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p190-B RhoGAP and intracellular cytokine signals
balance hematopoietic stem and progenitor cell
self-renewal and differentiation
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The mechanisms regulating hematopoietic stem and progenitor cell (HSPC) fate choices

remain ill-defined. Here, we show that a signalling network of p190-B RhoGAP-ROS-TGF-b-

p38MAPK balances HSPC self-renewal and differentiation. Upon transplantation, HSPCs

express high amounts of bioactive TGF-b1 protein, which is associated with high levels of

p38MAPK activity and loss of HSC self-renewal in vivo. Elevated levels of bioactive TGF-b1 are

associated with asymmetric fate choice in vitro in single HSPCs via p38MAPK activity and this

is correlated with the asymmetric distribution of activated p38MAPK. In contrast, loss of

p190-B, a RhoGTPase inhibitor, normalizes TGF-b levels and p38MAPK activity in HSPCs

and is correlated with increased HSC self-renewal in vivo. Loss of p190-B also promotes

symmetric retention of multi-lineage capacity in single HSPC myeloid cell cultures, further

suggesting a link between p190-B-RhoGAP and non-canonical TGF-b signalling in HSPC

differentiation. Thus, intracellular cytokine signalling may serve as ‘fate determinants’ used by

HSPCs to modulate their activity.
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H
ematopoietic stem cells (HSCs) are multipotent cells that
provide life-long blood and immune cells by their ability
to regenerate themselves—that is, self-renew—and to

differentiate into a variety of mature cells1. This potential has
allowed the development of clinical HSC transplantation,
the success of which depends on HSC numbers and their
self-renewing activity2,3. Therefore, understanding the
mechanisms that control HSC self-renewal is of particular
biological and clinical importance.

Although HSCs are mostly in a quiescent state4, HSC fate
decisions to self-renew or to commit to differentiation happen
during cell division. These fate decisions must be tightly regulated
to regenerate the pool of HSCs and produce adequate numbers of
mature blood cells at steady state or during stress-induced
regeneration1,5. HSC quiescence, survival and self-renewal are
controlled by separate pathways, although they are integrated6,7.
Understanding how the balance between HSC self-renewal and
differentiation is regulated remains a central issue in HSC
biology. Asymmetric self-renewal division enables HSCs to
produce distinct daughter cells, one that will maintain the
features of a HSC and one that will commit to differentiation,
through unequal inheritance of fate determinants by daughter
cells. It is thought that HSCs may modulate their fate and
generate either two stem cells or two committed progenitors to
meet the demand. Recently, numerous studies suggest the
occurrence of both symmetric self-renewal division and
asymmetric self-renewal division in vitro and in vivo6,8–10.

A challenge in investigating HSC fate choices has been that
HSCs are retrospectively defined by their ability to generate
all mature cells, making assessments of HSC state highly
dependent on the proliferation and differentiation potential of
the immediate progeny6. Further, accumulating evidence points
to the heterogeneity of the HSC compartment11–14. Thus,
identification of networks that regulate HSC fate decisions
requires HSC analysis under conditions where progenitor
proliferation and differentiation are unchanged. Studies at the
single cell level have provided valuable information on HSC
self-renewal, revealing stem cell factor (SCF) signalling intensity,
Lnk signalling pathway and lipid metabolism are important for
HSC fate6,8,9,15,16. However, only few studies have identified
factors that alter HSC fate and are asymmetrically segregated at
cell division. Recently, occurrence of asymmetric segregation of
the endocytic marker Ap2a2 associated with changes in HSC fate
has been reported17.

Members of the Rho GTPase family are critical regulators of
HSC functions18–21. They cycle between an active GTP-bound
and an inactive GDP-bound state22. Guanine nucleotide exchange
factors (GEFs) promote the exchange of GDP for GTP whereas
GTPase-activating proteins (GAPs) accelerate the rate of
hydrolysis of GTP. Rho GTPases are best known for their roles
in cytoskeleton reorganization, and contribute to the regulation of
asymmetric cell division23. Our laboratory previously reported
that p190-B RhoGAP (p190-B), a negative regulator of Rho
GTPase signalling24,25, limits HSC self-renewal19. Interestingly,
loss of p190-B enhanced long-term engraftment without altering
HSC quiescence, proliferation, survival and their mature lineage
differentiation potential19, making it an ideal model to study
HSPC functions that are inherited through divisions.

Here, an in vitro assay of paired daughter cells at the clonal
level coupled with in vivo transplantation and gene profiling
experiments were used to identify regulatory networks of
hematopoietic stem and progenitor cell (HSPC) activity during
bone marrow (BM) regeneration.

We identified a novel mechanism of HSPC regulation,
where TGF-b proteins are produced by HSPC in vivo, down-
stream of p190-B and reactive oxygen species (ROS), during BM

regeneration, and signal through non-canonical p38MAPK

pathway to alter HSPC functions independent on cell cycle
in vivo, and modulate retention of multiple myeloid lineages in
single HSPC in vitro. Intriguingly, this is correlated with
occurrence of asymmetric segregation of p38MAPK activity to
daughter cells during HSPC divisions in vitro. This study implies
that HSCs produce stress cytokines to autonomously modulate
signalling pathways during HSC regeneration, and reveals novel
functions for non-canonical TGF-b signalling as ‘fate determi-
nant’ of HSPC functions uncoupled from HSPC quiescence.

Results
p190-B regulates HSPC activity independent of proliferation.
We used a combination of in vitro single cell culture assays and
in vivo long-term repopulation experiments to investigate the role
of signalling pathways on HSPC functions. HSC self-renewal is
functionally identified in the serial repopulation assay, which tests
the capacity of HSCs to provide life-long reconstitution of all
blood-cell lineages and to maintain these properties in secondary
recipients. Since HSC self-renewal capacity is finite, a decline in
HSC activity is generally observed over serial competitive
repopulation assay. We previously reported that p190-B loss
enhances HSC self-renewal during serial transplantation19. These
experiments were performed with fetal liver hematopoietic cells
as p190-B-deficiency is embryonic lethal24,25. However, this
phenotype is not restricted to fetal liver HSPCs since LSK
(Lineage�Sca-1þ c-Kitþ ) from p190-B haploinsufficient adult
animals gave rise to higher long-term engraftment than LSK from
wild-type (WT) mice (Supplementary Fig. 1A). A classical cause
of HSC exhaustion is proliferative stress or inability to return to
quiescence following hematopoietic regeneration26. However,
p190-B-deficiency does not alter phenotypically defined HSPCs
(LSK-CD150þCD48– [LSK-SLAM]) survival and proliferation
in vitro and in vivo19. Here, to further evaluate this, mice
transplanted with WT or p190-B� /� cells were treated with the
myeloablative 5-fluorouracile (5FU) to induce LSK-SLAM
proliferation. Three days following 5FU challenge, WT and
p190-B� /� LSK-SLAM incorporated BrdU at the same level.
Eighteen days later, LSK-SLAM from each group had returned to
quiescence. A second 5FU treatment induced similar WT and
p190-B� /� LSK-SLAM proliferation (Fig. 1a). In vitro on the
single cell level, the kinetics of the first division of 2T-LSK-SLAM
isolated from secondary transplanted animals (2T) was identical
between the genotypes (Fig. 1b). Yet, p190-B deletion prevented
LSK-SLAM depletion and maintained normal proportion of
blood lineages over transplantation (Fig. 1c). Hence, p190-B
controls HSC self-renewal independent of HSC quiescence and
proliferation, making it an ideal model to examine mechanisms of
HSPC functions during divisions.

HSC fate decisions to commit to differentiation—or
not—occur during division5,27. To investigate this, we examined
lineage differentiation potential of LSK-SLAM and of their
immediate progeny at the clonal level using in vitro assays
described by Drs Suda and Nakauchi9,15,28. In one set of
experiments, single LSK-SLAM cells were cultured with
multiple cytokines (SCF, TPO, IL-3, G-CSF, EPO) and serum
to promote their proliferation and differentiation toward myeloid
cell lineages, for 14 days. Under these conditions, single cells
generated clones that contain erythroid cells (e), neutrophils (n),
macrophages (m) and megakaryocytes (M). In another set of
experiments, single LSK-SLAM cells were first cultured in serum-
free medium with SCF and TPO for the time of one division; the
daughter cells were then separated into two wells and further
cultured with SCF, TPO, IL-3, G-CSF, EPO and serum to
determine lineage differentiation potential of each daughter cell,
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known as ‘in vitro paired daughter cell assay’. Under these
conditions, single LSK-SLAM can divide symmetrically and
produce two daughter cells that have multiple myeloid lineage
potential (hereafter nemM daughter cell)9. Alternatively, cells can
divide asymmetrically and generate one nemM daughter cell
and one daughter cell that is committed to specific lineage
differentiation. Some cells also generate two committed daughter
cells. This in vitro assay measures symmetric or asymmetric
retention of multiple myeloid lineages in single HSPC. This assay
does not measure, nor can it be used to infer, any impact on
self-renewal of LT-HSC. This assay does not account for the
role of the microenvironment. Nevertheless, previous work from
the Eaves and Nakauchi groups have shown on the single
cell level that HSCs can be retained in vitro with similar
‘supra-physiological’ levels of cytokines6,10,11,15. Since these
analyses depend on the formation of a colony in vitro in non-
hypoxic conditions, which may cause bias in estimation of cell
differentiation potential9, in vitro paired daughter cell assays of
WT and p190-B-deficient cells were always assayed in parallel
under exactly the same conditions. We first examined nemM
potential of single 2T-LSK-SLAM cells. 2T-LSK-SLAM from each
genotype had similar clonogenic efficiency, and these cells
produced similar frequency of nemM clones (80%) (Fig. 1d),

indicating that these cells are multipotent and that their
descendant cells have comparable proliferation and
differentiation potential, in response to serum and cytokines
in vitro. We then analysed the multilineage potential of daughter
cells of single LSK-SLAM division, in the in vitro paired daughter
cell assay (Fig. 1e)9 relative to non-previously transplanted
LSK-SLAM isolated from 6-week old mice (0T). The numbers of
LSK-SLAM divisions that did not generate any nemM daughter
cells were similar between the groups (B10%, Supplementary
Table 1). The cloning efficiency was similar between 2T-WT and
2T-p190-B� /� LSK-SLAM (Fig. 1f). Within divisions generating
at least one nemM daughter cell, 0T LSK-SLAM mostly generated
two nemM daughter cells (93% symmetric divisions).
2T-WT LSK-SLAM produced only 51% symmetric divisions.
2T-p190-B� /� LSK-SLAM maintained up to 92% symmetric
divisions (Fig. 1f). Similar results were obtained with LSK-SLAM
isolated from fetal livers or primary transplanted mice
(Supplementary Fig. 1B–D). Hence, p190-B deficiency enhances
multilineage potential inheritance during LSK-SLAM division
in vitro. This cannot be explained by alteration in first cell
division rate or differences in phenotype of descendant cells in
response to serum and cytokines, suggesting that p190-B loss
prevents more rapid LSK-SLAM differentiation in vitro.
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Figure 1 | p190-B regulates HSC self-renewal independent of proliferation. WT and p190-B� /� fetal liver cells were used for serial competitive

transplantation as in ref. 19. (at least two independent experiments) (a) BrdU incorporation was performed in secondary transplanted (2T) WT and

p190-B� /� mice challenged with 5-FU at indicated timeto examine HSPC proliferation. BM was harvested 18 h after BrdU treatment at each time point,

stained and analysed by flow cytometry (mean±s.e.m.; n¼ 5 mice per group). (b) Cell division kinetics. Single LSK-SLAM cells from 2T-WT and

2T- p190B� /� transplanted mice were isolated. Cells were counted every 12 h to determine division kinetics (n¼ 75–100 cells per group from three

independent experiments). (c) Frequency of LSK-SLAM and per cent lineage reconstitution in BM of 2T mice with WT and p190-B� /� cells, 4 months

post-transplant. (mean±s.e.m.; n¼ 7 mice per group). (d) Single cell multilineage differentiation assay. Single LSK-SLAM cells were isolated and cultured

with serum and multiple cytokines to induce terminal myeloid differentiation, for 14 days. Bar graphs show per cent of clones containing 4, 3 and 2 lineages

initiated from LSK-SLAM cells (n¼ 50–60 clones per group). (e,f) In vitro paired daughter cell assay of single LSK-SLAM cells isolated from control

(0T, non-transplanted cells) and 2T-WT and 2T- p190-B� /� mice. Paired-daughter cells were separated and further cultured individually with serum

and multiple cytokines to induce terminal myeloid differentiation, for 14 days. (e) Schema of the assay; images illustrate an asymmetric division with

one multi-potent clone containing four myeloid lineages (e: erythroid cells, n: neutrophils, m: macrophage/monocyte, M: megakaryocyte), and the

daughter clone containing only three lineages (n,e,m), scale bar, 20mm. (f) Left bar graph shows per cent of cloning efficiency of single cells generating

paired-daughter clones; bar graph on the right shows relative frequency of asymmetric and symmetric progenitor divisions calculated from cells generating

at least one multipotent daughter cell (n¼ 35–55 pairs per group from three or more independent experiments). P values were calculated by Fisher

exact 2� 2 contingency table by comparing percent of symmetric and asymmetric divisions of the following groups: 2T-WT versus 0T and 2T-p190-B� /�

versus 2T-WT.
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p190-B controls TGF-b signalling following HSC engraftment.
To identify how p190-B controls HSPC functions, we compared
the transcription profile of 2T-WT and 2T-p190-B� /� LSK-
SLAM (Fig. 2a, Supplementary Data 1,2). As expected, genes
categorizing ‘Rho GTPase signalling, cytoskeleton rearrangement’
were differentially expressed between the genotypes. Unbiased
gene set enrichment analysis (Fig. 2b) revealed that expression of
gene sets associated to TGF-b and p38MAPK signalling pathways
were elevated in 2T-WT. Gene ontology analysis of top
differentially expressed genes indicated that genes classified
under ‘regulation of cell differentiation’ were downregulated in
2T-p190-B� /� LSK-SLAM (Fig. 2c). Interestingly, signalling
pathways, including PKA, BMP, HHG and TGF-b pathways3,29,
were also downregulated in 2T-p190-B� /� LSK-SLAM. To test
whether inhibiting these pathways restored the loss of WT
transplanted HSPC activity, LSK-SLAM cells were cultured for
4 days with or without a series of pharmacological inhibitors.
Hematopoietic potential of resulting cultures was tested in colony
forming unit (CFU) assay. In this assay, 2T-p190-B� /� LSK-
SLAM produced two-fold more CFU than 2T-WT cells (Fig. 2d),
as previously shown19. Surprisingly, inhibition of TGF-b
signalling significantly increased CFU production of 2T-WT-
LSK-SLAM cultures, but not that of 2T-p190-B� /� LSK-SLAM
cultures (Fig. 2d). Inhibition of other pathways had no effects.
Consistently, 2T-WT LSK-SLAM expressed higher amount of
mRNA of target genes of the TGF-b pathway—tgif2 and smurf2
(ref. 30)—than 2T-p190-B� /� LSK and 0T LSK (Fig. 2e). mRNA
expressions of TGF-b1, TGF-bRI, II and III, and expression of
TGF-b RI (TGFBRI) at cell surface remained unchanged
(Supplementary Fig. 2A,B). These data suggest a possible link
between p190-B and TGF-b signalling in HSPC activity.

p190-B controls HSPC activity via TGF-b signalling. Since
genetic deletion of TGF-b signalling in hematopoietic cells

induces a rapid and lethal inflammatory disorder, precluding
long-term analysis of hematopoietic activity31, we used
pharmacological inhibitors to assess the functional importance
of TGF-b signalling on HSPC functions. This approach allowed
us to transiently inhibit TGF-b signalling during LSK-SLAM
division but not during the growth and differentiation of
each paired-daughter cell after separation, in the in vitro
paired-daughter cell assay. Inhibition of TGF-b signalling
using the canonical inhibitor of TGFBRI kinase, SB431542R

[TGFBRI-Inh1] did not change the kinetics of the first division of
2T-WT LSK-SLAM, although it accelerated the third division rate
(Fig. 3a). SB431542 completely rescued symmetric retention of
multiple myeloid potential of single 2T-WT LSK-SLAM divisions
in vitro (Fig. 3b). Similar results were obtained using another
TGF-b RI kinase inhibitor IIR (TGFBRI-Inh2; Fig. 3b)32.

In contrast, recombinant TGF-b1 (rTGF-b1) shifted 0T LSK-
SLAM divisions towards asymmetric divisions (Fig. 3c). This
effect was seen at low concentrations of rTGF-b1 (10 pg ml� 1)
that do not induce LSK-SLAM hibernation. Otherwise, 5 ng ml� 1

of rTGF-b1 did inhibit HSPC cell cycle. Wnt3a or Wnt5,
important regulators of HSC functions, had no effect on 0T
LSK-SLAM division outcome in vitro33,34. GSK3b inhibitor
treatment did not change 2T-WT LSK-SLAM asymmetric
divisions (Supplementary Fig. 3A,B). Hence, TGF-b1 signalling
seems to play a specific role on nemM potential inheritance of
LSK-SLAM divisions in vitro, which cannot be explained by
alteration in first cell division kinetics.

To investigate the importance of this pathway on HSC activity,
WT LSK-SLAM isolated from primary recipients were treated
with SB431542 ex vivo during their first division only, and
transplanted into secondary mice with competitor cells (Fig. 3d).
As noted previously, this treatment did not change the kinetics of
the initial LSK-SLAM division (Fig. 3a). Yet, TGFBRI inhibitor-
treated cells gave rise to higher PB chimerism than cells treated
with DMSO (vehicle control) at 16 weeks following engraftment
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Figure 2 | p190-B regulates TGF-b signaling following serial transplantation. (a–c) LSK-SLAM cells were isolated from three independent 2T mice per

group, three independent times, and used for microarray analyses. (a) Heat map of genes differentially expressed, top candidate genes based on Student’s

t-test values. (b) Unbiased gene set enrichment analysis of differentially expressed gene, FDRo0.1. (c) Bar graphs show the gene ontology results for

molecular and biological processes with the indicated numbers of genes that were different in 2T-p190-B� /� HSC, of top differentially expressed

candidate genes, analysed in TopGene Suite, Po0.0001. (d) CFU after in vitro culture. LSK-SLAM cells from 2T-WT mice were cultured with SCFþTPO for

4 days in the presence of inhibitors of various signaling pathways and cells from 2T-p190-B� /� were treated with TGFBRI inhibitor 1;, and then plated in

CFU assay without inhibitors to assess progenitor production. Data represented as fold change in CFUs of cultured cells compared with non-treated 2T-WT

cells from 3 independent experiments (mean±s.e.m.). *Po0.05, two-tailed unpaired t-test. (e) mRNA expression analyses by qPCR of TGF-b signaling

target genes—tgif2 and smurf2 in LSK cells isolated from control, 2T-WT and 2T-p190B� /� mice. Data are normalized to b actin and presented as fold

changes relative to non-transplanted cells. (mean±s.e.m.; n¼ 3–5 from three independent experiments). *Po0.05, two-tailed unpaired t-test.
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(Fig. 3d). No differences in the relative proportion of blood
lineages were noted (Fig. 3d). Thus, TGF-b inhibition maintained
HSC activity through LSK-SLAM divisions in vitro, in pooled
cultured cells.

TGF-b RI inhibition promotes HSC regeneration in vivo.
TGF-b signalling is important for HSC quiescence in vivo35, and
for them to return to quiescence after chemotherapy, such that
inhibiting TGFb signalling after stress enhanced HSC pool
and hematopoietic recovery36,37. Here, to determine whether
TGFBRI inhibition can reverse loss of HSC self-renewal in vivo,
TGFBRI-Inh2 (ref. 32) was injected into secondary transplanted
mice during the time of HSC pool regeneration—4 weeks, and
analysed 1 or 2 weeks later (Fig. 4a). TGFBRI-Inh2 treatment
increased LSK-SLAM and LSK frequencies in BM (Fig. 4b)
without affecting blood profile and BM cellularity
(Supplementary Table 2, Supplementary Fig. 4A) or blood
lineage content (Fig. 4c) or cell cycle of LSK-SLAM
(Supplementary Fig. 4B). Importantly, it increased BM HSC

frequency, as assessed by limiting dilution competitive
repopulation experiments in tertiary recipients. Under these
conditions, HSC activity is defined if the transplanted cells
contribute to 1% or more of both lymphoid and myeloid
lineages in the peripheral blood (PB)11,38. Donor BM cells from
TGFBRI-Inh2 treated mice repopulated recipients at higher
frequency than DMSO-treated group (Fig. 4d). These results
suggest that TGFBRI inhibition conferred higher probability of
HSC self-renewal in vivo (Supplementary Fig. 5).

P190-B controls HSPC shape asymmetry via TGF-b signalling.
Asymmetric cell divisions need polarized structures39,40.
We thus examined cell shape, polymerized filamentous
actin (F-actin) and microtubule organization in our model.
Non-transplanted and 2T-p190-B� /� LSK-SLAM (78–80%)
appeared round with symmetrical cell shape. Interestingly,
2T-WT LSK-SLAM exhibited a more elongated shape with
asymmetric distribution of F-actin (Supplementary Fig. 6A,B).
TGFBR inhibitor treatment restored 2T-WT LSK-SLAM cell
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Figure 3 | Loss of p190-B modulates HSPC activity via TGF-b signaling. (a) Effect of TGFBRI inhibitor 1 on cell division kinetics of LSK-SLAM isolated

from 2T WT mice. Single cells were treated with TGFBRI inhibitor 1 or DMSO ex vivo for 72 h to determine division kinetics as in Fig. 1 (n¼ 100 cells per

group in 2 independent experiments). (b) Effect of TGFBRI inhibitor 1 on cell division output using the in vitro paired daughter cell assay. Single LSK-SLAM

cells isolated from 2T-WT mice were treated with TGFBRI inhibitor 1 (n¼ 36 pairs) or TGFBRI inhibitor 2 (n¼ 7 pairs) or DMSO (n¼ 14 pairs) for the

duration of one division. Daughter cells were separated and further cultured individually with serum and cytokines without inhibitors to assess multilineage

differentiation potential of daughter cells. (c) Effect of rTGF-b1 on 0T-LSK-SLAM division output using the paired daughter cell assay as in b. Single

LSK-SLAM cells isolated from 0T-WT mice were treated with rTGF-b1 (10 pg ml� 1 and 5 ng ml� 1 n¼ 18 pairs) for one division; daughter cells were

analysed as in b. Bar graphs in B&C show per cent of asymmetric and symmetric divisions in each group, from at least two independent experiments.

P values were calculated by Fisher exact 2� 2 contingency table by comparing per cent of symmetric and asymmetric divisions of each inhibitor relative to

DMSO in b, and rTGF-b1 treatment relative to control in c. (d) Schema of experimental design. LSK-SLAM were isolated from 1T-WT mice, cultured with

SCFþTPO with TGFBRI inhibitor 1 (10mM) or DMSO for 48 h and transplanted into recipients with competitor cells without inhibitor. Dot plot shows PB

analysis 4 months post-transplant; per cent donor-cell chimera is shown. Bar graph shows donor-cell derived relative lineage reconstitution in PB, 4 months

post-transplant (mean±s.e.m.; n¼8 in 2 independent experiments). P value was calculated using 2-tailed unpaired t test.
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shape into a round structure (Supplementary Fig. 6C).
Conversely, treatment with rTGF-b1 caused 0T LSK-SLAM to
elongate (Supplementary Fig. 6D). Hence, cytoskeleton changes
may be an important mechanism by which p190-B and TGF-b
signalling regulate HSPC activity.

p190-B deficiency prevents production of aTGF-b in HSPCs.
TGF-b factors are secreted as inactive protein complex bound to
the latency-associated peptide and the latent TGF-b1 binding
protein-1 (LTBP1)41. Dissociation from the complex enables
protein binding to their receptors, making a so-called ‘bioactive’
TGF-b protein (hereafter aTGF-b). TGF-b factors are produced
by numerous cell types42, including megakaryocytes and stromal
cells35, into the BM microenvironment where it is activated
notably by schwann cells43. Interestingly, HSCs do also produce
TGF-b (ref. 44). Although the level of aTGF-b proteins
increases in the BM microenvironment following 5FU-induced
myeloablation36, aTGF-b did not increase in BM following
irradiation/transplantation (Fig. 5a). Moreover, aTGF-b levels in
BM fluid were similar between the genotypes after transplantation
(Fig. 5b). Instead, aTGF-b drastically increased in 2T-WT LSK-
SLAM but not in 2T-p190-B� /� LSK-SLAM at 4 weeks and up
to 4 months following engraftment relative to 0T LSK-SLAM
(Fig. 5c,d). We used an antibody that specifically recognizes
aTGF-b but not the latent inactive form (Supplementary Fig. 7).
Levels of latent TGF-b1 were however similar (Fig. 5e). p190-B-
deficient LSK-SLAM remained responsive to rTGF-b1 in vitro, as
rTGF-b1 treatment promoted their asymmetric divisions
(Fig. 5f). Hence, p190-B loss limits TGF-b signalling by
preventing aTGF-b production in HSPCs following engraftment.

Overexpression of aTGF-b decreases HSPC activity. To further
assess whether increased aTGF-b production in HSPCs affects
their functions, we used transgenic Tg-b1gloþ /flox mice that
overexpress aTGF-b1 under a ubiquitous promoter upon Cre
recombinase45, crossed with Mx-Cre (hereafter Tg-Creþ , and

control Tg-Cre� ). The transgene TGF-b1 cDNA is mutated to
prevent the assembly of the latent complex, such that when
expressed the exogenous TGF-b1 protein is constitutively in a
bioactive form. Its expression is blocked by an intervening floxed
EGFP gene. Upon Cre recombinase, EGFP is no longer expressed,
but aTGF-b1 is expressed45. Loss of EGFP expression in
LSK-SLAM from polyIC-treated Tg-Creþ mice was confirmed
by flow cytometry analysis (Fig. 6a). Overexpression of TGF-b in
Tg-Creþ LSK cells was confirmed by immunoblot (Fig. 6b); the
size of the TGF-b1 band is similar to what is expected for
endogenous aTGF-b. Since exogenous aTGF-b is released in the
BM fluid of Tg-Creþ mice (Supplementary Fig. 8B), making
assessment on HSPC functions in vivo complicated by multiple
confounding factors including effects from the BM
microenvironment and all hematopoietic lineages, LSK-SLAM
were isolated 3 weeks after poly-IC injection and used for in vitro
experiments. Still, at this time, overexpression of aTGF-b did not
alter the frequencies of LSK-SLAM, LSK and LK (Fig. 6c), or
change cell cycle and survival of LSK-SLAM and LSKCD48� ,
respectively (Supplementary Fig. 8C,D). Interestingly, the rate of
first division of single Tg-Creþ LSK-SLAM in vitro was similar to
control, although the third cell division was slower (Fig. 6d).
In single cell assays, the frequencies of nemM clones generated
in vitro by Tg-Cre� and Tg-Creþ LSK-SLAM were similar
(Fig. 6e). However, in the in vitro paired daughter cell assay,
symmetric divisions of single Tg-Creþ LSK-SLAM were
drastically reduced (Fig. 6f). These results suggest that
overexpression of aTGF-b is sufficient to alter the outcome of
LSK-SLAM divisions and may favour more rapid HSPC
differentiation in vitro.

P190-B controls aTGF-b via reactive oxygen species. Since the
levels of latent TGF-b were similar between the groups, p190-B
likely controls maturation of aTGF-b in HSCs. We examined the
role of ROS because ROS can directly oxidize latent TGF-b,
subsequently releasing aTGF-b46,47, and is known to limit HSC
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Figure 4 | Inhibition of TGF-b signaling in vivo reverses loss of HSC self-renewal. Secondary recipient mice of WT cells were treated in vivo with DMSO

or TGF-b RI kinase inhibitor II [TGFBRI-Inh2] for four weeks, BM was analysed one week later, data from 2–3 independent experiments. (a) Schema of

experimental design. (b) LSK-SLAM and LSK numbers per femur in BM of 2T-WT mice treated with either DMSO or TGFBRI-Inh2 in vivo, five weeks post-

transplant. (mean±s.e.m.; n¼8–9 mice from 2 independent experiments). (c) Donor-cell derived relative lineage reconstitution in PB, 4 months post-

transplant (mean±s.e.m.; n¼ 8–9 mice from 2 independent experiments). (d) HSC frequency analysed by limiting competitive repopulation assay. BM
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donor cells per recipients, n¼4–5 per group, per cell dose). Graph indicates percent negative mice in each group at different cell doses. (n¼ 2 experiments,

P value calculated by chi square by comparing frequency of negative mice between groups).
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lifespan48. Consistently, ROS levels were significantly elevated in
1T or 2T WT LSKCD48� cells compared with 0T WT
LSKCD48� cells, but not in 2T-p190-B� /� LSKCD48�

(Fig. 7a, Supplementary Fig. 9A). Strikingly, treating 0T LSK-
SLAM with reagents known to increase ROS, that is, hydrogen
peroxide (H2O2) or rotenone, a mitochondrial complex I
inhibitor, increased aTGF-b levels in LSK-SLAM in vitro.
Co-treatment with the ROS scavenger N-acetyl-L-cysteine
(NAC) confirmed this increase was ROS dependent (Fig. 7b,
Supplementary Fig. 9B). In vivo, treating 2T-WT mice with NAC
during 5 weeks following transplant reduced levels of aTGF-b
proteins and p-smad2 in LSK-SLAM (Fig. 7c, Supplementary
Fig. 9C). In vitro, H2O2 treatment promoted asymmetric division
of 0T LSK-SLAM (Fig. 7d). Interestingly, this effect was
completely reverted when the cells were also treated with
SB431542 (Fig. 7d). These findings suggest a potential link
between ROS and TGF-b on HSPC functions.

p38MAPK pathway mediates TGF-b effect on HSPC activity.
TGF-b can signal via canonical Smad transcription factors, and
non-canonical pathways—for example, TRAF6/TAK1/p38MAPK

and Par6/Rho-ROCK30,49. We focused on p38MAPK because
Smad2 phosphorylation was similar between the genotypes
following transplantation (Supplementary Fig. 10A). Further,
p38MAPK can be regulated by p190-B in other cells24 and limits
HSC self-renewal48,50. In vitro, p38MAPK activity can be triggered
by rTGF-b1 in an ALK5-dependent manner (Supplementary

Fig. 10B). We found p38 phosphorylation (pp38) increased
in WT LSK-SLAM (Fig. 8a) following irradiation and
transplantation48, but not in 2T-p190-B� /� LSK-SLAM
(Fig. 8a). Similar results were obtained in cells isolated from
primary recipients (Supplementary Fig. 10C). Remarkably, pp38
levels were reduced in LSK-SLAM when mice were treated with
TGFBRI inhibitor2 (Fig. 8b) or with NAC following
transplantation (Supplementary Fig. 8D)48. As previously noted,
NAC treatment also lowered levels of aTGF-b (Fig. 7c),
suggesting a possible link between ROS, aTGF-b and pp38
in vivo. In vitro, SB203580, a p38MAPK activity inhibitor,
completely rescued symmetric division of 2T-WT LSK-SLAM
in the in vitro paired daughter cell assay (Fig. 8c) and it prevented
effect of rTGF-b1 on 0T LSK-SLAM divisions since single
LSK-SLAM treated with rTGF-b1 plus SB203580 generated two
nemM daughter cells at a frequency similar to LSK-SLAM treated
with vehicle, compared with rTGF-b1 treatment alone (Fig. 8d).
This suggests p38MAPK activity mediates TGF-b effects on HSPC
differentiation in vitro.

To further examine a link between p190-B, rTGFb1 and
p38MAPK in HSC activity, pooled p190-B� /� LSK-SLAM cells,
isolated from primary transplanted recipients (Table 1) or fetal
livers (Supplementary Table 3), were treated ex vivo with
rTGF-b1 either in the presence or absence of SB203580, for the
duration of one division. HSC activity was examined in
competitive transplantation using near-limiting dilution settings.
Such culture conditions did not alter cell numbers. But, LT-HSC
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Figure 5 | p190-B- deficiency prevents elevation of bioactive TGF-b in HSPCs. (a,b) aTGF-b1 levels were measured by ELISA in BM fluid of control (0T)

mice, and in recipient mice of WT cells 2 days following irradiation and transplantation (a) or in secondary recipient mice of WT and p190-B� /� cells

4 weeks following transplantation and in age matched control mice (b). Data are mean±s.e.m.; n¼ 3 independent samples in each experiment, two-tailed

unpaired t-test. (c,d) Detection of aTGF-b1 levels by immunofluorescence in LSK-SLAM 4 weeks (c) and 4 months (d) following transplantation.

Representative images of LSK-SLAM isolated from control, 2T-WT and 2T-p190-B� /� mice (bioactive TGF-b1 (green) and DAPI (blue), scale bar 10mm).

Bar graph shows quantification of mean fluorescence intensity in each group (C&D are mean±s.e.m. from n¼ 2 independent experiments, 35–50 cells

from each experiment, two-tailed unpaired t-test). (e) Detection of latent TGF-b1 in LSK-SLAM 4 months following transplantation, by immunofluorescence

(latent TGF-b1 (green) and DAPI (blue). Bar graph shows quantification of mean fluorescence intensity in each group (mean±s.e.m.; 35–50 cells from each

experiment were analysed; n¼ 2 experiments). (f) Effect of rTGF-b on 2T-p190-B� /� LSK-SLAM division output using the in vitro paired daughter cell

assay as in Fig. 1. Single LSK-SLAM cells isolated from 2T-p190-B� /� recipients were treated with rTGF-b1 (10 pg ml� 1) for one division; daughter cells

were analysed as in Fig. 1. (n¼ 17 pairs from two independent experiments, fisher exact 2� 2 contingency table).
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activity of pooled p190-B� /� LSK-SLAM cells cultured with
rTGF-b1 was significantly reduced (30% of transplanted mice
showing greater than 1% contribution to both myeloid and
lymphoid lineages in PB versus 56% from non-treated cultures).
This effect was prevented by addition of SB203580 (65% mice
were engrafted (Table 1 and Supplementary Table 3). Of note,
the mice showing o1% donor-cell contribution in at least
one lineage had lost durable myeloid cell contribution, which
indicates the donor cell population exhibited ST-HSC activity.
Hence, rTGF-b1 can alter HSC activity via p38MAPK signalling
pathway in vitro. These findings suggest that p190-B loss
may favor the likelihood of HSC stemness inheritance
during in vitro divisions, by preventing autonomous activation
of TGF-b-p38MAPK axis.

Because asymmetric cell division is controlled by asymmetric
inheritance of cell fate determinants, inheritance of pp38 and
Numb by daughter cells was examined. Numb, a conserved cell
fate determinant, can be asymmetrically distributed during HSPC
division51 and is a marker of differentiation39. Remarkably, pp38
was symmetrically distributed to daughter cells of 0T and

2T p190-B� /� LSK-SLAM along with low levels of Numb.
However, pp38 was asymmetrically inherited by daughter cells of
2T WT LSK-SLAM (Fig. 9a,b). In 70% of asymmetric divisions,
the daughter cells receiving high pp38 also received high Numb
whereas the daughter cells inheriting low pp38 also had low
Numb, suggesting high correlation between pp38 and Numb
distributions (Fig. 9a,b). In the remaining divisions, Numb
was found equally distributed to daughter cells whereas pp38
distribution was asymmetric. Since addition of p38MAPK inhibitor
after daughter cell separation changed the multilineage potential
of the daughter cells (Fig. 9c), asymmetric distribution of pp38 is
likely important to dictate the level of differentiation of the
daughter cells. These findings suggest association between pp38
segregation and HSPC multilineage potential in vitro. Since low
p38MAPK signalling intensity also correlated with maintenance of
HSPC activity independent on cell cycle progression, p38MAPK

pathway may play important roles in HSPC commitment to
differentiation. Together, p190-B-TGF-b-p38MAPK network
represents a novel regulatory pathway of HSPC activity
independent of cell cycle progression.
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Figure 6 | Over expression of aTGF-b promotes HSPC differentiation. Mice. transgenic for MxCreþ /Flox-EGFP-STOP-aTGFb [Tg-Creþ ] and

MxCre-/Flox-EGFP-STOP-aTGFb [Tg-Cre� ] were analysed 3–4 weeks after poly-IC injection. All data are from at least 2 independent experiments.

(a) Histograms of flow cytometry analysis of EGFP expression in LSK-SLAM cells. (b) Western blot analysis of LSK cells showing overexpression of aTGF-b
(expected size for aTGF-b is around 15–20 kd). Actin was used as an isnternal control. (c) Bar graphs show frequency of LSK-SLAM, LSK and LK population

in BM (mean±s.e.m.; n¼9 mice per group). (d) Cell division kinetics. Single LSK-SLAM cells from each group were cultured with medium containing

SCFþTPO. Wells were examined every 12 h to determine division kinetics (n¼ 30–50 cells per division per group, two independent experiments).

(e) Single cell multilineage differentiation assay of LSK-SLAM cells isolated from each group. Single cells were isolated and cultured with serum and

multiple cytokines to induce terminal myeloid differentiation, for 14 days. Clones were analysed as in Fig. 1. Bar graph shows per cent of clones containing 4,

3 and 2 lineages (n¼40–80 clones per group, two independent experiments). (f) In vitro paired daughter cell assay performed with LSK-SLAM cells.

Single LSK-SLAM cells were cultured with SCFþTPO for one division. Daughter cells were separated and further cultured individually with serum and

cytokines to assess multilineage differentiation potential of daughter cells, as in Fig. 1. Bar graph shows frequency of asymmetric and symmetric divisions

(n¼ 20–30 pairs per group, two independent experiments). P value was calculated using fisher exact 2� 2 contingency table.
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(c) 2T-WT mice were treated with NAC for 5–8 weeks following transplantation. 2T-WT mice not treated with NAC were used as controls. LSK-SLAM cells

were immuno-stained for aTGF-b. Bar graph shows mean fluorescence intensity in arbitrary unit (mean±s.e.m.; 40–50 cells per experiment were analysed

in each group, three independent experiments, two-tailed unpaired t-test). (d) Effect of H2O2 on 0T LSK-SLAM division output using the in vitro paired

daughter cell assay. Single LSK-SLAM cells isolated from 0T-WT mice were treated with H2O2 or with H2O2þTGFBRI-Inh1 for the duration of one division.

Daughter cells were analysed as in Fig. 1. Bar graph shows frequency of asymmetric and symmetric divisions (n¼ 28 pairs per group, two independent
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from 2 independent experiments; mean±s.e.m., two-tailed unpaired t-test). (c) Effect of p38MAPK inhibitor on 2T-WT LSK-SLAM division output using the

in vitro paired daughter cell assay as in Fig. 1. Single LSK-SLAM cells isolated from 2T-WT recipients were treated with p38MAPK inhibitor for one division;
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isolated from 0T mice and treated with rTGF-b1 alone or rTGF-b1þ SB203580. Bar graph shows per cent of symmetric and asymmetric divisions (n¼ 21–23

pairs in two independent experiments). P values were calculated by Fisher exact 2� 2 contingency table.
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Discussion
The factors that control HSPC fate decision remain unclear. The
paired daughter cell assay in vitro allows quantitative assessment
of HSPC lineage commitment during active division, and may
thus provide insights into how HSPC fate decisions are
regulated6–9,15. Although information on lymphoid potential is
missing and although HSC self-renewal cannot be assessed,
loss of multi-lineage myeloid potential correlates with loss of
long-term repopulation potential52,53. Our findings suggest the
existence of a signalling network, p190-B-TGF-b-p38MAPK

activity that controls HSPC activity independent of cell
proliferation—and may control a fate decision leading to HSC
accelerated differentiation during division.

HSC fate can be instructed by cytokines. Stem cell factor
dose-dependently maintains HSC self-renewal divisions in vitro;
and can instruct HSC fate even before the first cell division6.
Nerve growth factor and Collagen 1 in combination with SCF and
IL-11 support HSC activity inheritance through divisions7. Lnk
negatively regulates HSC self-renewal divisions downstream of
thrombopoietin16. These fate decisions can depend on intrinsic

polarity pathway39. In this case, polarity cues drive the
asymmetric distribution of cell fate determinants to each
daughter cell—leading to distinct cell fate. The conserved
pathway of asymmetric division involves the canonical polarity
pathway Par/aPKC, which determines the asymmetric inheritance
of the cell fate determinant Numb—an inhibitor of NOTCH
signalling39. Although Numb can be asymmetrically distributed
to daughter cells in HSPCs51, HSC functions are preserved in
absence of aPKC expression54, suggesting other pathways also
contribute to asymmetric divisions. Other factors, including
peroxisome proliferator-activated receptor d (PPAR-d)–fatty-acid
oxidation (FAO) pathway8, the transcription factor Satb1 (ref. 55)
or Musashi-2 (ref. 56), were shown to be asymmetrically
partitioned during HSPC division. More recently, Lis1, a
canonical regulator of spindle orientation during division, was
shown to be important for HSC integrity57. However, most of
these factors also altered HSC quiescence/proliferation. The
Sauvageau group reported that the endocytic protein Ap2a2 is
asymmetrically distributed during HSPC division, and expression
of Ap2a2 enhances HSC activity, independent of HSC

Table 1 | Effect of TGFb on p190-B� /� HSPC engraftment.

Chimera41% Chimerao1% Total mice transplanted P value

p190-B� /� 9 7 16
p190-B� /� þ rTGFb1 4 9 13 0.0006*
p190-B� /� þ rTGFb1þ p38 inhi 13 7 20 o 0.0001w

1T p190-B� /� LSK-SLAM cells (300) were treated ex vivo with rTGF-b1 alone or rTGF-b1þ SB203580 for 48 h, and transplanted in competition with 200,000 CD45.1þ cells. Table shows numbers of
mice exhibiting more than 1% contribution to both myeloid and lymphoid lineages in PB (positive mice) and numbers of mice with less than 1% contribution in at least one lineage (negative mice)
(2–3 independent experiments). P values were calculated by Fisher exact 2� 2 contingency table by comparing per cent of negative and positive mice of the following groups: *p190-B� /� vs
p190-B� /� þ rTGF-b1, and wp190-B� /� þ rTGF-b1 vs p190-B� /� þ rTGF-b1þ SB203580. Difference between the three groups was analysed by w2 test, Po0.0001.
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distributions of p-p38MAPK and Numb in daughter cells. (b) Bar graphs represent per cent of symmetric and asymmetric distribution of p-p38MAPK and

Numb in mitotic cells. 35–40 mitotic cells from three independent experiments were analysed. P values were calculated by Fisher exact 2� 2 contingency

table comparing 2T-WT to control and 2T-p190-B� /� to 2T-WT. (c) Effect of p38MAPK inhibitor on daughter cell multilineage differentiation potential.

Single 2T-WT LSK-SLAM cells were cultured with SCFþTPO for one division. Paired-daughters were separated and individually cultured with serum and

multiple cytokines for mature differentiation for 14 days in the presence or absence of p38MAPK inhibitor. Resultant clones were analysed as in Fig. 1 (n¼ 20

pairs in two independent experiments). P values were calculated by Fisher exact 2� 2 contingency table by comparing per cent of symmetric and

asymmetric divisions of p38MAPK inhibitor versus DMSO.
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proliferation, making it a rarely identified ‘fate determinant’ in
HSC17. Our findings suggest that p190-B and downstream
regulatory elements abrogate HSPC activity through divisions
in vitro, and alter HSPC functions in vivo in absence of any effect
on cell survival and proliferation. Hence, balancing HSPC fate
decision to commit to differentiation may be a mechanism by
which this signalling network controls HSC engraftment in vivo.
p190-B is also known to regulate adipogenesis versus myogenesis
fate decisions of fibroblasts and mesenchymal cells25. We recently
showed that it controls mesenchymal stem cell fate specification
to adipocyte and osteoblast lineages both in vitro and in vivo.
These decisions are important for the development of a functional
mesenchymal stem cell niche during ontogeny58, and for
the development of bones and fat. Hence, p190-B may be a
major, yet under-appreciated, regulator of somatic stem cell fate
specification.

Most intriguingly is the finding that TGF-b-p38MAPK

signalling pathway mediates this process. We found that
TGF-b/p38MAPK signalling increases in HSPCs following
transplantation. When TGF-b/p38MAPK signalling pathway is
high following engraftment, HSPCs appear to commit to
differentiation, at least as seen using in vitro assays. When
TGF-b/p38MAPK signalling remains low, either due to loss of
p190-B expression or the use of TGFBRI pharmacological
inhibitors, HSC self-renewal activity is maintained. The use of
pharmacological inhibitors was essential to demonstrate this.
It allowed us a transient and reversible inhibition of TGF-b
signalling, hence circumventing pleiotropic action of TGF-b on
other hematopoietic cells. Interestingly, there was a clear
association between the asymmetric cell shape of transplanted
HSPCs, the asymmetric distribution of pp38 itself to their
daughter cells and the fact that these daughter cells exhibited
distinct differentiation stages, at least in vitro. Asymmetric
pp38 distribution was positively correlated with asymmetric
distribution of Numb. Further, inhibition of p38MAPK activity in
the daughter cells could reverse their potential into multipotent
progenitors in vitro. These findings together suggest that the level
of pp38 can dictate HSPC state and that a daughter cell receiving
high levels of pp38 may be more prone to commit to
differentiation. Noteworthy, p38MAPK activity is important for
asymmetric self-renewal division of satellite cells during injury-
induced skeletal muscle repair. In these cells, p38MAPK activity is
activated in one daughter cell only, inducing MyoD expression
and tissue regeneration. The absence of p38MAPK activation in the
other daughter cell prevents MyoD induction, thus enabling self-
renewal59. Hence, fluctuations in signalling intensity and
p38MAPK activity are perhaps bona fide fate determinants in
HSPCs. Our study is an important extension to the existing
notion that different signalling intensity distinctly supports HSC
state6. This is in line with the (re)emerging notion that, after all,
cytokines may have instructive roles in HSC fate decision to
commit or not to differentiation60.

Mechanistically, it seems that HSCs intrinsically control the
levels of TGF-b signalling by producing the active form of TGF-b.
Upon serial transplantation, WT HSCs acquired long-lasting
expression of aTGF-b. Enhancement of aTGF-b in HSCs was
responsible for HSC activity changes occurring during hemato-
poietic regeneration. This is best supported with the observation
that overexpression of aTGF-b using genetic approach is
sufficient to promote HSPC differentiation in vitro in absence
of cell cycle progression changes. ROS appears to be one
mechanism of aTGF-b maturation in cells, perhaps via direct
oxidation of the pro-TGF-b into aTGF-b, as seen in other
cells46,47. Interestingly, this places ROS upstream of TGF-b in
HSPC fate decisions. Recently, hypoxia and autocrine TGF-b
were shown to promote human CD34þ quiescence, although

there was no evidence that hypoxia directly controls secreted
TGF-b (ref. 61). In the hematopoietic system, TGF-b is best
known for its potent growth inhibitory effect62. In vivo, TGF-b
can be secreted and activated in the BM microenvironment, and
acts in a paracrine manner to induce HSC hibernation43. In
addition, bioactive TGF-b proteins can increase in the BM
microenvironment following 5FU-induced myeloablation, and
impair HSC regeneration by limiting their proliferation36. TGF-b
seems important during the aging of the hematopoietic system,
distinctly affecting the proliferation of myeloid versus lymphoid-
biased subsets of HSCs13. On the other hand, TGFBRI deficiency
revealed that HSC functions are maintained over serial
transplantation without ALK5 activity63. We found TGF-b can
control HSC activity independent of cell proliferation. These
seemingly contradictory findings are likely the reflection of
multifaceted functions of TGF-b. This may be dosage dependent.
TGF-b can induce or suppress proliferation in a concentration-
dependent manner13. We show that rTGF-b alters HSC activity at
low concentration. It also may be due to an autocrine-specific
action, and/or the use of different downstream signalling activity.
As discussed above, in our model, bioactive TGF-b proteins are
produced by HSCs. And, TGF-b may use p38MAPK signalling
pathway instead of the canonical smad transcription factors64. An
autocrine TGF-b pathway that acts independent of smads is not
without precedent. In a cancer cell line Mv1Lu, autocrine TGF-b
acts through JNK and p38MAPK (ref. 65). Hence, we propose
that HSCs autonomously produce aTGF-b to modulate
TGF-b-p38MAPK signalling and alter HSPC activity during
stress-induced regeneration. This is controlled by p190-B.
Interplay between Rho GTPase signalling and autocrine
TGF-b-p38MAPK signalling may represent an early signal
activated during HSC division to balance self-renewal and
differentiation during HSC regeneration. Hence, our data reveal
what may be a novel function for TGF-b in HSC self-renewal
activity as fate determinant to modulate HSC activity.

Methods
Reagents. Inhibitors used: SB431542 (inhibitor of TGF-b1 receptor ALK5,
Cayman chemical [TGFBRI inhibitor 1]), TGF-b RI kinase inhibitor II
(Calbiochem, [TGFBRI inhibitor 2]), SB203580 (p38MAPK inhibitor, Calbiochem),
PKI (6–22) amide (protein kinase inhibitor, Santa Cruz Biotech). CHIR-9902
(GSK3b inhibitor), LDN193189 (BMP inhibitor), Cyclopamine (hedgehog
signalling pathway inhibitor) were all from Selleck Chemicals.

Mice model. p190-B RhoGAPþ /� mice (backcrossed into C57BL/6J),
B6.SJL-PtrcaPep3b/BoyJ (B6.BoyJ, CD45.1þ ) congenic mice. To study effect of
over-expression of TGFb1 on HSCs; transgenic Tg-b1gloþ /Flox mice (FVB;
Jackson Lab)45 were crossed with Mx1-Cre to generate MxCreþ ; Tg-b1gloþ /Flox

[Tg-Creþ ] and MxCre� ; Tg-b1gloþ /Flox mice [Tg-Cre� ]. To activate cre
recombinase, polyIC was injected intraperitoneally to mice (10 mg g� 1 of body
weight; three injections—every alternate day for 1 week). All animals were bred in
house in pathogen-free environment. All studies were conducted with a protocol
approved by the Animal Care Committee of Cincinnati Children’s Hospital
Medical Center.

Serial competitive repopulation assays. To examine the role of p190-B loss
during serial competitive transplantation, embryonic day 14.5 p190-B� /� fetal
livers (FLs) and WT littermates (0.3� 106 FL cells, CD45.2þ ) were transplanted
along with competitor cells (1.7� 106 BM, CD45-1þ ) into lethally irradiated
congenic recipient mice (CD45.1þ ). Four months following primary transplant
(1T), 106 BM cells from 1T mice were injected in secondary (2T) lethally irradiated
congenic recipient mice (CD45.1þ ). Un-transplanted (0T) mice were used as
control.

In vitro paired daughter cell assay. In vitro paired daughter cell assay was
performed as described before9,15. Briefly single LSK-SLAM cells were sorted into
96-well plate. Single cells were visually confirmed under light microscope and
cultured in serum free Stemspan medium (Stem Cell Technology) supplemented
with murine SCF and murine TPO (100 ng ml� 1, each, Peprotech) during the first
cell division only. After the first division, daughter pairs were separated and
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individually cultured in Iscove’s Modified Dulbeco’s Medium (IMDM) containing
10% fetal bovine serum (Omega) and a cocktail of cytokines allowing for myeloid
differentiation (murine SCF, murine TPO, human G-CSF (each 20 ng ml� 1),
murine IL-3 (50 ng ml� 1) and EPO (4 U ml� 1; Espogen)) for 14 days. Paired-
clones were harvested and used for cytospin preparation. Cells of various lineages
were identified based on their morphology after Diff-quick staining (Siemens).
Clones were examined for the presence of neutrophils (n), erythroid cells (e),
macrophages (m) and megakaryocytes (M; nemM). In some experiments, single
LSK-SLAM cells were also incubated with or without TGFBRI inhibitors 1 or 2
(10 mM) or p38MAPK inhibitor (10 mM) or GSK3b inhibitor; (3 mM) or human
recombinant TGF-b1 10 pg ml� 1 (Peprotech) or H2O2 (50 mM) for the duration
of the first division only. Daughter cells were separated and individually cultured in
serum and cytokines without inhibitors. Clones were analysed as above.

Single cell multi-lineage differentiation potential assay. Single LSK-SLAM cells
were cultured in Stemspan medium containing murine SCF and murine TPO (each
100 ng ml� 1) for the first 48 h and then in IMDM containing 10% fetal bovine
serum, murine SCF, TPO, G-CSF, EPO and IL-3. Cytokine concentrations were
similar as used for paired daughter cell assay. Clones derived from LSK-SLAM were
harvested at 14 days of culture, and examined for the presence of myeloid lineages
(neutrophil, erythroid, macrophage and megakaryocyte).

Cell division kinetics. Single LSK-SLAM cells were isolated in 96-well plates and
cultured in Stemspan medium containing murine SCF and murine TPO (each
100 ng ml� 1). Wells were visually examined to count numbers of cells per well
every 12 h for 72 h and determine division kinetics. A first division was scored
when two cells could be observed; a second division was scored if three or four cells
were observed. Data were expressed as per cent cumulative division at every time
interval.

Effect of TGF-b inhibitor in vivo. 2T mice transplanted with WT cells were
injected subcutaneously twice daily with TGFBRI inhibitor 2 (100 ml of 1:10
dilution of 3.4 mM inhibitor in PBS) or dimethyl sulfoxide (DMSO; vehicle
control)32 for 4 weeks. Mice were used for experiments one or two weeks later.
PB was analysed for donor-cell chimerism and donor-cell derived (CD45.2þ )
myeloid and lymphoid lineage differentiation. BM cells of these mice were used for
in vitro assays and for limiting competitive repopulation assay to measure HSC
frequency. For the latter, 1� 106 or 5� 106 BM cells were mixed with 0.25� 106

BM CD45.1þ cells and injected into tertiary recipients (CD45.1þ ).

Ex vivo culture and transplantation. LSK-SLAM cells (300 or 500) isolated from
1T mice or fetal livers were cultured in serum free Stemspan medium containing
murine SCF and murine TPO (100 ng ml� 1 each) for 48 hours in the presence of
SB431542 (10 mM), or rTGF-b1 or rTGF-b1þ SB203580 (10 mM) or equivalent
DMSO, depending on the experiments. Cultured cells were mixed with 0.2� 106

BM CD45.1þ cells and injected into lethally irradiated mice (CD45.1þ ).

Flow cytometric analyses. The following antibodies were used for flow cytometric
analyses (unless specified all antibodies were from BD biosciences): anti-CD45.1-
PE (A20), anti-CD45.2-FITC or—Percpcy5.5 (104), anti-CD11b-FITC (M1/70),
anti-Gr1-PE (RB6-8C5, ebioscience), anti-B220-APC (RA36B2), anti-CD4- FITC
(RM4-5), anti-CD8a-PE (53-6.7), anti-Sca-1-PECy7 (D7), anti-c-Kit-PE or—APC
(2B8), anti-CD48-FITC (HM48-1) and anti CD150-APC (9D1, ebioscience). For
lineage negative population we used: anti-CD11b, anti-Gr1, anti-B220, anti-Ter119,
anti-CD3, anti-CD5-biotin-labeled followed by streptavidin APCCy7. All
antibodies were used at a 1:100 dilution.

For intracellular detection of p38MAPK and phosphorylated p38MAPK, BM cells
were first stained for LSK-SLAM. Cells were then fixed and permeabilized using
cytofix/cytoperm buffer (BD Bioscience) as per manufacturer’s protocol. The cells
were stained with purified rabbit anti-p38MAPK or anti-pp38MAPK antibodies (1 ml
in 100ml; Cell Signaling) followed by donkey anti-rabbit AF488 (0.4 ml in 100ml;
Invitrogen).

To detect intracellular ROS, BM cells were first stained for LSKCD48 and then
incubated with 20 ,70 dichlorofluorescin diacetate (DCFDA) for 30 min at 37 �C. The
cells were analysed by flow cytometry immediately.

Side population (SP) staining, was carried as described previously (10). Briefly,
low density BM cells were first stained with Hoechst 33342 (5 mg ml� 1; Sigma) for
90 min at 37 �C with or without Fumitremorgin C (10 mM; Enzo Life Sciences) and
then stained for LSK-SLAM surface markers. Fluorescence activated cell sorting
was performed on FACS Aria and analysis was performed on FACS Canto or
LSR II (BD).

Colony forming unit assay. Cultured LSK-SLAM cells were plated in semi-solid
methyl cellulose medium containing serum and cytokines (IL3, SCF, G-CSF
100 ng ml� 1 each and Epo 4 U ml� 1) and incubated at 37 �C. Differential colonies
were scored at day 7.

Cell cycle analysis. BM cells from serially transplanted mice were stained for
cell-surface markers, fixed, permeabilized and then incubated with Hoechst
33342 (10 mg ml� 1, Invitrogen) and Pyronin Y for 30 min at 37 �C (1 mg ml� 1;
Sigma-Aldrich) or Hoechst 33342 and ki67 (1:100 dilution, ebioscience) for 30 min
at 4 �C in the dark.

5-Fluorouracil. 5-Fluorouracil (5-FU;150 mg kg� 1) was administered by
intraperitoneal injection. PB differential counts and lineage reconstitution were
analysed after retro-orbital bleed19.

Microarray analyses. LSK-SLAM were isolated from secondary recipients of WT
or p190-B� /� cells. Cells were lysed in lysis buffer (Miltenyi Biotech) and samples
were further processed at Miltenyi Biotech, Germany, using Agilent Whole Mouse
Oligo Microarrays. Data were analysed by gene set enrichment analysis across the
complete list of genes. Gene ontology analysis on top candidate genes based on
Student’s t-test analysis was performed using ToppGene Suite software. The
accession number for the raw data is GSE89794.

qPCR analyses. LSK cells were isolated from 2T WT and p190-B� /� mice,
and control. RNA isolation and cDNA preparation were performed as per
manufacture’s protocol (RNeasy micro kit, Quiagen, Superscipt III system,
Invitrogen). cDNA was amplified by real time PCR using SYBR green master mix
(SA Bioscience).

Immuno-fluorescence staining. LSK-SLAM cells were isolated on retronectin
coated glass slides in Stemspan medium. The cells were incubated at 37 �C for
30 min, fixed with 4% paraformaldehyde, permeabilized with 0.5% Triton X100
and blocked with 2% bovine serum albumin in PBS at room temperature. The cells
were immuno-stained with a mouse anti-aTGFb-1(1:100 dilution; R&D Systems)
that detect bioactive TGFb-1 or goat anti-hLAP/TGFb-1 (1:100 dilution; R&D
systems) to detect latent TGFb-1 or rabbit anti-psmad2 (S465/467, 1:100 dilution;
Cell Signaling). The cells were co-stained with DAPI to identify nucleus. In another
experiment, 0T LSK-SLAM cells were treated with H2O2 (50 mM) alone or
H2O2þN-acetyl cysteine (100 mM, NAC, Sigma-Aldrich) for 12 h and were stained
with mouse anti-TGFb-1. In another set, 0T LSK-SLAM cells were treated with
rotenone (1mM) alone and rotenoneþNAC for 24 h and were stained with mouse
anti-aTGFb-1.

To study cell shape, LSK-SLAM cells from each group treated or not treated
with rTGFb-1 or SB431542 were sorted on slides, cultured for 24 h in stemspan
medium with SCF and TPO (100 ng ml� 1), then fixed and stained for F-actin
(rhodamine phalloidin (Invitrogen)) and microtubules (anti-tubulin, Abcam) and
DAPI.

To analyse mitotic events, 0T or 2T LSK-SLAM cells were cultured for 40 h and
were stained with rabbit anti-pp38MAPK (1:100 dilution, Cell signaling) and goat
anti-numb (1:100 dilution, Abcam). Secondary Ab were donkey anti-rabbit AF488
and donkey anti goat AF647, respectively. Fluorescence images were captured using
Leica DMI6000 or Zeiss epifluorescence microscope equipped with ORCA-ER
C4742-95 camera (Hamamatsu) driven by Openlab software. Quantification
of fluorescence intensity was performed in OpenlabR or in ImageJR softwares.
Asymmetry was defined when differences in MFI between daughter cells were at
least 1.5-fold. At least 100 cells per group were analysed; at least two independent
experiments were performed. 3D surface plots were generated using ImageJR

software.

Western blot. LSK cells from Tg-Creþ and Tg-Cre� mice mice were lysed in
lysis buffer. Membrane was probed with anti-TGF-b1 antibody (Abcam). Actin
was used as an internal control. All uncropped western blots can be found in
Supplementary Fig. 11.

Statistical analyses. Data are expressed as mean±s.e.m. Differences were
analysed by an unpaired two-tailed t-test. In vitro paired daughter cell assay data
were analysed by 2� 2 Fisher exact test contingency table and single cell multi-
potential differentiation data were analysed by Chi- square 3� 2 contingency table.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary information files or
from the corresponding author upon reasonable request. The microarray data have
been deposited in the GEO database under accession code GSE89794.
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