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Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum
strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts
with a massless scalar field using the master equation approach for open quantum system. We employ local
quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated
detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population
measurement, maximize its value over all possible detector preparations and evolution times, and compare
its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of
estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this
case the FI for population measurement is independent of initial preparations of the detector and is exactly
equal to the QFI, which means that population measurement is optimal. This result demonstrates that the
achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note
that the same configuration is also available to the maximum of the QFI itself.

I
t is well known that in the modern theory of quantum fields, the concept of particle is observer-dependent1.
One of the most fundamental manifestations of this fact is the Unruh effect1,2, i.e., the inertial vacuum is
perceived by a uniformly accelerated observer as populated by a thermal bath of radiation. It is believed that

this effect is deeply connected with important physical phenomena such as Hawking radiation3–6. Thus, its
observation would be expected to provide experimental support for Hawking radiation and black hole evapora-
tion. Furthermore, the detection of the Unruh effect would have an immediate impact in many fields such as
astrophysics7,8, cosmology9, black hole physics10, particle physics11, quantum gravity12 and relativistic quantum
information13,14. However, although a large number of different schemes involving Bose-Einstein condensates15–18

and superconducting circuits19,20 have been proposed to detect the associated radiation effect, it remains an open
research program to detect this effect in experiments, this is because the associated temperature lies far below any
observable threshold (smaller than 1 Kelvin even for accelerations as high as 1021 m/s2). Since the Unruh effect is
rather weak, high-precision quantum measurement is essential during its detection. On the other hand, due to the
fact that nature is both quantum and relativistic, it can be expected by theoretical arguments that the Unruh effect
is incorporated into the question of how to process information by using quantum technologies which are beyond
the classical approaches13,14. This creative combination provides not only a more complete frame to understand
the theory of quantum information but also perhaps a new way to address the problem of ‘‘information loss’’ in
black hole scenarios. In particular, within this area at the overlap of relativity and quantum mechanics, it seems
natural to apply novel approaches and techniques for quantum measurements. This makes the relativistic aspect
of the effects potentially more accessible to detection.

The Unruh temperature of interest to us is nonlinear function of the density matrix and cannot, even in principle,
correspond to a proper quantum observable. Therefore, its direct observation is not accessible. In these situations one
has to turn to indirect measurements, inferring the value of the quantity of interest by inspecting a set of data coming
from the measurement of a different observable, or a set of observables. In this regard, let us note that any conceivable
strategy aimed at evaluating the quantity of interest ultimately reduces to a parameter-estimation problem that may
be properly addressed in the framework of quantum estimation theory (QET)21–26. Relevant examples of this
situation are given by discussions of quantum speed limits in open system dynamics27–29, measurements of non-
Markovianity of open quantum processes30, estimation of quantum phase24,25,31–33, qubit thermometry34,35, and so on.
For example, with the help of rigorous methods from quantum statistics and estimation21, recently Aspachs et al.36

have investigated the ultimate precision limits for the estimation of the Unruh-Hawking temperature. Shorter after
that, a number of analogous papers have emerged to study the topic of the estimation of relativistic effects36–42.
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Up to date, almost all work involving relativistic metrology is
guided by an interesting link between field theory and quantum
information: The change of coordinates between an inertial observer
and a noninertial observer in the description of the state of a scalar
field is equivalent to the transformation that affects a light beam
undergoing parametric down-conversion in an optic parametric
oscillator1,43. The parameters encoded in quantum fields are assumed
to be directly estimated without any scheme that investigates how to
extract this information from the fields (relevant processes involve to
how to introduce a probe and prepare what kind of probe). Besides,
the quantum states to probe relativistic effects are directly prepared
with the free field mode36,39–42, which, as we all known, is spatially not
localized and thus cannot be experimentally accessed and measured
by localized apparatuses44.

Motivated by these considerations, in this work we employ a uni-
formly accelerated and localized two-level atom as the probe to detect
the Unruh temperature. We aim at estimating the inverse Unruh
temperature b 5 1/T and try to address the following questions:
(1) Which is the best probe state? (2) Which is the optimal measure-
ment that should be performed at the output probe state? (3) Which
is the minimum fluctuation in the temperature estimation, as well as
the ultimate bound to precision imposed by quantum mechanics.

Results
Physical model and probe state preparation. We consider a two-
level atom as the detector which interacts with a fluctuating vacuum
scalar field. This model assumes that the detector behaves like an
open system, i.e., a system immersed in an external field. Therefore,
in the following we will treat the detector as an open quantum system
and the vacuum with the fluctuations of the quantum field as the
environment.

Let us first introduce the total Hamiltonian of the total system,
detector plus field. Without loss of generality, it is taken as

H~HszHW xð ÞzHI , ð1Þ

where Hs~
1
2

v0sz and HW(x) are respectively the Hamiltonian of the

detector and scalar field, and HI 5 m(s1 1 s2)W(x(t)) represents
their interaction. Note that v0 is the detector’s energy-level spacing,
sz is the Pauli matrix, s1 (s2) is the atomic rasing (lowering) oper-
ator, andW(x) corresponds to the scalar field operator. Here, the two-
level atom can be fully described in terms of a two-dimensional
Hilbert space. Its quantum state, with respect to a fixed and arbitrary
basis in this space, will be represented by a 2 3 2 density matrix r,
which is Hermitian r{ 5 r, and normalized Tr(r) 5 1 with det(r) $

0. On the other hand, the equation of motion of the scalar field is (%
1 m2)W 5 0 with %W 5 gmn=m=nW 5 (2g)21/2hm[(2g)21/2gmnhnW],
where m is the mass of the field, and g is the determinant of the metric
gmn. For the Minkowski spacetime case, one set of solutions of this
equation of motion is uk(t, x) 5 [2v(2p)3]21/2eik?x2ivt with v 5 (k2 1

m2)1/2. The field modes uk and their respective complex conjugates
form a complete orthonormal basis, so W may be expanded as

W xð Þ~
X

k
akuk t,xð Þza{ku�k t,xð Þ
h i

, which plays a crucial role in

the following calculation of the two point function of quantum field.
Initially, the total quantum system is described by the density

matrix rtot 5 r(0) fl j2æÆ2j, in which r(0) is the reduced density
matrix of the detector, and j2æ is the vacuum of the field defined by
akj2æ 5 0 for all k. In the frame of the detector, the evolution in the
proper time t of the total density matrix rtot satisfies

Lrtot tð Þ
Lt

~{iLH rtot tð Þ½ �, ð2Þ

where the symbol LH represents the Liouville operator associated
with H, LH[S] 5 [H, S]. To obtain the dynamics of the detector, we

must trace over the field degrees of freedom. After that, in the limit of
weak coupling the evolving density matrix r(t) of the detector obeys
an equation in the Lindblad form45–47

Lr tð Þ
Lt

~{i Heff ,r tð Þ
� �

zL r tð Þ½ � ð3Þ

with

Heff ~
1
2
Vsz~

1
2

v0zm2Im CzzC{ð Þ
� �

sz,

L r tð Þ½ �~
X3

j~1

2LjrL{
j {L{

j Ljr{rL{
j Lj

h i
,

ð4Þ

where C+~

ð?
0

eiv0sGz s+iEð Þds, L1~

ffiffiffiffiffiffi
c{

2

r
s{, L2~

ffiffiffiffiffiffi
cz

2

r
sz,

L3~

ffiffiffiffi
cz

2

r
sz , c6 5 2 m2ReC6, cz 5 0, G1 (x 2 x9) 5

Æ0jW(x)W(x9)j0æ is the field correlation function, and s 5 t 2 t9.
Eq. (3) characterizes the evolution of the detector. In particular,
the second on its right hand side denotes the dissipation resulting
from the external environment, i.e., the scalar field that the detector
couples to. It is called the Lindblad term and describes the response of
the detector to the environment. All the information that we are
interested in and want to estimate in the following is encoded in its
relevant parameters.

In order to solve the Eq. (3), let us express the reduced density
matrix in terms of the Pauli matrices,

r tð Þ~ 1
2

1z
X3

i~1

ri tð Þsi

 !
: ð5Þ

If we choose the initial state of the detector as y 0ð Þj i~
sin h

2 0j ize{iwcos h
2 1j i, substituting Eq. (5) into (3), we can obtain

its analytical evolving matrix,

r tð Þ~ 1
2

ree tð Þ reg tð Þ
rge tð Þ rgg tð Þ

 !
ð6Þ

with

ree tð Þ~1ze{Atcoshz
B
A

1{e{At
� �

,

rgg tð Þ~1{e{Atcosh{
B
A

1{e{At
� �

,

reg tð Þ~r�ge tð Þ~e{1
2At{i Vtzwð Þsinh,

ð7Þ

where A 5 c1 1 c2 and B 5 c1 2 c2. Moreover, the state of the
detector can be diagonalized and decomposed as r(t) 5

l1jy1(t)æÆy1(t)æj 1 l2jy2(t)æÆy2(t)æj with

l+~
1
2

1+gð Þ,

y+ tð Þ
		 


~
reg tð Þ
			 			 0j ize{i Vtzwð Þ ree tð Þ{2l+ð Þ 1j i
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ree tð Þ{2l+ð Þ2z reg tð Þ

			 			2
r ,

ð8Þ

where g~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ree tð Þ{1ð Þ2z reg tð Þ

			 			2
r

.
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From Eqs. (3) and (4) we know that the Wightman function for the
scalar field that the detector couples to plays an important role in the
evolution of the detector. In this regard, let us note that if a uniformly

accelerated detector with trajectory, t tð Þ~ 1
a

sinh atð Þ, x tð Þ~ 1
a

cosh atð Þ, y(t) 5 z(t) 5 0, is coupled to a massless scalar field in
the Minkowski vacuum, then the corresponding Wightman function
should be1

Gz x,x’ð Þ~{
a2

16p2
sinh{2 a t{t’ð Þ

2
{ie

� �
: ð9Þ

In this case, it is easy to obtain

A~
m2v0

2p
e2pv0=az1
e2pv0=a{1


 �
, B~{

m2v0

2p
: ð10Þ

Substituting Eq. (10) into (6), it is easy to check that when evolving

long enough time, i.e., t?
1

czzc{

with
1

czzc{

being the time scale

for atomic transition, the detector eventually approaches to the state

r ?ð Þ~ e{bHs

Tr e{bHs½ � : ð11Þ

Here let us remark that the state in Eq. (11) is a thermal state with a
temperature T 5 1/b. Thus, the accelerated detector feels as if it were
immersed in a thermal bath with temperature T 5 a/2p1. We will
estimate this relativistic parameter in the following.

Fisher information based on population measurement. As we
stated in the Discussion section, the QFI determines the ultimate
bound on the precision of the estimator although it is then difficult
to find out which measurement is optimal to achieve such ultimate
bound. This occurs because the QFI does not depend on any
measurements, for it is obtained by maximizing the FI over all
possible quantum measurements on the quantum system. Thus, to
find out the optimal measurement to estimate the Unruh
temperature, we first calculate the FI for the population
measurement, and then compare the FI with the QFI to determine
whether the population measurement is optimal according to the
condition of optimal quantum measurement, i.e., POVM with a FI
equal to the QFI. For the population measurement, the FI, according
to Eqs. (6) and (17), is given by

F bð Þ~
Lbp e bjð Þ
� �2

p e bjð Þ z
Lbp g bjð Þ
� �2

p g bjð Þ

~
1
2

Lbree tð Þ
� �2

ree tð Þ z
Lbrgg tð Þ
h i2

rgg tð Þ

2
64

3
75:

ð12Þ

Substituting Eqs. (7) and (10) into Eq. (12), we can obtain the detailed
formula of the FI. It is interesting to note that the FI is independent of
quantum phase w. It only depends on the parameters t, h and v0.
Thus, the FI in fact should be written as F(b, t, h, v0), while we adopt
the notation F(b) for convenience here. In the following, by evalu-
ating the FI we want to find both the optimal initial detector
preparation and the smallest temperature value that can be discri-
minated. We will work with dimensionless quantities by rescaling
time and temperature

t.~t:c0t, b.~b:bv0, ð13Þ

where c0~
m2v0

2p
is the spontaneous emission rate of the atom. For

convenience, we continue to term ~b and ~t, respectively, as b and t.
Let us consider that the detector is uniformly accelerated with

proper acceleration a and Unruh temperature T proportional to a2.
We assume that the inverse temperature has the value b 5 10. The
probabilities p(jjb) 5 rjj(t) evolve according to Eq. (7). The corres-
ponding behavior of the FI is shown in the top panel of Fig. 1. We can
see that for h 5 p the FI is larger than the FI of other cases during

initial period, but when t?
1

czzc{

all the FI are saturated and

equal to each other. This means that the FI displays a robust max-

imum at the optimal time t?
1

czzc{

for all h. We can also obtain

the same results from the bottom panel of Fig. 1. It is shown that the
FI evolves periodically as a function of the initial state parameter h
and for any time the maximal FI is always obtained by taking hmax 5

p, i.e., by preparing the detector in the ground state. Furthermore, for
small time the FI suddenly drops to zero, except for a sharp peak
centered at hmax, as h varies, but for long time the FI changes less with
respect to h. Thus, we can arrive at the conclusion that the maximum
sensitivity in the predictions for the inverse Unruh temperature can
be obtained by initially preparing the detector in its ground state.
However, if the detector evolves for a long enough time, the max-
imum sensitivity in the predictions is independent on the initial state
in which the detector is prepared. It is no surprise because the accel-
erated detector eventually evolves to a thermal state regardless of its
initial state48.

Figure 1 | By taking b 5 10 the FI is plotted as a function of the effective
time t with different h values. (The top one) h 5 p (dot-dashed red line), h

5 0.95p (dashed blue line), h 5 0 (solid green line). (The bottom one) the

FI is plotted for b 5 10 as a function of the initial state parameter h with

different effective time t: t 5 10 (dot-dashed red line), t 5 5 (dashed blue

line), t 5 1 (solid green line).
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In Fig. 2 we plot the FI for different fixed temperatures as a func-
tion of time t. We can see that the FI approaches its maximum value
when the detector evolves for a long enough time. Also its value for
different b varies over several orders of magnitude, changing from
1025 to 0.1, which means the FI is very dependent on the temperature
itself. As we demonstrated above, the reason for saturation is that the
accelerated detector eventually evolves to a thermal state regardless
of its initial state48. Furthermore, in this case, the thermal state only
depends on the thermal temperature felt by the detector, i.e., the
acceleration of the detector. On the other hand, the higher the tem-
perature, the bigger the FI is, i.e., the easier it is to achieve a given
precision in the estimation of temperature.

Quantum Fisher information. In order to assess the performance of
the population measurement in the estimation of the Unruh
temperature we have evaluated the QFI of the family of states r(t)
in Eq. (6). Substituting Eqs. (8) and (10) into (19), it is easy to obtain
the QFI. Let us note that the QFI depends on b, t and h, but is
independent of the phase w of the detector. Thus, to find out the
optimal working regimes we have to maximize the value of the QFI
over all three relevant parameters.

Similar to the analyses of the FI shown above, we first fix the
Unruh temperature by assuming b 5 10, and discuss how the effec-
tive time t (initial state parameter h) affects the QFI for different
initial state parameters h (effective time t). Obviously, from Fig. 3 we
know that the maximum of the QFI is achieved by initially preparing
the detector in the ground state. However, if the effective time is long
enough, i.e., the detector evolves for a long enough time,

t?
1

czzc{

, no matter what the initial state is prepared in, the

QFI always achieves the maximum, which means the optimal sens-
itivity in estimation of b is independent of the initial preparation of
the detector if the effective time is long enough. Besides, in Fig. 4 we
plot the QFI for different fixed temperatures as a function of the
effective time t. We find that, if the detector evolves for a long enough
time, the QFI we computed above for different Unruh temperatures
saturates at different values which vary over several orders of mag-
nitude. Furthermore, the higher the temperature, the bigger the QFI
is, i.e., the easier it is to achieve a given precision in the estimation of
temperature. Thus, we can arrive at the conclusion that the max-
imum sensitivity in the predictions for the inverse Unruh temper-
ature can be obtained when the detector evolves for a long enough
time, and the maximum sensitivity in the predictions is independent
on the initial state in which the detector is prepared. In this case we
want to emphasize that this strategy provides optimality in the sense

that inequality (18) is saturated and the variance Var(b) is as small as
possible.

We find that for t?
1

czzc{

both the FI and QFI take the max-

imum limit. Interestingly, upon inspecting the temporal evolution of
the excited state probability, p(ejb) has a minimum under this con-
dition (also the quantum state of the detector is thermal discussed in
Eq. (11)). Thus, we can give a physical explanation to the FI and QFI

Figure 2 | Log-linear plot of the FI as a function of effective time t with
different values of b. The detector is initially prepared in its ground state

| 0æ (h 5 p). From bottom to top, b 5 10 (dot-dashed red line), b 5 6

(dashed blue line), b 5 2 (solid green line).

Figure 3 | By taking b 5 10 the QFI is plotted as a function of the effective
time t with different h values. (The top one) h 5 p (dot-dashed red line), h

5 0.95p (dashed blue line), h 5 0 (solid green line). (The bottom one) the

QFI is plotted for b 5 10 as a function of the initial state parameter h with

different effective time t: t 5 10 (dot-dashed red line), t 5 5 (dashed blue

line), t 5 1 (solid green line).

Figure 4 | Log-linear plot of the QFI as a function of effective time t with
different values of b. The detector is initially prepared in its ground state

| 0æ (h 5 p). From bottom to top, b 5 10 (dot-dashed red line), b 5 6

(dashed blue line), b 5 2 (solid green line).
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behavior. Because we want to estimate a tiny quantity that carries
information about thermal disorder, of course, only when the
external environment is mostly occupied by the Unruh thermal par-
ticle, and the more the better, we then could expect to find the
maximum sensitivity in the predictions. This condition corresponds
to the probability p(ejb) achieving its minimum.

In the above analysis, we have shown the behaviors of the FI
and QFI, and obtained the conditions that how to achieve the
maximum FI and QFI. It is interesting to note that the behavior
of H(b) is identical to that of F(b), as is apparent by comparing
Fig. 1 and 3. Besides, under the same condition (h, w, t) 5 (h, w,
‘) both the FI and QFI obtain the maximum value when b is
fixed. In order to find out whether the population measurement is
optimal during the estimation process of the Unruh temperature,
we will check whether the maximized FI is equal to the optimal
QFI. Thus, we prepare the detector in its ground state, i.e., h 5 p,
and assume that the detector evolves for a long enough time. This
allows us to easily find that the detector eventually evolves to a
thermal state. In this case, the off-diagonal terms of state (6)
vanish and it is diagonal with two eigenvalues

lz~
1

e2pv0=az1
,

l{~
e2pv0=a

e2pv0=az1
,

ð14Þ

and corresponding eigenvectors jeæ and jgæ. For this quantum
statistic model, we find that the FI is equal to the QFI given by

F bð Þ~H bð Þ~
Lblz

� �2

lz

z
Lbl{

� �2

l{

: ð15Þ

It means that the estimation of b via the population measurement
is optimal. Eq. (15) is the ultimate bound to precision of estimation of
the Unruh temperature. Because the population measurement is
optimal, our results in this regard suggest that the achievement of
the ultimate bound to precision of estimation of the Unruh temper-
ature allowed by quantum mechanics is in the capability of current
technology.

Discussion
We introduced a detector, i.e., a two-level atom, which is uniformly
accelerated and interacts with a massless scalar field in the
Minkowski vacuum, and employ it to detect the Unruh temperature.
By employing local quantum estimation theory we have studied the
estimation of the Unruh temperature via quantum-limited measure-
ments performed on the detector. In particular, we have analyzed the
precision of estimation as a function of both the detector initial
preparations and the interaction parameters, and evaluated the limits
of precision posed by quantum mechanics.

It is shown that the FI for the population measurement, which
establishes a classical bound on precision, takes the maximum limit
when the detector evolves for a long enough time compared with the

time scale for atomic transition,
1

czzc{

, i.e., when t?
1

czzc{

. In

this case, the FI for population measurement is independent of any
initial preparations of the detector. Furthermore, we find that the
same configuration is also corresponding to the maximum of the QFI
based on all possible quantum measurements, which establishes the
ultimate bound to the precision allowed by quantum mechanics.
Interestingly, the maximum FI is equal to the maximum QFI under
the same conditions, which means the optimal measurement for the
estimation of the Unruh temperature corresponds to the population
measurement. Thus, during the detection of the Unruh temperature,
we can achieve the ultimate bound to the precision by performing a
population measurement on the detector, and the ultimate bound is

given by Eq. (15). Because the population measurement is allowed by
the current technology49–55, our results, in this regard, indicate that
the ultimate bound to precision of estimation of Unruh temperature
imposed by quantum mechanics can in principle be achieved under
the current technology. On the other hand, our results demonstrate
that thermalized quantum statistic model, Eq. (11), plays an optimal
role in the estimation of the Unruh temperature. This occurs because
we want to estimate a tiny quantity that carries information about
thermal disorder. Therefore, it is natural to expect to find the max-
imum sensitivity in the predictions when the external environment,
that is coupled with the detector, is mostly occupied by the Unruh
thermal particle, and the more the better. This condition corresponds

to when t?
1

czzc{

, i.e., when the detector state is thermalized.

Our model avoids two critical technical difficulties in the estima-
tion of the Unruh temperature: a physically unfeasible detection of
global free mode in the full space36 and a non-analytical expression of
QFI due to the boundary conditions of the moving cavity37,38.
Recently, the open quantum system approach has been used to
understand the Hawking effect of black hole56 and Gibbons-
Hawking effect of de sitter universe57. Thus, our above analysis can
also be applied to discussing the estimation of Hawking temperature
and Gibbons-Hawking temperature. Also we could turn to the
estimation of other parameters, such as the atomic frequency and
phase, analyzing what kind of role that the relativistic effects play in
this metrology. In particular, the simulation of relativistically accel-
erating atoms in trapped ion systems and superconducting circuits
has been studied in Ref. 58. The simulations proposed in Ref. 58 are
precise analogues of the physical setting required here. Our tech-
niques could possibly be implemented during such simulations.

Methods
Usually, two main steps are contained in estimation process: at first we has to choose a
measurement, and then, after collecting a sample of outcomes, we should find an
estimator, i.e., a function to process data and to infer the value of the quantity of
interest. For a given measurement scheme, the mean square error

Var bð Þ~Eb b̂{b
� �2
� �

of any estimator of the parameter, b, is bounded by the

Cramér-Rao inequality21

Var bð Þ§ 1
MF bð Þ , ð16Þ

where M is the number of identical measurements repeated and F(b) is the FI given by

F bð Þ~
X

j

p j bjð Þ Lb ln p j bjð Þ
� �2

~
X

j

Lbp j bjð Þ
		 		2

p j bjð Þ : ð17Þ

Efficient estimators are those saturating the Cramér-Rao inequality. In order to obtain
the ultimate bound to precision, i.e., the smallest value of the parameter that can be
discriminated, the optimization of FI is needed via a suitable choice of all its
dependent parameters. From Eqs. (7) and (17), the FI obviously depends on the
detector initial state parameters and evolving time, and so on. In this regard, let us
note that the initial states of the detector and evolving time play an important role in
this metrology process, which essentially determine the ultimate bound on precision.

On the other hand, we can also maximize the FI over all possible quantum mea-
surements on the quantum system. By introducing the symmetric Logarithmic

Derivative (SLD) satisfying
LbrbzrbLb

2
~

Lrb

Lb
, the FI of any quantum measurement

is upper bounded by the so-called QFI given by

F bð ÞƒH bð Þ~Tr rbL2
b

� �
: ð18Þ

Here, it is interesting to note that the QFI does not depend on any measurements
carried on the detector, indeed being obtained by maximizing over all possible
measurements26. Further studies show that the detailed formula for the QFI is of26

H bð Þ~
X
k~+

Lblk
� �2

lk
z2

X
k=k’~+

lk{lk’ð Þ2

lkzlk’
yk Lbyk’

		� 
		 		2, ð19Þ

where lk and jykæ satisfy rb~
X

k
lk ykj i ykh j. The first term in Eq. (19) represents

the classical Fisher information whereas the second term contains the truly quantum
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contribution. Therefore, it is natural to generalize the Cramér-Rao inequality (16) to
its quantum version

Var bð Þ§ 1
MH bð Þ , ð20Þ

which shows the ultimate bound to the precision allowed by quantum mechanics for a
given statistical model r(b).

For a given quantum measurement, i.e., a POVM, Eq. (17) establishes the classical
bound on precision, which may be achieved by a proper data processing, e.g., by
maximum likelihood, which is known to provide an asymptotically efficient estim-
ator. On the other hand, Eq. (19) establishes the ultimate bound to the precision
allowed by quantum mechanics. Thus optimal quantum measurement for the
estimation of b corresponds to POVM with a FI equal to the QFI, i.e., those saturating
inequality (18). In our paper, we calculate the FI for the population measurement, i.e.,
jeæÆej and jgæÆgj5 1 2 jeæÆej with outcomes probabilities {Tr[rbjeæÆej], Tr[rbjgæÆgj]},
performed on the detector, and maximize it over all the parameters it depends on.
Then we compare it with the QFI based on all possible quantum measurements to
find out whether the population measurement is optimal and determinate the ulti-
mate bound to the precision.
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