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A B S T R A C T

Background: Glioblastoma (GBM) is a very common primary malignant tumor of the central
nervous system (CNS). Aging, macrophage, autophagy, and methylation related genes are hy-
pothesized to be crucial to its pathogenesis. In this study, we aimed to explore the role of these
genes in the prognosis of GBM.
Methods: The RNA sequence (RNA-seq) and clinical information were downloaded from The
Cancer Genome Atlas database (TCGA) and the Chinese Glioma Genome Atlas database (CGGA).
We performed univariate and least absolute shrinkage and selection operator (LASSO) multi-
variate Cox regression analysis to identify risk signatures related to overall survival (OS). We
further developed a nomogram to predict individual outcomes. In addition, the immune micro-
environment was analyzed by CIBERSORT.
Results: 256 differentially expressed genes (DEGs) were obtained based on aging, macrophage,
autophagy, and methylation related genes between GBM samples and normal tissues in TCGA-
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GBM cohort. We identified five optimal risk signatures with prognostic values in TCGA-GBM
cohort and established a prognostic risk score model. The validity of the model was verified in
the CGGA cohort and Huanhu cohort. Finally, we constructed a nomogram for clinical application
by combining age, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation
status, and risk score. Activated NK cells and resting mast cells were highly expressed and
memory B cells, plasma cells, resting NK cells, M1 macrophages, and neutrophils exhibited low
expression in the high-risk score group. GBM patients with a low-risk score had a higher Tumor
Immune Dysfunction and Exclusion (TIDE) score. The risk score of hot tumors was higher than
that of the cold tumors. Additionally, 29 genes involved in glucose and lipid metabolism were
highly expressed with a high-risk score. 31 metabolism-related pathways were significantly
different between high-risk and low-risk groups.
Conclusions: We constructed and validated a novel prognostic model for GBM. Aging, macro-
phage, autophagy, and methylation related genes may serve as prognostic and therapeutic bio-
markers. The model developed may assist in guiding treatment for GBM patients. Our research
had great significance in accurately predicting the prognosis of GBM and may offer reference for
immunotherapy decision for GBM patients.

1. Introduction

Glioma is a common primary tumor of the CNS that originates from neuroglial progenitor cells. It accounts for 81 % of CNS
malignancies [1]. According to the fifth edition of the WHO Classification of Tumors in the CNS, glioma can be classified into four
grades: I, II, III, and IV. The higher the grade the tumor is, the worse the prognosis. GBM, which belongs to WHO grade IV tumor, is
highly malignant and indicative of poor prognosis [2].The survival time of GBM patients is approximately 15 months [3]. Given the
high recurrence rate, surgical removal does not improve survival. Studies have shown that 77,000 new GBM cases were diagnosed in
the United States and Europe, but the five-year survival rate was <3 % [4]. In recent years, aging, macrophage, autophagy and
methylation are reported to associate with the development of glioma [5–8]. Moreover, these four signatures are closely related to the
prognosis of GBM. The prognostic model of GBM based on aging [9], autophagy [10], macrophage [11], methylation [12] can predict
the prognosis of GBM patients, respectively. Thus, we hypothesized that the combination of these signatures could better predict the
prognosis of GBM. We attempted to construct an OS prognosis model based on these signatures. Although many tumor prognosis
models related to these gene signatures were built based on the development of public databases, we integrated these four risk factors
for the first time to construct a more comprehensive prognosis model of GBM.

Today, RNA-seq is widely performed to observe the differences of cells at the gene level. Several studies have investigated mo-
lecular biomarkers for GBM using RNA-seq technology. Additionally, numerous prognostic models have been constructed for glioma
analysis using large-scale genome-sequencing technologies. Jian Zhou et al. developed and verified a glioma prognostic model based
on the immune microenvironment [13]. Jia Hao Bao et al. found a novel cuproptosis-related gene signature in lower-grade glioma and
verified the expression of hub genes by quantitative real-time PCR and western blotting [14]. Houshi Xu et al. reported that ITGB2
could serve as a prognostic maker and a predictive indicator for immunological therapy in glioma [15]. Additional studies have
indicated that a certain single signature does not completely represent the entire feature set of a certain tumor. However, the com-
bination of multiple genes may serve as excellent molecular biomarkers [16,17]. Here, we investigated a novel prognostic model in the
pathogenesis of GBM by combining multiple signatures.

In recent years, the tumor microenvironment (TME) has been identified as an important regulator in the promotion of cancer
progression in both primary andmetastatic brain malignancies. It is the surrounding microenvironment of tumor cells, including blood
vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, various signaling molecules, and extracellular matrix
(ECM). Several studies have shown that a tumor immune microenvironment that contains several types of immune cells can affect the
efficacy of immune checkpoint inhibitors (ICIs) [18,19]. Thus, we explored the immunological mechanism of the TME in GBMwith the
aim of improving patient outcomes.

Over the years, more and more studies showed that metabolic reprogramming is the metabolic changes that cells undergo in
response to various stressors, and it is one of the characteristics of tumors. This mechanism not only allows cells to resist external
stresses, but also imparts new functions on them. Metabolic reprogramming is a common phenomenon in various tumors, involving
metabolic pathways such as glucose metabolism, lipid metabolism, amino acid metabolism, and other pathways, which are closely
related to the occurrence and development of tumors [20].

In this study, we acquired the RNA-seq transcriptome data and clinical information of GBM patients from TCGA and CGGA. First,
we combined aging, macrophage, autophagy and methylation signatures and identified 256 overlapping genes. Then, the candidate
hub genes were selected by univariate and LASSOmultivariate Cox regression analysis. Five risk genes were determined: Microtubule-
associated protein 1 light chain 3 alpha (MAP1LC3A), myeloperoxidase (MPO), GATA binding protein 4 (GATA4), S100 calcium-
binding protein A4 (S100A4) and secreted phosphoprotein 1 (SPP1), respectively. Finally, a novel prognostic nomogram including
the risk signatures, age, and MGMT promoter methylation status was constructed. CGGA data and the Huanhu cohort were used as
external validation datasets to verify the predictive performance of this signature. Moreover, we used CIBERSORT and the LM22
feature matrix to estimate the differences in immune infiltration in high-risk and low-risk score GBM patients. Although several studies
have reported on various aspects of GBM, the prognostic biomarkers have not been elucidated clearly to the best of our knowledge. In
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view of this, we fully considered the various factors related to the prognosis of GBM and combined them well in order to construct a
new and more effective prognosis model of GBM.

2. Materials and methods

2.1. Data collection and processing

We downloaded the mRNA expression profile data and clinical information of 161 GBM samples and 5 normal samples from TCGA
(https://tcga-data.nci.nih.gov/tcga/). Among these GBM samples, 152 patients with complete survival information were used for the
following analyses. In addition, the mRNA expression profile data and clinical information of 301 GBM samples were obtained from
CGGA (http://www.cgga.org.cn/). Among these GBM samples, 285 patients with complete survival information were selected as the
validation cohort. All the data was obtained using an Agilent-014850 Whole Human Genome Microarray 4 × 44K G4112F platform
and used in accordance with TCGA and CGGA publication requirements. The details of the samples are presented in Tables S1 and S2.
The aging, macrophage, autophagy, and methylation related genes were obtained from the Gene Set Enrichment Analysis (GSEA,
https://www.gsea-msigdb.org/gsea) database. If there were duplicate data for the same patient, the average RNA expression data was
selected for use.

2.2. Patients in the Huanhu cohort and sample collection

Sample collection and patient information were approved by the Ethics Committee of Tianjin Huanhu Hospital (Ethical Approval
No.2024-047, 2024/02/28) and written informed consent was provided by all the patients who participated in this study. Between
2020 and 2023, 50 patients received surgery and were diagnosed as GBM by at least two experienced pathologists. All samples were
stained with hematoxylin and eosin (H&E) to observe the morphology of tumor cells. Then, samples were fixed using formalin and
embedded in paraffin. The protein expression levels of the risk genes were examined by immunohistochemistry (IHC). All the patients
were successfully followed up by phone calls. Table S3 shows the detailed information of all patients.

2.3. IHC

Paraffin-embedded surgically removed GBM samples from patients who received surgery at Huanhu Hospital were sectioned in 3
μm intervals and mounted on glass slides. Then, the slides were placed in an oven at 60 ◦C for 1 h to deparaffinize the samples and then
rehydrated. Antigen retrieval was performed in a pressure cooker in 10 mmol/L Tris-citrate buffer (pH: 6.0). To reduce endogenous
peroxidase activity, the slides were incubated with 3 % hydrogen peroxide at room temperature for 10 min. PBS was used to wash for 3
times, after which samples were incubated with goat serum at room temperature for 30 min. Slides were incubated with primary
antibodies overnight at 4 ◦C. All slides were incubated with the secondary antibody (ab288151, 1:200; Abcam) for 30 min at room
temperature after washing with PBS 3 times. All slides were washed with PBS and then incubated with 3.3′-diaminobenzidine (DAB)
solution for 5 min. Subsequently, slides were washed with water before counterstaining with hematoxylin for 5 min at room tem-
perature. At least two pathologists evaluated the results of staining images. The primary antibodies used were: Anti-MAP1LC3A
antibody (ab52768, 1:100; Abcam), anti-MPO antibody (ab208670, 1:200; Abcam), anti-GATA antibody (ab199428, 1:200;
Abcam), anti-S100A4 antibody (ab197896, 1:200; Abcam) and anti-SPP1 antibody (ab214050, 1:200; Abcam). Images were captured
using an upright fluorescence microscope (Olympus BX63, Japan). The IHC images were taken at 400 × magnification.

2.4. Analysis of the DEGs

A total of 152 GBM samples and 5 normal controls in TCGA-GBM cohort were compared to identify DEGs. DEGs were analyzed
using the empirical Bayesian approach using the R package limma (version 4.1.0) [18]. The screening criteria were |log2-fold change
(FC)|>2.0 and FDR<0.05 [21]. Benjamini and Hochberg developed the adjusted p-value method to control the FDR [22]. All the DEGs
in TCGA-GBM cohort were visualized using a volcano plot.

2.5. Enrichment analysis

GSEA (http://software.broadinstitute.org/gsea/index.jsp) was performed using the R package Cluster Profiler [23]. GSEAwas used
for identifying the immunological signaling pathways and corresponding immune genes involved in high-risk and low-risk groups in
TCGA-GBM cohort [24]. GSVA was used for identifying the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between
high-risk and low-risk groups in TCGA-GBM cohort. The enriched gene sets were considered significantly enriched when the P value<
0.05.

2.6. Protein-protein interaction (PPI) network

The String database (https://string-db.org/, version 11.0) is one of the most popular databases for studying protein interactions
[25]. A total of 2031 organisms including 9.6 million proteins were installed in the database. A total of 184 million interactions were
connected in these proteins. It was used to analyze and predict the functional association and the interaction of proteins. These protein
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interactions included both direct physical effects and indirect functional correlations. We first used Cytoscape (version 3.7.2) [26] to
construct a PPI network for preliminary screening. Then, selected genes were analyzed using the cytohubba plugin in Cytoscape based
on the Maximum neighborhood component (MNC) algorithm for further screening. The top 100 genes with the highest connectivity
were screened. Finally, a PPI network of the DEGs was constructed.

2.7. Construction and validation of a GBM prognostic risk score model

Based on the clinical survival information provided by the TCGA database, univariate Cox regression analysis was performed to
screen genes significantly related to the prognosis of GBM patients in TCGA training cohort. A total of 12 genes were obtained with P<

0.001 as the threshold. Then, to prevent overfitting of the models, LASSO Cox regression analysis was performed to further screen the
optimal candidate prognostic related genes using the R package glmnet (http://CRAN.R-project.org/package=glmnet) [27]. In the
LASSO Cox analysis, 1000 times subsamples were repeated in TCGA cohort and the genes that we chose were repeated＞900 times.
And five aging, autophagy, macrophage and methylation related genes (MAP1LC3A, MPO, GATA4, S100A4, SPP1) were obtained.
Based on the LASSO prognostic coefficient of the optimal genes and the expression levels of the target genes in the database, the risk
score of each sample was calculated using the following formula:

Risk score=
∑n

i=1
Coefi*Xi

where Coefi is the risk coefficient calculated using the LASSO Cox model and Xi is the gene expression value.
The prognosis of the GBM patients was predicted using the risk score in TCGA-GBM cohort. All patients were classified into low-risk

and high-risk groups according to the median value of the risk score. K-M survival curve using the survival package was performed to
evaluate the OS in the two groups. The survival differences of the two groups were evaluated using a two-sided log-rank test.

The performance of the risk score algorithm was validated in the CGGA and Huanhu cohort to verify the predictive accuracy of the
model constructed in TCGA training cohort. The K-M survival analysis was employed to verity the validity of the risk model in CGGA
and Huanhu validarion cohort.

2.8. Construction and evaluation of the nomogram

Multivariate Cox regression analysis was used to investigate whether the risk score could be regarded as an independent predictor
for survival. We included age, sex, isocitrate dehydrogenase (IDH) mutation, alpha-thalassemia/mental retardation syndrome X-linked
(ATRX) mutation, telomerase reverse transcriptase (TERT) promoter mutation, and MGMT promoter methylation for independent
prognostic analysis. We generated a systematic nomogram based on the clinical parameters and risk score by using the R package rms
(https://cran.r-project. org/web/packages/rms/) for predicting the 1-, 3-, and 5-year survival probability. Thus, we combined bio-
informatics analysis with the clinical characteristics. The discriminative capability of the nomogram was evaluated using the cali-
bration plots [28]. It was used to assess the difference between the predicted outcomes and the actual outcomes. When the calibration
plot is close to the 45◦ line, it represents best prediction. Furthermore, receiver operating characteristic (ROC) curves were generated
to determine the accuracy of the prognostic models. The value of area under the curve (AUC) provides a quantitative measure of the
predictive power. The Confidence Intervals (CI) around the AUC values was calculated to provide a measure of the uncertainty
associated with the prediction. Whether the risk score model can be used as an independent and reliable prognostic indicator was
finally determined by calculating the AUC value and CI. Hazard ratios (HRs) and 95 % CIs were provided where appropriate. P < 0.05
was considered statistically significant.

2.9. Estimation of the immune cell infiltration levels and the immunotherapeutic response between high-risk and low-risk groups

CIBERSORT algorithm was utilized to analyze the immune cell types in TME in detail. CIBERSORT (http://cibersort.stanford.edu/)
was used for the deconvolution of the expression matrix of human immune cell subtypes based on the linear support vector regression
principle [29]. A total of 22 immune cells and 547 barcode gene signatures were set as the default provision. The sum of all estimated
proportions of immune cell types in each sample was equal to one for each GBM sample. The Tumor Immune Dysfunction and
Exclusion (TIDE) (http://tide.dfci.harvard.edu/) algorithm was a computational method to predict immunotherapy efficacy. It was
used to reveal tumor immune evasion mechanisms [30]. Signatures of T cell dysfunction and exclusion predicted cancer immuno-
therapy response and determined whether the immunotherapy was effective for individuals. The lower the TIDE score was, the better
the immunotherapy response was. The ConsensusClusterPlus R package was used to screen hot/cold tumors [31]. Metabolic
reprogramming genes were downloaded fromMolecular Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/)
[32].

2.10. Statistical analysis

Statistical analysis was performed using R software version 3.5.2 and GraphPad Prism version 8 (GraphPad Software, Inc.) For
grouping similar mRNA expression profiles among the GBM samples, Principal Component Analysis (PCA) and K-means cluster plots
were performed. Datasets were divided into K clusters using the K-means clustering technique. The empirical Bayesian approach of
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limma was applied to identify the DEGs. The two-sided log-rank test was applied to compare the groups for the K-M survival curves.
Moreover, we used a χ2 test to compare sex ratios, IDH mutation ratios, ATRX mutation ratios, TERT promoter mutation ratios, and
MGMT promoter methylation ratios between the GBM patients and healthy controls. A Wilcoxon rank sum test was used to compare
the differences in immune cell infiltration, TIDE score, hot/cold tumors, as well as metabolic reprogramming in the two risk groups.
For all analyses, P < 0.05 was considered statistically significant.

3. Results

3.1. Identification of differentially expressed genes between GBM and normal tissues

It is well known that DEGs are often associated with the occurrence and development of disease, including tumors. Therefore, we
downloaded the mRNA expression profile data of 152 GBM patients and the corresponding clinical information from TCGA. All pa-
tients had complete survival information. First, we analyzed the DEGs between GBM and normal tissues and obtained a total of 3750
up-regulated and 4528 down-regulated genes. All the DEGs are shown in the volcano plot in Fig. 1A and listed in Table S4). Then, to
investigate the functions of aging, macrophage, autophagy and methylation in GBM, we obtained the related genes from the GSEA
database. The intersection between the above genes and DEGs was obtained, and a total of 256 overlapping genes were obtained
(Table S5) for further study. Finally, to analyze the difference of prognosis after clustering and further explore whether aging,
macrophage, autophagy and methylation related genes have potential correlation with the prognosis of GBM, we performed K-means
cluster analysis of the cancer samples based on the expression levels of these 256 genes. K-means is an unsupervised clustering
technique. All data could be separated into K clusters. We selected the K value according to the sum of the squared errors (SSE).
Minimized SSE is widely used as a simple and direct method to obtain the value of K. Here, we used the K-means clustering algorithm to
classify the genes into 3 groups (Fig. 1B and C). Meanwhile, another method by Gap statistical method was used to calculate the value
of K. The result showed that when K = 3, it is the most significant, which is consistent with our previous result (Fig. 1D). Furthermore,
PCA analysis was performed to verify the accuracy of the divided clusters (Fig. 1E). In summary, we screened out DEGs between GBM
and normal tissues and samples were divided into 3 clusters for the following study.

Fig. 1. Identification and classification of DEGs in GBM patients. (A) Volcano plot showing the DEGs of the 152 GBM and 5 normal samples
from TCGA. The horizontal axis represents the log2(fold change [FC]) and the vertical axis represents the -log10 of P value. The red dots indicate the
upregulated genes, and the blue dots indicate the downregulated genes. The black dots had no statistical significance. (B and C): The 256 over-
lapping genes were classified into 3 clusters. (D): Another method (Gap statistic method) further confirmed the 256 genes were appropriate to
classify into 3 clusters. (E) PCA analysis was performed to separate the overlapping genes into 3 clusters.
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3.2. Comparison of the characteristics of patients in the 3 clusters

Since the samples were divided into 3 clusters, we wondered if there were any differences of signatures among them. Through
statistical analysis, we found that there was no significant difference in the age of patients among the 3 clusters (Fig. 2A). However, sex,
IDH mutation, ATRX mutation, TERT promoter mutation, and MGMT promoter methylation did differ significantly among the 3
clusters (Fig. 2B–F). In addition, Kaplan-Meier OS analysis showed that there were significant differences in the overall survival of the
samples, and cluster 3 had the worst prognosis (Fig. 2G). These results indicated that GBM samples could be classified into different
prognostic types based on these 256 genes. Aging, macrophage, autophagy, and methylation related genes were potentially correlated
with the prognosis of GBM.

3.3. Construction and validation of the prognostic risk score signatures

To explore the potential interactions among these 256 genes, a PPI network was constructed (Fig. S1A). An algorithm based on
MNC was employed to select the top 100 genes with the highest connectivity using the cytohubba plugin in Cytoscape (Fig. S1B,
Table S6). Next, we performed univariate Cox regression analysis to screen the top 100 genes related to OS. The HR of each gene was

Fig. 2. Comparison of the characteristics of the 3 clusters for prognosis. (A-F) Age, sex, IDH mutation, ATRX mutation, TERT promoter
mutation, and MGMT promoter methylation were compared across the 3 clusters. (G) The overall survival of the 3 clusters was compared using K-M
curves; cluster 3 had the worst prognosis. **P＜0.01, ***P＜0.001.
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calculated; with P< 0.05 as the threshold, 12 genes were finally obtained (Fig. 3A). Among these, a gene called DUSP6 was not shown
on the PPI map because it was not related to any other gene. These 12 genes had an HR＞1 and were associated with a poor prognosis in
GBM patients (Fig. 3B). Subsequently, to ensure the stability of the model, LASSO Cox regression analysis was performed for further
screening. We determined the optimal five genes with the minimum lambda values (Fig. 3C and D). The five prognostic-related genes
were MAP1LC3A, MPO, GATA4, S100A4, and SPP1, respectively. Finally, the normalized expression of each gene was weighted based
on the regression coefficient of the LASSO Cox regression analysis. We constructed a risk score model to predict the survival probability
of GBM patients (risk score= 0.052998210, normalized expression level of MAP1LC3A+ 0.008082386× normalized expression level
of MPO + 0.004006090 × normalized expression level of GATA4 + 0.003168030 × normalized expression level of S100A4 +

0.014389293 × normalized expression level of SPP1). We calculated the risk score of each patient according to the formula. The
median risk score was used as a cut-off value to stratify patients of TCGA training cohort and CGGA validation cohort into two groups:
the high-risk group and the low-risk group. The K-M curves for OS showing both in TCGA training cohort (Fig. 3E) and CGGA vali-
dation cohort (Fig. 3F) were significantly different. The TCGA-GBM cohort included 76 high-risk score patients and 76 low-risk score
patients. The high-risk group showed a 2.05-fold higher risk (95 % confidence interval (CI): 1.42–2.96, P＜0.0001). The CGGA cohort
included 143 high-risk score patients and 142 low-risk score patients. The high-risk group showed a 1.78-fold higher risk (95 % CI:
1.33–2.38, P＜0.0001).

More importantly, to further validate the role of the five-gene risk signature, we examined the prognostic value of the risk score
model using an independent cohort recruited from Tianjin Huanhu Hospital. This cohort included 50 GBM patients with full survival
information. The protein levels of the five genes were detected by IHC. Patients were separated into high-risk and low-risk groups
according to the same formula and the cut-off value calculated in TCGA-GBM cohort. The OS of patients in the high-risk group and low-
risk group differed significantly; the high-risk group exhibited a poorer OS (HR: 2.109; 95 % CI: 1.085–4.099; P = 0.0278) (Fig. 3G).
Representative IHC images of MAP1LC3A, MPO, GATA4, S100A4, and SPP1 are shown in Fig. 3H. All the results suggested that the risk
score calculated using MAP1LC3A, MPO, GATA4, S100A4, and SPP1 was accurate in predicting the prognosis of patients with GBM.

Fig. 3. Construction and validation of a GBM prognostic model. (A) The PPI network of the screened genes. (B) Univariate Cox regression
analysis of the top 12 risk signatures among the 100 genes. (C and D) LASSO Cox regression model. (E and F) K-M survival curve in TCGA training
cohort (F) and the CGGA validation cohort (G). (G) K-M survival curve in the Huanhu validation cohort. (H) Representative images of immuno-
histochemical staining in low-risk and high-risk patients. *, P＜0.05; ****, P＜0.0001.

L. Zhang et al.



Heliyon 10 (2024) e37374

8

3.4. Construction and evaluation of a nomogram

To determine whether risk score was an independent prognostic indicator, we performed multivariate Cox regression including
age, sex, IDH mutation, ATRX mutation, TERT promoter mutation, MGMT promoter methylation, and risk score in TCGA-GBM
(Fig. 4A). The results showed that the lack of methylation of the MGMT promoter (HR = 1.61, P = 0.037), age (HR = 1.02, P =

0.008), and risk score (HR = 355.28, 95 % CI: 2.02–4.98, P＜0.001) were significantly correlated with OS. Samples with a high-risk
score had a greater risk of death. These results highlighted that risk score was independent of other clinical factors in TCGA-GBM
cohort with promising predictive value.

Fig. 4. Independent prognostic factor analysis and a nomogram predicting the 1-, 3-, and 5-year survival probability of GBM patients. (A)
Multivariate Cox regression was used to analyze 7 factors in TCGA-GBM cohort. The status of MGMT promoter methylation, the risk score, and age
were associated with OS (***, P＜0.001; **, P＜0.01; *, P＜0.05). (B) A prognostic nomogram was constructed to predict the OS at 1-, 3-, and 5-
years using the data from TCGA-GBM. (C-E) Calibration plots of the nomogram for predicting survival probability at 1-, 3-, and 5-years in TCGA-
GBM cohort. (F-G) The ROC curve showing the AUC at 1-, 3- and 5- years in TCGA and CGGA database.
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Nomograms are a visible prognostic model. By integrating different prognostic variables, nomograms can be used to predict in-
dividual survival probability. It is possible to accurately determine the outcomes of GBM patients using these concise scoring systems.
Therefore, nomograms are a popular prognostic model and are widely used in oncological settings for predicting prognosis. In the

Fig. 5. Immune cell proportions in the TME and GSEA analysis of the high-risk and low-risk GBM patients. (A) The CIBERSORT algorithm
was utilized to analyze the immune cell infiltration levels. The heap map shows the relative proportion of 22 immune cell types in the GBM patients.
(B) A total of 22 immune cell types were compared between the high-risk and low-risk groups using boxplots. (C) Significant enrichment of the
GSEA pathways between high-risk and low-risk groups based on TCGA-GBM cohort.
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present study, a nomogram that integrated the above three independent prognostic factors was constructed (Fig. 4B). To estimate the
OS of individuals, a vertical line was drawn upward to the point axis, and the sum of the points of the 3 variables was determined. Then,
the 3 independent variables were added and the score on the total point axis was marked. By doing this, we calculated the 1-, 3-, and 5-
year OS by drawing a straight line downward from the total point axis to the outcome axis. For example, a 20-year-old (0 points) GBM
patient with a risk score (100 points) and methylated MGMT promoter (0 points) got a total of 100 points. The probability of 1-, 3-, and
5-year survival probability for this patient were 60 %, 10 %, and below 1 %, respectively. The risk score ranged from 0 to 100, which
occupied the largest proportion of the risk points compared with the other two factors. This result was consistent with the multivariate
Cox regression analysis above.

The prediction accuracy of the nomogram was evaluated by calibration curves. The calibration curve showed the bias between the
predicted and the actual survival rate. A 45◦ ideal curve was used as a reference. The closer the actual curve is to the ideal curve, the

Fig. 6. TIDE and cold/hot tumor analysis. (A) TIDE analysis was shown using a waterfall plot. The red and blue lines represent the tumors that
would or would not respond to immunotherapy, respectively. (B and C): Comparison of the TIDE score between the high-risk and low-risk groups. (D
and E): TCGA-GBM samples were classified into 2 clusters based on “hot” tumor expression levels. (F) Heat map showing the expression levels of 12
gene marker of cold and hot tumors in TCGA-GBM cohort. (G) Risk score of cold tumors and hot tumors in TCGA-GBM cohort.
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better the effectiveness of the model. The 1-, 3-, and 5-year calibration curves were in good agreement with the ideal curve (Fig. 4C–E).
Furthermore, ROC analysis showed that the 1-, 3-, and 5-year AUC in TCGA and CGGA datasets were 0.786, 0.661, 0.711 and 0.655,
0.648, 0.647, respectively (Fig. 4F and G). These results suggested that the nomogram model could effectively predict the survival of
GBM patients.

3.5. Estimation of the immune landscape between the high-risk and low-risk GBM patients

CIBERSORT is the most popular machine-learning approach for immune cell infiltration analysis at present. It is a computational
method with the aim of solving the immune cell composition of tumor samples and helpful for high throughput characterization
analysis. LM22 is a signature matrix file containing 547 genes. These genes could distinguish 22 human hematopoietic phenotypes in
vivo or in vitro cells, including NK cells, seven T cell types, naïve and memory B cells, plasma cells, and myeloid subsets. Here, to
estimate the immune infiltration differences of immune cells between the high-risk and low-risk groups in TCGA-GBM cohort, we used

Fig. 7. Metabolic reprogramming differences between high-risk and low-risk groups. (A) Heat map showing the 29 differentially expressed
genes related to glucose and lipid metabolism pathways in the high-risk and low-risk groups. (B)) KEGG pathway enrichment results.
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CIBERSORT combined with the LM22 signature matrix. We estimated the immune cell infiltration, and the changes in the proportion of
tumor-infiltrating immune cells in different patients may represent the intrinsic features of individual differences (Fig. 5A). There were
significant differences in the seven types of immune cells between the high-risk and low-risk groups. These differentially expressed
cells were memory B cells, plasma cells, resting NK cells, activated NK cells, M1 macrophages, resting mast cells, and neutrophils,
respectively. GBM patients with high-risk scores had a significantly higher proportion of activated NK cells and resting mast cells, and a
significantly lower proportion of memory B cells, plasma cells, resting NK cells, M1 macrophages, and neutrophils than the low-risk
score patients (Fig. 5B). These results may represent a potential pathway between the high-risk and low-risk groups of prognostic
differences. In addition, we conducted GSEA functional enrichment analysis between the high-risk and low-risk groups. The results
revealed that there were 194 significant signaling pathways enriched in the high-risk group. The top three greatly enriched pathways
were the MAPK signaling pathway, calcium signaling pathway, and cytokine− cytokine receptor interaction pathway (Fig. 5C;
Table S7). In summary, all these results indicated that abnormal immune cell infiltration may be a prognostic indicator.

3.6. TIDE signature and identification of cold/hot tumors for immunotherapy

ICI treatment for cancer can bring long-term benefits for patients. However, only a small proportion of patients exhibit a favorable
response. To further estimate the immunotherapy response in TCGA-GBM cohort, we employed a computational algorithm named the
TIDE. The TIDE score may assist oncologists in selecting patients who are more likely to respond favorably to ICIs. We compared the
differences in immune response between the high-risk and low-risk score groups (Fig. 6A). The results showed that there was a sig-
nificant difference in the immune response in the two groups (Fig. 6B). It was also found that the TIDE score was higher in the low-risk
score group (Fig. 6C). The TIDE score and risk score were negatively correlated with each other.

Depending on whether there was T cell infiltration, tumors were divided into cold tumors and hot tumors. Immunotherapy was not
effective in cold tumors which lacked T-cell infiltration. Conversely, hot tumors with T-cell infiltration were associated with improved
immunotherapy treatment outcomes. According to the hot tumor markers, the TCGA-GBM samples could cluster into two categories
(Fig. 6D and E). The 12 hot tumor markers were CXCL9, CXCL10, CXCL11, CXCR3, CXCR4, CCL5, CD8A, CD8B, CD4, CD3E, CD274,
and PDCD1, respectively. The expression levels of these 12 markers in hot tumors were higher than those in cold tumors (Fig. 6F).
Meanwhile, the risk score of hot tumors was higher than of cold tumors (Fig. 6G). These results demonstrated that immunotherapy may
be helpful for the proportion of GBM patients with a high TIDE score and high expression levels of these hot tumor markers.

4. Differences in metabolic reprogramming between high-risk and low-risk groups

Metabolic reprogramming is important characteristic for tumor, then we further explore the possible variation of metabolic
reprogramming in our study. Here, 29 genes involved in glucose and lipid metabolism pathways were selected, and the differences
between the high-risk and low-risk groups were analyzed (Fig. 7A). These 29 genes were higher in the high-risk group than in the low-
risk group. Furthermore, in the enrichment analysis of KEGG, 186 metabolic pathways were analyzed (Table S8). The result indicated
that 31 pathways were statistically significant between high-risk and low-risk groups (Fig. 7B–Table S9). These results suggested that
the risk score model was meaningful in metabolic reprogramming. Further analysis was required to explore the potential mechanism.

5. Discussion

5.1. The background of this study

Nowadays, gliomas are the most common primary malignancy of the CNS, and GBM is the most aggressive type of glioma. GBM
patients have a poorer prognosis and shorter OS after surgery, chemotherapy, and radiotherapy due to their invasiveness and high
likelihood of recurrence. Current therapeutic strategies have failed to improve OS in the past 40 years [33]. Thus, there is an urgent
need to identify a novel approach to GBMmanagement. Aging, macrophage, autophagy, and methylation are not independent factors,
instead they work together to influence a tumor. Aging is an important risk factor for glioma development. The Nlrp3 inflammasome
controls the process of brain aging, where it serves as a key link between aging and glioma progression [34]. Epigenetic aging has been
reported as a valuable marker for tumor prognosis. The epigenetic aging pattern of the DNA methylation model is closely related to OS
and recurrence in glioma [35]. Hypoxia is a microenvironment feature in glioma. Macrophages are one of the primary cells residing in
the microenvironment. They can polarize into classically activated macrophages (M1-like type) and alternatively activated macro-
phages (M2-like type) in a hypoxic microenvironment. M2-like type macrophages play an important role in the development and
progression of tumors. Autophagy promotes cell survival by providing essential nutrition during hypoxia. By enhancing autophagy,
hypoxic glioma promotes M2-like macrophage polarization [36]. Autophagy-related genes (ARGs) associated with methylation were
identified in TCGA. A total of six ARGs were related to methylation levels and prognosis in low-grade glioma, and the methylation
regulation of ARGs played an important role in the immunemicroenvironment [37]. This study analyzed the DEGs in GBM samples and
healthy controls in TCGA. A total of 256 overlapping genes were identified in the DEGs of aging, macrophage, autophagy, and
methylation related genes. The genes were classified into 3 clusters based on K-means analysis. IDH mutation, ATRX mutation, TERT
promoter mutation, and MGMT promoter methylation exerted significant differences in the 3 clusters. Cluster 3 had the worst OS
compared with the other two clusters.
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5.2. Identification and validation of the five genes

Firstly, using a series of univariate andmultivariate regression analyses, the value of a five-gene risk signature was verified. The five
genes were MAP1LC3A, MPO, GATA4, S100A4, and SPP1, respectively. The risk scores were calculated based on the expression levels
of these five genes. Patients were divided into high-risk and low-risk group based on the median of risk score. Next, two other datasets,
CGGA and the Huanhu cohort from our hospital were used for validation. MAP1LC3A, a protein maker for autophagy, includes two
subtypes: MAP1A and MAP1B. These two proteins were all associated with microtubules. MAP1LC3A was reported to be involved in
the carcinogenesis of multiple types of tumors, such as esophageal squamous carcinoma, glioma, gastric cancer, and osteosarcoma,
amongst others [38]. A total of 43 % of the GBM samples exhibited upregulated expression of MAP1LC3A, and this upregulation was
correlated with GBM carcinogenesis [39]. Previous studies have shown that MAP1LC3A is a risk signature of GBM. NRG1, ITGA3, and
MAP1LC3A were selected to construct a prognostic risk score model [40]. MPO is a highly oxidative and inflammatory-associated
enzyme, that is primarily expressed in inflammatory monocytes and neutrophils. H2O2 is a substrate of MPO, and several oxidative
species are generated following its interaction. MPO serves both a pro- and anti-tumorigenic effect. MPO+macrophages are associated
with long term survival of brain tumors based on single-cell technologies [41]. The GATA transcription factors include six family
members. GATA4 is a member of the zinc finger transcription factor family of proteins. It serves as a negative OS marker in GBM
patients by regulating the expression levels of the anti-apoptotic proteins, Bcl-2 and Bcl-xL. The methylation of GATA4 promoter is a
survival prognostic marker in GBM [42]. S100A4 is an upstream regulator of EMT-associated factors. It exerts the function on tumor
cell motility and metastasis by binding to calcium. Higher-grade tumors show higher expression levels of S100A4 than lower-grade
tumors [43]. S100A can also act as a regulator of myeloid and immune suppressive T cells. The knockdown of S100A resulted in a
failure of reprogramming of immune cells and thus improved OS significantly, and it has served as an immunotherapeutic target in
GBM patients [44]. SPP1, also known as osteopontin (OPN), is an acidic secreted phosphoprotein with several functions. It is involved
in the development of several tumors, including breast carcinoma, glioma, hepatocellular carcinoma, ovarian carcinoma, and cervical
cancer, where it exhibits upregulated expression [45]. Using these five genes in GBM, we generated a risk score model.

5.3. Construction of a nomogram

Next, we analyzed seven factors including age, sex, risk score, IDHmutation, ATRXmutation, TERT promoter mutation, andMGMT
promoter methylation to verify whether the risk score was an independent prognostic factor. The results showed that age, risk score,
and MGMT promoter methylation were all significantly associated with OS. IDH mutation, ATRX mutation, TERT promoter mutation,
and MGMT promoter methylation were all closely associated with prognosis. GBM patients with IDH mutations had a relatively
favorable survival compared with GBM patients with wild-type IDH [46,47]. TERT promoter mutation was a characteristic of GBM and
may thus be used as a diagnostic factor [48]. In addition, it was also found that the MGMT gene promoter methylation was a strong
prognostic factor [49]. There were some correlations between IDH, ATRX, and TERT promoter mutations in glioma. IDH mutation has
been reported not only in glioma but also in other types of tumors. One of the characteristics between primary and recurrent tumors is
IDH mutation. The majority of IDH-mutant GBM patients showed ATRX loss. While GBM patients with wild-type IDH exhibited ATRX
expression. The presence of mutant IDH also increased histone lysine methylation by activating the TERT promoter [50].

A nomogram consisting of age, risk score, and MGMT promoter methylation status was established. To the best of our knowledge,
this nomogram is the first to combine aging, macrophage, autophagy, and methylation-related genes for prognostic prediction.
Calibration curves and ROC analysis indicated that the nomogram was excellent for prognostic prediction. The nomogram could assist
in predicting the survival probability of an individual. We found that the established model could accurately predict the survival of
GBM patients in the TCGA and CGGA dataset in 1-, 3-, and 5-year, which is useful and meaningful in clinical application.

5.4. Analysis of TME and metabolic reprogramming

TME is a complex environment in which tumor cells can survive and develop, and the immune cells and their regulation in the
microenvironment play an important role in the occurrence and development of tumors. Tumor-infiltrating leukocytes (TILs), which
are vital components of the TME has been found to be closely related to the prognosis of tumors [51]. The assessment and valuation of
TILs are important as their functions vary in different tumor types [52,53]. ICIs are important immunotherapeutic tools. The most
well-known ICIs were developed based on programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) in-
hibitors, which block the PD-1/PD-L1 signaling pathway between tumor cells and T cells, resulting in the activation of infiltrating T
cells and the attack of tumor cells. For several types of late-stage tumors, ICI treatment is the first choice and has provided renewed
hope for numerous patients [54]. However, only a few patients benefit from this treatment. Thus, researchers are attempting to
promote the transformation of “cold tumors” into “hot tumors” to enhance the efficacy of ICIs. Tumors can be classified into immu-
nologically inactive tumors (cold) tumors and active (hot) tumors based on immune cell infiltration in the TME. Cold tumors are
insensitive to therapies such as chemotherapy and immunotherapy and thus have a poor prognosis. However, hot tumors are char-
acterized by the infiltration of immune cells and thus have a better prognosis when treated with ICIs [55]. In the present study, GBM
patients with high-risk scores had a significantly higher proportion of activated NK cells and resting mast cells, and a significantly
lower proportion of memory B cells, plasma cells, resting NK cells, M1 macrophages, and neutrophils than the low-risk score patients.
GBM samples were divided into cold and hot tumors based on the immune infiltration score. The risk score in hot tumors was higher
than in cold tumors. Our results showed that the TME changed between high-risk and low-risk groups.

Metabolic reprogramming is a characteristic of tumors. Glucose, lipid, amino, and lactate metabolism exert a significant impact on
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the TME, migration, invasion, and angiogenesis. Metabolic reprogramming is closely related to the TME. The tumor cell-derived
metabolites affect the composition and distribution of immune cells in the TME, ultimately resulting in immune disorder and
tumor progression [56]. Tumor cells alter their metabolic mechanisms to promote growth and survival. These altered metabolisms
have common characteristics: including increased uptake of glucose and fermentation of glucose to lactate. This phenomenon is known
as the Warburg Effect. The Warburg Effect has been documented for over 90 years and is one of the most extensively studied phe-
nomena in almost all kinds of tumors [57]. Here, 29 genes associated with glucose metabolism and lipid metabolismwere selected, and
it was found that their expression levels were higher in the high-risk group than in the low-risk group. Moreover, 31
metabolism-related pathways were statistically significant between high-risk and low-risk groups. Thus, the exact function and
mechanisms of these genes or pathways, alone and in combination, is deserved of further study. In our work, GBM samples were
divided into two classes by the value of risk score. Based on this classification, immune infiltration and metabolic reprogramming
showed significantly difference in a lot of genes and pathways. Our work indicated that TME andmetabolic reprogramming had impact
on the prognosis of GBM. These results are inspiring and encourage us in further exploring the mechanism of GBM. The workflow of
this study is shown in Fig. 8.

5.5. Strengths and limitations

There are some strengths in our work. First of all, the novelty aims at the comprehensive consideration of aging, autophagy,
macrophage and methylation on GBM. The risk score calculated using MAP1LC3A, MPO, GATA4, S100A4, and SPP1 was accurate in
predicting the prognosis of patients with GBM in TCGA, CGGA and our own database. And we successfully constructed a prognosis
model combined risk score and clinical parameters. What’s more, immune infiltration and metabolic reprogramming were further
analyzed between high-risk and low-risk groups.

However, the present study also has some limitations. First, the data available from the two public databases and the Huanhu
cohort were limited. The value of the risk score for clinical application requires further validation in expanded clinical trials to confirm
the results of the present study. The public database makes it difficult to collect complete clinical information for each patient. Second,
the cut-off value was based on the median risk score in this study. Thus, an optimal cut-off value should be determined instead of the
median of the risk score. Third, our novel risk score model did not take into consideration when GBM patients received different
treatment therapies. Fourth, it is better to further explore the function of these five risk genes by in vitro and in vivo experiments, such as
CCK-8, colony formation, transwell migration and invasion assays, and animal experiments. Lastly, given the retrospective design,
potential bias was associated with unbalanced clinicopathological features which cannot be ignored. Prospective, large-scale cohort

Fig. 8. The workflow of this study.
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studies are also needed to validate the prognostic value of MAP1LC3A, MPO, GATA4, S100A4, and SPP1that have been screened out in
our study.

6. Conclusion

In summary, we developed a novel five-gene risk score model for predicting the prognosis of GBM in a TCGA cohort. CGGA data and
the Huanhu cohort were used for validation. Next, we established a novel prognostic nomogram by age, risk score, and MGMT pro-
moter methylation status. We analyzed the immune landscape and metabolic reprogramming in GBM. According to this classification
of GBM, the difference in immune infiltration and metabolic reprogramming is meaningful, which indicates that our prognostic model
has been constructed successfully. Our results may be beneficial for predicting the prognosis of glioma and evaluating the effect of
immunotherapy. Our study provides novel insights into the prognosis and immunotherapy for GBM.
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Leyn, A. Liston, J. Vansteenkiste, P. Carmeliet, S. Aerts, B. Thienpont, Phenotype molding of stromal cells in the lung tumor microenvironment, Nat. Med. 24
(2018) 1277–1289, https://doi.org/10.1038/s41591-018-0096-5.

[19] W. Jiang, Y. He, W. He, G. Wu, X. Zhou, Q. Sheng, W. Zhong, Y. Lu, Y. Ding, Q. Lu, F. Ye, H. Hua, Exhausted CD8+T cells in the tumor immune
microenvironment: new pathways to therapy, Front. Immunol. 11 (2020) 622509, https://doi.org/10.3389/fimmu.2020.622509.

[20] B. Faubert, A. Solmonson, R.J. DeBerardinis, Metabolic reprogramming and cancer progression, Science 368 (2020), https://doi.org/10.1126/science.aaw5473.
[21] M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics 26

(2010) 139–140, https://doi.org/10.1093/bioinformatics/btp616.
[22] C. Sabatti, S. Service, N. Freimer, False discovery rate in linkage and association genome screens for complex disorders, Genetics 164 (2003) 829–833, https://

doi.org/10.1093/genetics/164.2.829.
[23] G. Yu, L.G. Wang, Y. Han, Q.Y. He, clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters, vol. 16, Omics, 2012, pp. 284–287,

https://doi.org/10.1089/omi.2011.0118.
[24] A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set

enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 15545–15550,
https://doi.org/10.1073/pnas.0506580102.

[25] D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N.T. Doncheva, J.H. Morris, P. Bork, L.J. Jensen, C.V. Mering, STRING
v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res.
47 (2019) D607–d613, https://doi.org/10.1093/nar/gky1131.

[26] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated
models of biomolecular interaction networks, Genome Res. 13 (2003) 2498–2504, https://doi.org/10.1101/gr.1239303.

[27] J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Software 33 (2010) 1–22.
[28] A.C. Alba, T. Agoritsas, M. Walsh, S. Hanna, A. Iorio, P.J. Devereaux, T. McGinn, G. Guyatt, Discrimination and calibration of clinical prediction models: users’

guides to the medical literature, JAMA 318 (2017) 1377–1384, https://doi.org/10.1001/jama.2017.12126.
[29] A.M. Newman, C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, A.A. Alizadeh, Robust enumeration of cell subsets from tissue

expression profiles, Nat. Methods 12 (2015) 453–457, https://doi.org/10.1038/nmeth.3337.
[30] J. Fu, K. Li, W. Zhang, C. Wan, J. Zhang, P. Jiang, X.S. Liu, Large-scale public data reuse to model immunotherapy response and resistance, Genome Med. 12

(2020) 21, https://doi.org/10.1186/s13073-020-0721-z.
[31] H. Qiang, J. Li, Q. Chang, Y. Shen, J. Qian, T. Chu, Mining GEO and TCGA database for immune microenvironment of lung squamous cell carcinoma patients

with or without chemotherapy, Front. Oncol. 12 (2022) 835225, https://doi.org/10.3389/fonc.2022.835225.
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