. Because of technical issues
during the recording or flawed conduction of the experimental setup, three subjects were
removed, creating a final dataset of 52 subjects in total.

3.2. Pre-Processing & Segmentation
3.2.1. BioVid Heat Pain Database

Since the BVDB is already segmented, no further segmentation step was implemented.
Nevertheless, it is noteworthy that previous work proposed to realise different segmenta-
tion procedures. Thiam et al. [38] proposed to extract windows of 4.5 s with a shift from
the elicitations’ onset of 4 instead of 3 s. Thus, presented and previously published results
on the BVDB may not be directly comparable. Both segmentation approaches (original
segmentation of the BVDB and the one proposed by Thiam et al. [38]) are visualised in
Figure 4.

Stimulus

Baseline

4 sec~2 sec ~2 sec

4 sec 4.5 sec
Thiam

3 sec 5.5 sec
BioVid

Time

Temperature

Figure 4. Window segmentation of the BioVid Heat Pain Database (BVDB) dataset. Window seg-
ments available in the public BVDB are highlighted in yellow. Thiam et al. [38] proposed another
segmentation process highlighted in green that is used in [30,33] as well.
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Kächele et al. [28] showed that z-score normalisation can boost performance on the
BVDB, but the approach is only available as an offline procedure as standardisation was
done per subject. To benefit from these findings, but at the same time being able to keep
the system dynamic, a normalisation per window was conducted. In detail, a min-max
normalisation [39] was used to transform the data to the range [0, 1] as the approach has
the benefit to retain the original distribution in contrast to a z-score normalisation [40].
To further reduce computational cost the raw data have been resampled to a common
frequency of 256 Hz resulting in data samples of size time (T) × sensor (S) with T = 1408
and S = 3 including EDA, ECG and sEMG. Since previous work showed the importance of
the EDA signal outperforming other single sensor modalities for the automated recognition
of pain, this paper focuses on the classification of pain based solely on said channel.
Thus, the data frames were further selected to just include the EDA signal, resulting in
frames of shape 1408× 1. No additional pre-processing step was performed to keep the
computational pipeline minimal.

3.2.2. PainMonit Database

In a first step, the CoVAS and temperature labels recorded by the Medoc software and
collected sensor data of the PMDB were synchronised, resampled to a frequency of 256 Hz
(similarly to the BVDB) and linearly interpolated to ensure that channels have a common
recurrence. For the segmentation of the acquired data records, the whole duration of the
pain stimuli, i.e., 10 s, was used to define the segment length. Like the BVDB the applied
temperatures NP/P1−4 were used as objective class labels for their associated data samples.
Furthermore, 10-s windows preceding each stimulus were extracted and labelled with the
non-painful class B because temperature remained at baseline during these segments.

To assign a subjective pain label to each window, CoVAS values were processed
in several steps. First, the sum of the CoVAS ratings for each segment was computed.
The CoVAS sum associated with each segment was then scaled by dividing it by the
maximum CoVAS sum obtained among all segments associated with the current subject.
Next, discrete ranges were used to create the class labels where C0 corresponds to the
value 0 and C1, C2, C3, and C4 correspond to ]0, 0.25], ]0.25, 0.5], ]0.5, 0.75], and ]0.75, 1],
respectively resulting in an additional dataset. The aforementioned steps of scaling and
converting values into ranges were both performed in a subject-dependent way, i.e., per
participant. Windows without any CoVAS response were associated with the class label
C0. The segmentation process is visualised in Figure 5. The obtained data frames were
of size T × S with T = 2560 and S = 9 having 5 sensor channels for the E4 (BVP, EDA,
skin temperature, IBI and HR) and 4 for the RB (respiration, EDA, ECG and sEMG). Again,
data frames were filtered to only use the EDA information resulting in data frames of size
2560× 1, 2560× 1, and 2560× 2 for the EDA derived from the RB, E4 and both, respectively.

10 sec 10 sec20-30 sec

~0.5 sec ~2 sec ~0.5 sec ~2 sec

NP
P1
P2
P3
P4

B

Figure 5. Sensor data segmentation of 10 s non-painful (green area) and painful (blue area) windows
for the PainMonit Database (PMDB). The windows are centred around the on and offsets of the
temperature (red curve) stimulus. Moreover, the CoVAS (orange curve) values are used to create a
pain label that incorporates the subjective sensation of the subjects.

Moreover, the same normalisation step done on the BVDB was performed on the
segments of the PMDB as well.
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3.3. Feature Extraction

The following Section 3.3.1 describes the calculation of HCF used in this study for
pain recognition in detail. Section 3.3.2 summarises the most common supervised feature
learning and Section 3.3.3 presents unsupervised feature learning approaches. As shown
in previous work, the EDA signal provides the best classification results and is focused on
in this work.

3.3.1. Hand-Crafted Features

Traditional approaches for HCF extraction based on EDA data focus on the decompo-
sition into its underlying parts, the tonic and phasic elements of the signal. Several varying
methods have been introduced in the past to accomplish this process. In addition, more
recent studies aimed to extract characteristics emphasising spectral analysis as well [35].
The following paragraph summarises the applied feature extraction approaches.

Initially, the EDA signal was split into its phasic and tonic components to investigate the
rapid changing spikes, also called Skin Conductance Response (SCR) and slowly adapting
SCL, respectively. While SCL describes the current degree of conductance, which changes
gradually, SCRs are frequently occurring spike-shaped peaks in the EDA signal. They
result from autonomic nervous system arousal in response to a stimulus and thus are
also referred to as event-related skin conductance responses. To decompose the sensor
data a simple approach of a forward-backward digital filter using cascaded second-order
sections was used. A second order butterworth with a cutoff frequency of 0.05 was
chosen. Applying the filter as low-pass and high-pass filter yields the tonic and phasic
components [41]. Moreover, SCRs are found in the phasic part by determining a peak when
an onset threshold of 0.01 and peak amplification threshold of 0.05 is exceeded [42,43]. Peak,
half recovery, on- and offsets of each SCR are identified and example data are visualised in
Figure 6.

Filtered
Tonic

(a)

Phasic
Onset threshold
Possible Onset
Possible Offset

(b)

Raw
Peaks
Onset
Offset
Half recovery

(c)
Figure 6. Electrodermal Activity (EDA) decomposition into the phasic and tonic signal with galvanic skin response detection.
(a) The filtered input and retrieved tonic signal. (b) The phasic component with possible on- and offset for the peaks. (c)
The raw signal with Skin Conductance Response (SCR) and their associated peaks, half recovery, on- and offsets.
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Moreover, 38 distinctive features deriving from literature [44] were extracted from the
window segments. An overview of the features can be found in Table 1 (later on referred to
as “HCF” approach).

Table 1. Features computed for the EDA signal.

Features

root mean square (RMS)
mean value of local maxima & minima

mean absolute value
mean of the absolute values (mav) of the first differences (mavfd)

mavfd on standardised signal
mav of the second differences (mavsd)

mavsd on standardised signal
variation of the first and second moment

indices of the minimum & maximum values; difference first and last value
mean & STD for phasic, tonic, amplitudes,

rise times half recovery and recovery range of tonic; number of
GSRs; sum of amplitudes; first amplitude; phasic max;

mean, STD and VAR on normalised signal

Furthermore, recently successful methods to extract hand-crafted features for auto-
mated pain recognition proposed in literature have been realised. The more sophisticated
methods named derivative of phasic component of EDA (dPhEDA) based on a convex
EDA optimisation method (cvxEDA) [45] and spectral features time-varying index of
sympathetic activity (TVSymp) and its modified version (modified spectral features time-
varying index of sympathetic activity (MTVSymp)) [46,47] have been implemented as
well and were compared. Moreover, a feature fusion approach including all hand-crafted
features coming from the different methods (HCF, dPhEDA, TVSymp and MTVSymp)
was evaluated and is referred to as “HCF combined”.

3.3.2. Supervised Feature Learning—Neural Networks

Deep learning approaches aim to automatically learn features from given input data.
During training, the raw data is fed to NNs so they can learn a mapping towards the class
output in an end-to-end manner. While these models have been shown to achieve state-of-
the-art performances for various tasks (for example, image recognition) their training can
be challenging as training is computationally expensive and finding optimal architectures
is not trivial. While relying on countless simple calculations it is challenging to derive a
human-understandable explanation of the models’ decision outputs, thus also referring to
black box models.

Different architectures, like Multi-Layer Perceptrons (MLPs) [48], CNNs [49] and
Recurrent Neural Networks (RNNs) [50], have been adopted for various tasks such as
natural language processing, classification, segmentation, image reconstruction, and time-
series prediction in the past. MLPs represent the simplest type of NN. To handle 2-
dimensional sensor data with its time (T) and sensor (S) axis, input data are flattened and
presented to a dense layer that awaits 1-dimensional input. A schematic illustration of an
MLP architecture can be found in Figure 7.

In contrast, CNNs, first introduced for image data, normally handle 3-dimensional
data (width × height × channels). To process sensor data, the raw data are fed to CNNs as
3-dimensional inputs (T× S× 1) in our study. For classification purposes, MLPs, consisting
of several dense layers, are often appended to the convolutional network. An illustration
of a CNN can be seen in Figure 8.
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Figure 7. Schematic illustration of an Multi-Layer Perceptron (MLP) architecture with h hidden
layers and c output classes presented by a softmax layer. Initially, the different sensor channels are
flattened into a (T × S)-dimensional vector and then fed to the various hidden layers.

Furthermore, so-called Convolutional LSTM networks were introduced [51], utilising
the benefits of Long Short-Term Memory (LSTM) and CNN layers at the same time by
establishing a novel type of layer. Classic LSTM layers have been extended for this purpose.
Instead of using internal matrix multiplications of MLPs, ConvLSTM layers replace them
with convolution operations of CNNs architectures. These hybrid layers seem to capture
spatiotemporal correlations better than classic LSTM layers whose dense build has too
many redundant connections. To process these spatiotemporal relations, ConvLSTM layers
(like simple LSTM layers) are fed with data of several time segments describing one sample.
Afterwards, the time sequential fragments of the initial sensor data with equal size are
interpreted one after another. Thus, the input data for ConvLSTM layers have an additional
axis compared to simple CNN layers and are 4-dimensional (number of segments, time
length, number of sensor channels, number of channels). Preliminary studies tested various
values for the parameter “number of segments” and determined 4 to be the one returning
the best performances. Therefore, the sensor information was split into 4 parts resulting in
data frames with shape (N × T/N × S× 1) with N being the number of segments or more
specifically (4× 352× 1× 1) and (4× 640× 1× 1) for the BVDB and PMDB, respectively.

Input

T

S

Flattening

Softmax 
layer

nh

nc

Conv

ConvPool
Pool

Figure 8. Schematic illustration of a Convolutional Neural Network (CNN) architecture with c output
classes presented by a softmax layer. Input data is processed by Convolutional (blue) and Pooling
(red) layers, extracting meaningful features which are fed to a combination of dense layers, similar to
single MLP layers.
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3.3.3. Unsupervised Feature Learning—Convolutional Autoencoders

Besides the presented neural networks for classification tasks, deep learning for
unsupervised feature extraction has been investigated in the past as well. One of the most
popular unsupervised feature learning approaches is based on Autoencoders (AEs) [52].
AEs are intended to learn a low-dimensional representation, also referred to as encoding,
in an unsupervised way. The dimensionality reduction is enforced by its hourglass shaped
architecture, comprising an embedding and decoder with a bottleneck in-between. While
the encoder maps the input sample to a lower dimensional feature space, the decoder
tries to reconstruct the original sample by upsampling the embedding. During successful
training of an autoencoder, the output is close to being identical to the input, as the decoder
can completely reconstruct the input from the given low-dimensional representation.
To evaluate the differences between input and output, often the Mean Squared Error (MSE)
is used as reconstruction loss. In addition to AE, Convolutional Autoencoders (CAEs)
follow the same principle leveraging convolutional layers by reducing dimensionality with
pooling layers and increasing dimensionality with upsampling layers. Upsampling layers
can be seen as a reverse operation to pooling layers as they scale up the given input by
repeating it. An illustration of a CAE can be seen in Figure 9.

Encoder Decoder

Input Reconstructed
input

Minimisation of the
MSE between x and x'

Embedding
layer

Conv

Conv

Conv Up Conv

Conv

Pool
Pool

Pool

Up Conv

Up Conv

Figure 9. An example of a Convolutional Autoencoder (CAE) architecture with its Encoder and
Decoder part consisting of Convolutional (blue), Pooling (red) and Upsampling (yellow) layers.
During training, the network is optimised to minimise the difference between input x and output x′.
The embedding layer (green) yields a low dimensional representation of the input x.

3.4. Classifier

To ensure a fair comparison of the different aforementioned feature extraction ap-
proaches, an Random Forest (RF) [53] was chosen as unique classifier in every setup. Also,
deep learning models, which usually combine the task of feature extraction and classifica-
tion, are just used to extract features to then follow the same classification step as other
approaches. To utilise deep learning models as feature extraction approach, supervised NN
architectures were first trained as classifiers. Here, networks were fed with 3-dimensional
data (T× S× 1), in most of our studies focusing on a single EDA channel being (T× 1× 1).
Afterwards, the classification layer (softmax) was removed to transform the model into a
feature extractor with the initial penultimate layer outputting characteristics. The truncated
model was then used to obtain feature vectors from the examples of the dataset to train
the RF classifier. Similarly, the CAE was trained in an unsupervised way on the training
set first. Afterwards, the encoder part was used as a feature extractor by transposing the
dataset to the feature set which is used to train and test the RF again.

Although multi-class classification has been investigated in the pain literature, best
performance results could be reported for binary classification tasks, where each class
represents a specific pain level. The best performances could be obtained for the classifi-
cation of very dissimilar pain levels, for example, no pain vs. high pain. Thus, classifiers
are exclusively trained to distinguish the non-painful class against the painful classes of
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each dataset in our study. For BVDB we report T0 vs. Ti for i ∈ {1, 2, 3, 4}, for PMDB B vs.
NP/Pi for i ∈ {1, 2, 3, 4} and C0 vs. Ci for i ∈ {1, 2, 3, 4}.

3.5. Evaluation

The evaluation methods were designed to match previous work and thus simplify
comparison. Models were assessed in a Leave-one-subject-out (LOSO) Cross Validation
(CV) scheme, where the data of each subject is used as a testing set once, while the rest
of the dataset forms the training set. Overall performance is obtained by averaging the
classification performances obtained for each tested subject. The protocol ensures that all
models are tested on unseen subjects (subject-independent), providing a realistic estimation
of the classifier used in real world applications.

The performance of such an experiment is estimated by the amount of correctly
predicted positive labels (tp), amount of mistakenly predicted positive labels (fp), amount
of correctly predicted negative labels (tn) and amount of mistakenly predicted negative
labels (fp). To report the classification performances of the different tested feature sets, we
used the accuracy, given as:

Accuracy =
tp + tn

tp + tn + f p + f n
(2)

Another performance evaluation can be given by the F1 score (Equation (5)). The F1 score
is defined by the harmonic mean between precision (Equation (3)) and recall (Equation (4))
and can fairly evaluate a setting with a class imbalance.

Precision =
tp

tp + f p
(3)

Recall =
tp

tp + f n
(4)

F1 score =
2× Precision× Recall

Precision + Recall
(5)

To be more precise, the macro F1 score which consists of the average of all class F1 score
is reported in our experiments:

macro F1 score =
1
n

c

∑
i=1

F1 scorei (6)

where c is the number of classes and F1 scorei constitutes the F1 score for the ith class. Thus,
from now on when presenting F1 scores we display the macro F1 score.

3.6. Implementation Details

Instead of reporting the outcome of one single LOSO, we decided to indicate the
average results obtained after performing LOSO five times. This was motivated by the
fact that outcomes of the deep learning methods showed that they fluctuate with different
iterations due to randomness in weight initialisation. Moreover, the bootstrapping process
in RFs further introduces a small variance in the results.

All algorithms and models were implemented using Python. For the RF and Deep
learning architectures, the sklearn and Keras with Tensorflow 2.2.0 backend libraries were
used, respectively. In our setup, the RF implementation of the package sklearn.ensemble with
100 diverse trees was realised. As optimiser for NN architectures, the Adaptive Moment
estimation (ADAM) [54] with an initial learning rate of 10−4 was chosen and models were
trained with 50 epochs using a batch size of 8. MSE was used as a loss function for the
CAEs experiments, categorical cross-entropy for the rest. As automated hyper-parameter
optimisation remains to be an obstacle [55], all architectures and their associated parameters
have been found and optimised in a trial-and-error manner. The average accuracy obtained
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in a 5 × LOSO setup for the tasks no pain (B) vs. high pain (P4) of the PMDB was used
as evaluation metric to select the best performing architecture on all subjects on average
for each deep feature learning approach. For example, for the CNN approach different
numbers (1, 2, 3) of blocks (one block consisting of a Convolutional, Max pooling and
Dropout layer) and various numbers of filters (10, 16, 32, 64) were tested, yielding best
results with 2 blocks and 16 filters. Moreover, the CNN architecture for EDA signals
proposed by Thiam et al. [30] was implemented and compared to our approaches using the
presented setup. While Thiam et al.’s model uses a deeper architecture than ours, it was
not able to retrieve better results and thus was not evaluated in later experiments. A report
of the results it could achieve on the BVDB and PMDB can be found in the appendix
(Appendix A). Similarly, MLPs with different numbers of blocks (1, 2, 3) were tested, one
block consisting of a Dropout and Dense layer with different numbers of neurons (50, 100,
250, 500) having little impact on the results with the best configuration at one block with
250 neurons. Our CAE architecture is inspired by the one presented in [33] and slightly
optimised by using Rectified Linear Unit (ReLU) as activation, increasing the pooling
size and adopting the number of filters. Description of the different architectures can be
found in Tables 2–5, describing the layer type and their properties, e.g., a ReLU activation.
The layers presenting features to the RF in the chosen classification pipeline are highlighted
in grey.

Table 2. MLP architecture.

Layer Name Neurons/Drop Rate Activation

Flatten - -

Dropout 0.1 -

Dense 250 -

Dropout 0.1 -
Dense 100 -
Dense 2 Softmax

Table 3. CNN architecture with dropout rate set to 0.1.

Layer Name No. Kernels
(Units)

Kernel (Pool)
Size Stride Activation

Convolutional 16 7 2 ReLU

Max Pooling - 4 - -

Dropout - - - -

Convolutional 16 7 2 ReLU

Max Pooling - 4 - -

Dropout - - - -

Flatten - - - -
Dense 100 - - -
Dense 2 - - Softmax



Sensors 2021, 21, 4838 16 of 26

Table 4. The architecture that uses ConvLSTM blocks, later referred to as just ’LSTM’ with a drop rate set to 0.1. The ’re-
turn_sequences’ parameter for the ConvLSTM layers was set to True.

Layer Name No. Kernels
(Units) Kernel (Pool) Size Stride Activation Recurrent

Activation

ConvLSTM2D 32 11 8 Tanh Hard sigmoid

Dropout - - - - -

Batch normalisation - - - - -

Max Pooling (3D) - 4 - - -

ConvLSTM2D 16 7 8 - Hard sigmoid

Dropout - - - - -

Batch normalisation - - - - -

Max Pooling (3D) - 4 - - -

ConvLSTM2D 8 3 2 - Hard sigmoid

Dropout - - - - -

Batch normalisation - - - - -

Max Pooling (3D) - 4 - - -

Flatten - - - - -

Dropout - - - - -
Dense 100 - - ReLU -
Dense 2 - - Softmax -

Table 5. CAE architecture with its encoder and decoder part.

Layer Name No. Kernels (Units) Kernel (Pool) Size

Convolutional 64 7

Max Pooling - 4

Convolutional 32 11

Max Pooling - 4

Convolutional 16 11
Max Pooling - 4
Up Sampling - 4

Convolutional 16 11

Up Sampling - 4

Convolutional 32 11

Up Sampling - 4

Convolutional 64 7

Convolutional 1 1

4. Results

The following section presents the results of the various experiments, first for the
BVDB, then for the PMDB. Models were trained in a binary classification task opposing a
specific pain level with a non-painful baseline. Table 6 summarises the 5× LOSO average
evaluation metrics for RFs trained on different feature extraction approaches just using
the EDA signal. While the MLP approach yields the best results (84.01%± 14.01 for T0 vs.
T4) for all tasks, the gap between the performances of the different methods remains small
(especially for deep learning and the best hand-crafted feature approaches). For T0 vs. T4
MLP and “HCF combined” return the best outcomes for deep learning and hand-crafted
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feature methods respectively with a difference of 0.64% in accuracy. MLP and CNN are the
best and worst performing deep learning models with a difference of 1.08% in accuracy.

Table 6. 5× Leave-one-subject-out (LOSO) average performance using the EDA sensor of the BVDB for several feature
extraction methods in combination with a Random Forest. Performance metrics are given as average accuracy (upper)
and F1 score (lower half) ± average standard deviation of each individual LOSO run. The best performing approach
is highlighted in grey. Moreover, a paired student’s t-test with a significance level of 5% was performed to check the
significance in differences between the accuracies obtained by each pair of approaches for each classification problem.
1,2,3,4,5,6,7,8,9 indicate a significant improvement compared to the HCF, dPhEDA, TVSymp, MTVSymp, “HCF combined”,
MLP, CNN, LSTM, and CAE approaches, respectively.

Method T0 vs. T1 T0 vs. T2 T0 vs. T3 T0 vs. T4

Acc

HCF 58.10± 12.81 2,3,4,5,7,8 63.27± 14.22 2,3,4 74.10± 13.53 2,3,4,7 82.73± 14.82 2,3,4

dPhEDA 56.10± 10.02 3,4 61.28± 13.61 3,4 70.75± 13.62 3,4 81.66± 13.47 3,4

TVSymp 53.83± 09.82 4 59.15± 12.49 68.75± 13.80 4 79.51± 14.44 4

MTVSymp 52.86± 10.43 59.86± 12.45 3 67.78± 13.48 78.46± 14.23
HCF combined 57.49± 11.67 2,3,4,8 63.46± 14.30 2,3,4,8 74.18± 13.76 2,3,4,7 83.37± 14.19 1,2,3,4

MLP 57.85± 12.05 2,3,4,8 64.68± 14.06 1,2,3,4,5,7,8 74.77± 13.79 2,3,4,5,7,8 84.01± 14.01 1,2,3,4,5,7,8

CNN 57.08± 11.70 2,3,4 64.05± 15.07 1,2,3,4,8 72.96± 13.96 2,3,4 82.93± 14.22 2,3,4

LSTM 56.68± 11.38 3,4 62.51± 13.73 2,3,4 73.32± 13.98 2,3,4 83.48± 13.62 1,2,3,4,7

CAE 58.39± 12.31 2,3,4,7,8 64.35± 14.55 1,2,3,4,8 74.09± 14.11 2,3,4,7,8 83.70± 14.39 1,2,3,4,7

F1

HCF 57.46± 13.21 62.32± 15.05 73.41± 14.33 82.38± 15.32
dPhEDA 55.69± 10.12 60.62± 14.02 70.05± 14.26 81.23± 14.14
TVSymp 53.41± 09.88 58.47± 12.98 67.96± 14.57 79.12± 14.93

MTVSymp 52.47± 10.49 59.19± 12.91 66.95± 14.19 78.08± 14.65
HCF combined 56.97± 11.83 62.52± 15.10 73.39± 14.65 82.97± 14.84

MLP 57.20± 12.39 63.47± 15.10 73.96± 14.68 83.58± 14.78
CNN 56.44± 12.01 62.93± 15.92 72.15± 14.77 82.52± 14.86
LSTM 56.19± 11.57 61.64± 14.38 72.54± 14.86 83.12± 14.25
CAE 57.77± 12.59 63.33± 15.41 73.30± 14.96 83.34± 14.98

Despite less advanced pre-processing involving only a per-window data normalisa-
tion, our features achieve similar performances to those reported in the literature. A com-
parison of the best LOSO performances obtained by our MLP approach to earlier work
is given in Table 7. To the best of our knowledge, Thiam et al. [30] still present the best
performing results for deep learning methods on the BVDB. The minor performance gap
between their and our results could be argued due to their advanced data pre-processing,
including several filters, segmentation, and data augmentation which were not in the
scope of this paper. In addition, using an end-to-end trained NN with a softmax layer for
classification could have advantages over the RF classifier.

Table 7. LOSO accuracy performance comparison to early work on the EDA signal of the BVDB. The
best performing approach is highlighted in grey.

Method T0 vs. T1 T0 vs. T2 T0 . T3 T0 vs. T4

Werner et al. [31] 55.40 60.20 65.90 73.80
Lopez-

Martinez et al. [56] 56.44 59.40 66.00 74.21

Thiam et al. [30] 61.67± 12.54 66.93± 16.19 76.38± 14.70 84.57± 14.13
MLP (Ours) 59.08± 12.67 65.09± 13.71 75.14± 13.49 84.22± 13.86

In contrast to the BVDB, the PMDB includes two sources for the EDA, having one site
collected at the wrist by the E4 and one at the medial phalanx of the index and middle
finger by the RB. Thus, all EDA sensor combinations with an MLP as a classifier were
evaluated in a first test by feeding the network with data samples of shape (T × S× 1).
Table 8 shows a comparison of the EDA sensor coming from the E4 (EDA_E4) and RB
(EDA_RB) and an early fusion of both. For the fusion approach, the information of both
devices was supplied to the classification approach as one data frame (T × 2× 1) simply
by concatenating the data. The outcomes suggest that EDA_RB outperforms EDA_E4 by
being significantly better in all tasks but B vs. NP. Moreover, the fusion of both yields
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only better accuracy results for B vs. NP/P1/P2 (only significantly better for NP/P2),
with EDA_RB still performing significantly better when used alone for B vs. T3/T4. Thus,
EDA_RB outperforms EDA_E4 and the fusion of both for most tasks making the expense of
the merging inefficient. Further experiments therefore report only results using EDA_RB.

Table 8. 5× LOSO average performance using different EDA sensor combinations of the PMDB with an MLP + Random
Forest (RF) classifier. The best performing approach is highlighted in grey. Moreover, a paired student’s t-test with a
significance level of 5% was performed to check the significance in differences between the accuracies obtained by each pair
of approaches for each classification problem. 1,2,3 indicate a significant improvement compared to the EDA_RB, EDA_E4,
and fusion approaches, respectively.

Method B vs. NP B vs. P1 B vs. P2 B vs. P3 B vs. P4

Acc
EDA_RB 50.43± 12.92 57.55± 11.17 2 63.17± 12.63 2 72.84± 14.27 2,3 86.50± 12.76 2,3

EDA_E4 53.46± 12.92 1 53.87± 14.78 57.41± 15.41 60.84± 16.38 71.15± 18.64
Both 54.59± 12.97 1,2 58.37± 13.39 2 64.59± 13.60 1,2 71.47± 15.74 2 85.19± 12.75 2

F1

EDA_RB 49.31± 13.34 56.12± 11.49 61.86± 13.25 71.57± 15.37 85.82± 13.98
EDA_E4 49.79± 14.46 50.86± 15.74 54.78± 16.88 58.52± 17.89 69.11± 20.65

Both 49.43± 15.61 54.04± 16.15 61.62± 16.35 69.66± 17.67 84.11± 14.94

For easier comparison with the results obtained on the BVDB, the results associated
with the objective temperature labels on the PMDB are provided first. Table 9 summarises
the results. While the BVDB does not contain data for the B vs. NP problem, the tasks B
vs. P1−4 are somehow comparable to T0 vs. T1−4. Again, the margin between the various
approaches stays minimal between HCF and deep learning approaches. The mean accuracy
across methods for B vs. NP/P1−4 are around ≈ 49%, 57%, 63%, 72% and 86% respectively.
For task B vs. P4, the CNN yields the best accuracy of 87.41%± 11.99 for a 5× LOSO
average performance. Outcomes of task B vs. NP remain close to a random guess (50% in
a two-class problem) for all extraction methods.

Table 9. 5× LOSO average performance using the EDA (RespiBan) sensor of the PMDB for several feature extraction
methods in combination with a Random Forest. Performance metrics are given as average accuracy (upper) and F1 score
(lower half) ± standard deviation. The best performing approach is highlighted in grey. Moreover, a paired student’s t-test
with a significance level of 5% was performed to check the significance in differences between the accuracies obtained by
each pair of approaches for each classification problem. 1,2,3,4,5,6,7,8,9 indicate a significant improvement compared to the
HCF, dPhEDA, TVSymp, MTVSymp, “HCF combined”, MLP, CNN, LSTM, and CAE approaches, respectively.

Method B vs. NP B vs. P1 B vs. P2 B vs. P3 B vs. P4

Acc

HCF 51.61± 12.51 2,3,4,5,7,8,9 56.11± 11.19 3,4,8 61.29± 12.35 3,4 73.99± 13.02 2,3,4,5,7,8,9 87.21± 11.32 2,3,4,5

dPhEDA 49.21± 11.45 57.19± 12.41 3,4,8 63.18± 12.47 1,3,4,8 70.36± 12.58 3,4 85.27± 12.02 3,4

TVSymp 48.80± 13.85 5 51.23± 12.65 57.46± 12.96 66.83± 13.57 80.44± 13.53
MTVSymp 48.32± 12.15 51.15± 12.21 57.41± 13.63 67.45± 14.15 79.90± 14.40

HCF combined 47.00± 12.40 57.38± 09.76 3,4,8 64.28± 13.10 1,2,3,4,6,8 72.45± 13.13 2,3,4,8 86.34± 12.27 2,3,4

MLP 50.43± 12.92 2,4,5 57.55± 11.17 3,4,8 63.17± 12.63 1,3,4,8 72.84± 14.27 2,3,4 86.50± 12.76 2,3,4

CNN 48.82± 13.72 58.08± 11.08 3,4,8 64.12± 12.16 1,2,3,4,8 72.00± 13.84 2,3,4 87.41± 11.99 2,3,4,5,6

LSTM 48.00± 12.10 53.65± 11.42 3,4 60.82± 12.74 3,4 71.23± 13.00 3,4 86.32± 12.22 2,3,4

CAE 48.92± 11.18 57.07± 12.48 3,4,8 64.75± 12.70 1,2,3,4,6,8 72.60± 13.65 2,3,4,8 86.88± 12.36 2,3,4,5

F1

HCF 50.43± 12.70 54.38± 11.96 59.68± 13.10 72.33± 14.79 86.67± 12.16
dPhEDA 48.27± 11.56 56.04± 12.50 61.82± 13.12 69.03± 13.55 84.71± 12.82
TVSymp 47.96± 14.18 50.11± 13.06 56.12± 13.40 65.69± 14.16 79.92± 14.10

MTVSymp 47.45± 12.38 49.86± 12.76 56.34± 14.07 66.40± 14.78 79.44± 14.84
HCF combined 45.86± 12.63 55.68± 10.47 62.97± 13.75 71.02± 14.48 85.65± 13.51

MLP 49.31± 13.34 56.12± 11.49 61.86± 13.25 71.57± 15.37 85.82± 13.98
CNN 47.54± 13.98 56.39± 11.62 62.73± 12.95 70.51± 15.17 86.70± 13.41
LSTM 46.96± 12.28 52.07± 12.03 59.39± 13.50 69.81± 14.14 85.70± 13.30
CAE 47.48± 11.6 55.35± 13.19 63.46± 13.46 71.25± 14.95 86.30± 13.40

Lastly, Table 10 provides an overview of the results obtained after using the subjective
CoVAS labels of the PMDB dataset. An increase in accuracy and F1 score can be seen for all
tasks. A best accuracy of 93.78% and an F1 score of 87.60% can be reported for C0 vs. C4
using the HCF approach.
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Table 10. 5× LOSO average performance using the EDA (RespiBan) sensor of the PMDB for several feature extraction
methods in combination with a Random Forest. In contrast to previous tables, the CoVAS parameters are used as label
here. Performance metrics are given as average accuracy (upper) and F1 score (lower half) ± standard deviation. The best
performing approach is highlighted in grey. Moreover, a paired student’s t-test with a significance level of 5% was performed
to check the significance in differences between the accuracies obtained by each pair of approaches for each classification
problem. 1,2,3,4,5,6,7,8,9 indicate a significant improvement compared to the HCF, dPhEDA, TVSymp, MTVSymp, “HCF
combined”, MLP, CNN, LSTM, and CAE approaches, respectively.

Method C0 vs. C1 C0 vs. C2 C0 vs. C3 C0 vs. C4

Acc

HCF 66.57± 10.04 2,3,4,5,7 83.04± 08.78 2,3,4,8 88.73± 08.05 2,3,4,7,8,9 93.78± 06.43 2,3,4,7,8

dPhEDA 64.70± 09.32 3,4 81.84± 09.84 3,4,8 86.87± 08.31 3,4 92.71± 07.33 3,4,8

TVSymp 61.42± 10.59 78.61± 10.43 83.28± 08.51 89.39± 07.25 4

MTVSymp 61.99± 09.17 78.47± 10.17 83.50± 08.94 88.35± 07.88
HCF combined 66.04± 09.48 2,3,4 83.22± 09.45 2,3,4,8 88.49± 07.75 2,3,4,8,9 93.78± 06.39 2,3,4,6,7,8

MLP 66.47± 09.39 2,3,4,7,9 82.66± 09.02 3,4,8 88.43± 07.96 2,3,4,8,9 93.22± 06.98 2,3,4,8

CNN 65.54± 09.84 2,3,4 82.83± 08.85 2,3,4,8 87.94± 07.90 2,3,4 93.05± 06.63 3,4,8

LSTM 65.85± 09.25 3,4 81.52± 09.46 3,4 87.65± 08.71 2,3,4 92.52± 07.35 3,4

CAE 66.15± 09.49 2,3,4,7 83.10± 08.91 2,3,4,8 87.40± 09.36 2,3,4 93.50± 06.83 2,3,4,8

F1

HCF 57.75± 12.11 68.25± 16.37 79.09± 15.53 87.60± 13.48
dPhEDA 56.69± 10.18 65.81± 16.31 74.61± 16.36 85.12± 16.16
TVSymp 54.69± 10.35 62.75± 15.27 70.60± 14.70 81.05± 12.54

MTVSymp 55.31± 09.75 62.52± 15.05 71.11± 13.94 79.53± 12.78
HCF combined 58.26± 11.40 68.19± 17.00 78.57± 15.57 87.52± 14.27

MLP 58.54± 10.84 68.32± 16.09 78.35± 16.11 87.43± 13.64
CNN 57.61± 10.89 68.41± 15.95 77.87± 15.78 86.44± 14.52
LSTM 57.99± 10.22 66.91± 15.94 77.55± 16.54 85.52± 15.12
CAE 58.27± 10.90 68.62± 15.97 77.28± 17.03 87.29± 14.18

5. Discussion

The following section offers a detailed discussion concerning the presented results.
Especially, the tasks no pain vs. high pain (T0 vs. T4, B vs. P4, C0 vs. C4), retrieving the best
performances in the past and our work, are analysed. The aforementioned results lead to
the following conclusions. In contrast to what previously published work suggest [30], well
engineered HCF still yield relevant performances compared to deep learning approaches on
both datasets. This is underlined by the fact that the difference in accuracy between “HCF
combined” and the best approach is 0.64% for T0 vs. T4 while being 0.2% between HCF and
the best deep learning approach for B vs. P4. Although more sophisticated HCF approaches,
like dPhEDA, TVSymp and MTVSymp show decent performance for several tasks, they
perform slightly worse compared to the presented HCF vector. Nevertheless, they seem
to be complementary and thus can improve results, for example, on the BVDB where
“HCF combined” performs better than “HCF”. Possible improvements could be achieved
by further adopting and generalising these features as dPhEDA, TVSymp and MTVSymp
have been optimised and evaluated on datasets including a divergent pain induction, sensor
setup and segmentation process compared to ours. Especially, the methods have been
recently tested on larger time windows (25 and 55 s in [46]) compared to ours. Nevertheless,
our accuracy results for no pain vs. high pain using the three approaches, i.e., ranging from
78.46% to 81.66% for BVDB (T0 vs. T4) and ranging from 79.44% to 84.71% for PMDB (B vs.
P4), are somehow similar to previously published results on the thermal grill (TG) dataset.
Here, using an RF in a LOSO evaluation the best accuracy of 81.5% for no pain vs. high
pain was published in [46]. Moreover, no approach is significantly better than HCF for the
task B vs. P4. Thus, future work on automated pain recognition should focus on fusing
feature engineering and learning methods to further boost classification achievements.
In addition, the narrow gap between the performances of the different feature extraction
methods indicates that the required information for automated pain classification relying
on the EDA signal is simple to retrieve, and most reported techniques can find them. This
is emphasised by the absence of approaches significantly outperforming others for all
tasks (except dPhEDA, TVSymp and MTVSymp). For B vs. P4 an STD of 0.41 and for
T0 vs. T4 an STD of 0.48 across the 5× LOSO accuracy of the HCF and deep learning
methods was measured. Moreover, this leads to the deduction that more complex deep
learning architectures do not necessarily perform better than simpler ones, as our simple
MLP yields the best results for BVDB and close to best for PMDB (0.91% difference in 5 ×
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LOSO accuracy mean with the best performing approach) in comparison to architectures
involving more complex layers.

Moreover, outcomes generated on the PMDB confirm results reported on the BVDB
in the past and generate new insights. Slightly better but similar results can be obtained
on PMDB for the different temperature tasks. The enhanced classification performance
could be caused due to several factors. On the one hand, differences in the study protocols
could explain the performance gap. In particular, the redundant control of temperature
thresholds in the calibration phase makes the PMDB study protocol more robust. On the
other hand, the stimulus duration (BVDB: 4; PMDB: 10 s) was increased and could possibly
harvest more precise high pain data samples, as it has been shown that “heat pain is
assessed more reliably in tonic stimuli compared to phasic” [57].

Due to a modified setup, the newly recorded PMDB has the capability to generate
new insights in automated pain recognition. In contrast to other pain databases, wearable
recording devices, a non-painful stimulus and a CoVAS slider were introduced. Firstly,
the results for task B vs. NP show that it remains an obstacle to distinguish between
a non-painful stimulus and no stimulus at all. Further, these findings suggest that the
success of discriminating no pain from pain in our setup is related to the pain itself rather
than the recognition of physiological responses to any applied stimulus. Thus, features
retrieved from SCL are associated with the painful temperature and not just an event-
related response. Secondly, the exclusive use of two wearables to capture physiological
modalities and classification results showed that these mobile devices have the capability
of recording the underlying information sufficiently and create the possibility to generate
a mobile build. Thirdly, the promising results of CAE indicate that meaningful features
can be extracted in a completely unsupervised way. Finally, the novel acquired CoVAS
values enable fresh insights. While the average F1 score performance using HCF is 86.67%
for B vs. P4, it improves to 87.60% for the task C0 vs. C4. The greater classification
performance on labels incorporating the subjective feedback of participants suggests that
crucial information is given there. As stimuli are perceived diversely due to sensitisation
or habituation effects, CoVAS ratings differ for the same applied temperatures. These
variances and the corresponding physiological responses appear to be better constituted
in the labels C1−4 than in P1−4, thus yielding better classification performance (significant
improvement for the average F1 score performance between P4 and C4 can be measured for
RF and CAE).

Moreover, the novel label facilitates new machine learning tasks. Having a continuous
measurement, the classification problem can be transformed into a regression problem.
Figures 10 and 11 visualise possible regressions of the CoVAS and temperature data trained
exclusively on the EDA signal in a LOSO setup for one subject. Again, the CoVAS values
seem to yield better results achieving an MSE of 0.03 while the temperature label returns
an MSE of 0.09. Detail investigations of the regression task could be addressed during
future work.
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Figure 10. LOSO regression using the CoVAS values as label.
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Figure 11. LOSO regression using the temperature values as label.

6. Conclusions

In this paper, we introduced an evaluation framework allowing a fair comparison
of feature extraction methods on physiological sensor data in the scope of automated
pain recognition. By fixing the pre-processing, segmentation, and classification steps
of the pattern recognition chain, the performances of some of the most popular feature
extraction and feature learning approaches are compared. Experiments were carried out
on the BVDB, the most popular benchmark dataset for pain recognition and the newly
introduced PMDB dataset that is—to the best of our knowledge - the first to include
subjective pain ratings. The results lead to the following findings: firstly, well engineered
HCF still yield relevant performance compared to feature learning approaches relying on
deep learning. Furthermore, more complex deep learning architectures do not necessarily
perform better than simpler ones. In addition, the study using CoVAS labels showed that
subjective feedback of participants can be used to train robust pain classification systems
instead of objective measurement used in the past (like the applied stimuli temperature).
Finally, wearable devices can capture the underlying information in physiological signals
to distinguish high pain from no pain.
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While providing new insights for the pain machine learning community, this paper
exclusively focused on the EDA signal as previous work underlined it as being the most
promising one. However, EDA responses are not specific to pain and could be triggered by
other events as well, thus introducing a bias in classification predictions. Improvements
by assessing novel sensor channels recorded by wearables of the PMDB and introducing
dedicated fusion approaches will be addressed in a future iteration of this work. Moreover,
Lopez et al. extensively researched the use of subject-clustering. A sophisticated HCF, deep
learning, or fusion approach incorporating individual subject differences could possibly
boost the performance of classification models. In addition, medical setups could benefit
from transforming the task from classification to regression to provide detailed outcomes
and information rather than presenting broad estimations of the class labels.
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Abbreviations
The following abbreviations are used in this manuscript:

PMDB PainMonit Database

BVDB BioVid Heat Pain Database

BVP Blood Volume Pulse

ECG Electrocardiogram

GSR Galvanic Skin Response

sEMG surface Electromyogram

EMG Electromyogram

HR Heart Rate

EDA Electrodermal Activity

GSR Galvanic Skin Response

SCL Skin Conductance Level

SCR Skin Conductance Response

IBI Inter-Beats-Interval

ACC Accelerometer

RB respiBAN Professional

E4 Empatica E4

RF Random Forest

http://www.iikt.ovgu.de/BioVid.html
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SVM Support Vector Machine

HCF Hand-Crafted Features

MLP Multi-Layer Perceptron

NN Neural Network

CNN Convolutional Neural Network

AE Autoencoder

CAE Convolutional Autoencoder

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

DDCAE Deep Denoising Convolutional Autoencoder

ReLU Rectified Linear Unit

ADAM Adaptive Moment estimation

LOSO Leave-one-subject-out

CV Cross Validation

RMSE Root Mean Square Error

MSE Mean Squared Error

NRS Numerical Rating Scale

VAS Visual Analogue Scale

CoVAS Computerised Visual Analogue Scale

IASP International Association for the Study of Pain

STD Standard Deviation

VAR Variance

cvxEDA convex EDA optimisation method

dPhEDA derivative of phasic component of EDA

TVSymp spectral features time-varying index of sympathetic activity

MTVSymp modified spectral features time-varying index of sympathetic activity

Appendix A

Comparison to the Cnn Architecture Published by Thiam et al.

While there are not many deep learning architectures including all implementation
steps to compare results proposed in the past, Thiam et al. [30] provided the needed
information to reproduce their approach in their paper. Thus, we implemented their CNN
network (later referred to as “Thiam”) and compared it to ours (still referred to as “CNN”).
Although relying on more layers, Thiam et al. network performs worse compared to ours
using the proposed feature extraction framework. Tables A1 and A2 show the average
results of a 5 × LOSO scheme for the BVDB and PMDB, respectively. For the PMDB the
heater label is used to be comparable to the BVDB that contains only temperature labels
and thus Thiam et al. is trained on it exclusively.

Table A1. 5× LOSO average performance using the EDA sensor of the BVDB for the Thiam and
CNN architectures. Performance metrics are given as average accuracy (upper) and F1 score (lower
half) ± average standard deviation of each individual LOSO run. Moreover, the best performing
approach is highlighted in grey.

Method T0 vs. T1 T0 vs. T2 T0 vs. T3 T0 vs. T4

Acc CNN 57.08± 11.70 64.05± 15.07 72.94± 13.96 82.93± 14.22
Thiam 57.89± 12.61 64.01± 14.40 72.78± 15.14 81.98± 15.37

F1
CNN 56.44± 12.01 62.93± 15.92 72.15± 14.77 82.52± 14.86
Thiam 56.97± 13.06 62.94± 15.21 71.93± 16.00 81.58± 15.96
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Table A2. 5× LOSO average performance using the EDA (RespiBan) sensor of the PMDB for the
Thiam and CNN architectures. Performance metrics are given as average accuracy (upper) and
F1 score (lower half) ± standard deviation. Moreover, the best performing approach is highlighted
in grey.

Method B vs. NP B vs. P1 B vs. P2 B vs. P3 B vs. P4

Acc CNN 48.82± 13.72 58.08± 11.08 64.12± 12.16 72.00± 13.84 87.41± 11.99
Thiam 49.71± 11.58 54.37± 11.69 62.37± 11.59 72.88± 12.12 86.52± 12.13

F1
CNN 47.54± 13.98 56.39± 11.62 62.73± 12.95 70.51± 15.17 86.70± 13.41
Thiam 48.41± 11.89 52.69± 12.40 61.10± 12.37 71.41± 13.60 85.80± 13.48

Although yielding good results for no pain vs. low pain, Thiam’s network does
not perform better for tasks no pain vs. high pain (T0 vs. T4/B vs. P4). Because of the
obtained results and the higher complexity of Thiam’s network, it was not used in our
experiments. Moreover, there is a discrepancy between accuracy results reported in Thiam
et al. [30] and the ones yielded in our setup. Differences can be argued by variations in the
pre-processing chain and unequal evaluation scheme using a single LOSO scheme and a 5
× LOSO average in [30] and our framework, respectively.
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