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ABSTRACT Rhizobium sp. strain 11515TR was isolated from the rhizosphere of to-
mato in Laguna, Philippines. The 7.07-Mb complete genome comprises three repli-
cons, one chromosome, and two plasmids, with a G�C content of 59.4% and 6,720
protein-coding genes. The genome encodes gene clusters supporting rhizosphere
processes, plant symbiosis, and secondary bioactive metabolites.

Rhizobia are best known as nitrogen-fixing bacteria that may form root nodules on
leguminous plants. They belong to the superfamily Rhizobiaceae in the alphapro-

teobacterial superphylum consisting of phenotypically diverse member genera such as
Bradyrhizobium, Ensifer (formerly Sinorhizobium), Mesorhizobium, and Rhizobium (1). The
mosaic structure of their symbiotic genome compartments could give rise to several
rhizobial species colonizing diverse plant hosts, which may have arisen through lateral
gene transfer of symbiotic genes (2, 3).

Here, we report the complete genome of Rhizobium sp. strain 11515TR, a novel
isolate from tomato rhizosphere in Los Baños, Laguna, Philippines. The strain was
grown in yeast mannitol medium (Sigma-Aldrich, Germany) at 25°C for 24 to 48 h.
Genomic DNA was extracted using an MGmed (Republic of Korea) DNA purification kit
according to the manufacturer’s protocol. The whole genome was sequenced by
Macrogen, Inc. (Republic of Korea) using a PacBio RS II platform, which generated
334,388 reads (N50 � 7,905 bp) from a 20-kb library. The reads were de novo assembled
using the Hierarchical Genome Assembly Process version 3.0 (HGAP3; Pacific Biosci-
ences) (4), which generated three closed contigs (N50 � 4,003,789 bp) estimated at
7,070,317 bp. The multipartite genome revealed that the strain has three replicons, one
chromosome and two plasmids (p11515TR-A and p11515TR-B), with sequencing cov-
erages of 141�, 134�, and 145�, respectively. Genome annotation was performed
independently using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (5) and
the Joint Genome Institute–Integrated Microbial Genomes and Microbiomes (JGI-
IMG/M) pipeline (6). Genome annotation of the combined replicons identified 6,720
protein-coding genes, 67 RNAs, and a G�C content of 59.4%. The sequences were
classified into 493 subsystems covering 44% of the genome. The species was estab-
lished by using the Microbial Genome Atlas (MiGA) (7) in comparison to the NCBI
RefSeq and prokaryotic databases, calculating the average nucleotide identity (ANI)
using the ANI calculator (8), and determining the digital DNA-DNA hybridization
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(dDDH) using the Genome-to-Genome Distance Calculator version 2.1 (9). Secondary
bioactive metabolites were predicted using antiSMASH version 4.0 (10).

The MiGA identified the type strain R. tropici CIAT 899 (ANI � 90.2%, dDDH � 3.3%)
and R. lusitanum P1-7 (ANI � 89.7%, dDDH � 0.8%) as the closest genomes to that of
strain 11515TR. The calculated values are below the species cutoff (ANI � 95%,
dDDH � 70%) (6, 8), supporting the systematic placement of strain 11515TR in the
genus Rhizobium but suggesting a novel Rhizobium species. The genome revealed gene
inventories supporting rhizosphere processes, including the presence of nodulation
genes (nod and nol) (11), nitrogen fixation genes in p11515TR-B, chemotaxis genes in
p11515TR-A, exopolysaccharide biosynthesis, and quorum-sensing molecules such as
homoserine lactone. The genome also encodes gene clusters potentially involved in
symbiotic association with plants, such as auxin biosynthesis, lignin degradation, and
both type IV and VI secretion systems. Several toxin-antitoxin systems putatively
involved in programmed cell death were further detected. Finally, several gene clusters
for secondary bioactive metabolites were also predicted from the genome, including
vicibactin, terpenoid, polyketide synthases, and nonribosomal peptide synthetase.

Data availability. The whole-genome shotgun project reported here has been
deposited at DDBJ/EMBL/GenBank under the accession numbers CP022998, CP022999,
and CP023000 for the chromosome, plasmid p11515TR-A, and plasmid p11515TR-B,
respectively. The versions described in this paper are the first versions.
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