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Abstract: The accumulation and propagation in the brain of misfolded proteins is a pathological
hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau),
Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemio-
logical evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases.
However, there is an increasing body of evidence from experimental models to suggest that other
pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism,
inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary
tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein,
could potentially transmit from person-to-person as rare events after lengthy incubation periods.
Such concerns have been heightened following a number of recent reports of the possible inadvertent
transmission of Aβ pathology via medical and surgical procedures. This review will provide a
historical perspective on the unique transmissible nature of prion diseases, examining their impact
on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this
review will provide an insight into current evidence supporting the potential transmissibility of other
pathogenic proteins associated with more common neurodegenerative disorders and the potential
implications for public health.

Keywords: neurodegenerative diseases; prion disease; transmission; amyloid-beta; protein misfold-
ing; prion-like; iatrogenic; Alzheimer’s disease

1. Introduction

Globally, average life expectancy has shown a sustained increase over the last four
decades. Associated with this increase is a substantial rise in the prevalence of age-related
disorders [1]. Ageing is a well-recognised risk factor for neurodegenerative diseases, a
group of incurable, debilitating, and invariably fatal diseases that encompass a range of
disorders, including Alzheimer’s disease (AD) and other dementias, Parkinson’s disease
(PD), Huntington’s disease, Motor Neuron Disease (MND), and prion disease [2]. With the
World Health Organisation (WHO) predicting that dementia alone will affect 135 million
people by the year 2050, it is expected that the current global social and economic burden
presented by this group of disorders will be exacerbated in future decades [3].

The vast majority of neurodegenerative diseases are associated with the intracellular
or extracellular accumulation of misfolded protein within the brain [4]. These abnormal
protein deposits lead to the dysfunction and subsequent loss of the neuronal population,
resulting in the progression of a wide range of clinical symptoms that may include cognitive
decline, dementia, and a gradual loss of locomotor functions. Whilst different neurode-
generative conditions are associated with disease-specific proteins such as amyloid-beta
(Aβ) and hyperphosphorylated tau (tau) in AD, α-synuclein in PD, and TAR DNA-Binding
Protein 43 (TDP-43) in MND, a common molecular mechanism is proposed to underlie
the replication and spread of these different misfolded protein aggregates in the central
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nervous system (CNS) (Figure 1) [5,6]. The archetypal model for this mechanism is that
described in prion diseases, a rare group of neurodegenerative diseases that occur in hu-
mans as well as a number of animal species. In prion diseases, a misfolded and abnormal
form of a normal endogenous protein, the prion protein (PrPC), interact to form β-sheet
rich structures with the propensity to aggregate in the CNS. The misfolded prion protein,
termed prion (PrPSc), forms a seed or template that converts further PrPC monomers into
the abnormal and disease-associated isoform [5,6].

Figure 1. Common neurodegenerative diseases and the predominant protein accumulation in the
brain. The most common misfolded proteins associated with neurodegenerative diseases are amyloid-
beta (Aβ), tau, and alpha-synuclein (α-synuclein). These protein aggregates are represented in the
four different micrographs. In some instances, the neurodegenerative conditions are associated with
the accumulation in the brain of a single major protein type; this is best described in prion diseases.
However, in other disorders such as Alzheimer’s disease, multiple major protein forms are described.
With a number of conditions characterised by the same protein aggregation, differential diagnosis is
often dependent on the clinical phenotype.

At present, there is an increasing body of evidence illustrating a commonality be-
tween the properties of pathogenic proteins such as Aβ, tau, and α-synuclein with those
demonstrated by prions. As a consequence, neurodegenerative diseases including AD
and PD, are increasingly referred to as “prion-like” disorders [7]. The precise definition
of “prion” is “proteinaceous infectious particle”, in recognition of the unique infectious
nature of prions, in which they have shown to transmit not only between species but in
some instances across different species [8]. With no large-scale epidemiological studies
suggesting that other neurodegenerative disorders are infectious, apart from prion dis-
ease, the categorisation of disorders such as AD and PD as prion-like remains somewhat
contentious. However, advocates of this categorisation point to an increasing body of
evidence from experimental models demonstrating that protein aggregates such as Aβ and
tau can propagate in vivo and in vitro in a prion-like mechanism generating misfolded
protein aggregates such as amyloid plaques and neurofibrillary tangles. Furthermore, over
the last five years, a number of case reports have documented the possible inadvertent
human transmission of Aβ via medical and surgical procedures, heightening concerns
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that misfolded proteins, other than the prion protein, could potentially transmit from
person-to-person as rare events and with prolonged incubation periods [9].

In this review, we will provide a historical perspective on the unique transmissible
nature of prion diseases, examining their impact on public health and the ongoing concerns
raised by this rare group of disorders. Additionally, this review will provide an insight
into current evidence supporting the potential transmissibility of other pathogenic proteins
associated with more common neurodegenerative disorders and the possible implications
for public health.

2. Prion Diseases

Prion diseases are a rare but unique group of neurodegenerative disorders that occur
naturally in humans as well as a number of animal species. Creutzfeldt-Jakob disease
(CJD) in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in
cattle and chronic wasting disease (CWD) in cervids are just a few of the more familiar
forms of prion disease. Human and animal prion diseases are characterised by a common
pathology that includes spongiform degeneration in cerebral grey matter regions, reactive
proliferation of glial populations, neuronal loss and the accumulation in the CNS of a
misfolded and disease-associated form of the prion protein, termed PrPSc [10]. Human
prion diseases, like other neurodegenerative conditions occur largely as sporadic or genetic
conditions: indeed, sporadic Creutzfeldt-Jakob disease (sCJD) is the most common form,
accounting for approximately 85% of all human prion diseases [11]. In contrast, a small
proportion of human prion diseases (<1%) are acquired and include kuru, iatrogenic CJD
(iCJD) and variant CJD (vCJD). This differs to that of naturally occurring animal prion
diseases in which the majority of forms are acquired. With animal prion diseases also
spreading as zoonotic infection to humans, as identified with the emergence of vCJD [12],
enormous public and scientific attention has focused on this rare group of diseases, not
only over concerns for the possible human-to-human transmission but also the potential
risks to human health raised by animal diseases.

2.1. Prion Diseases, a Brief Historical Perspective

Prion diseases have a long-recorded history, dating back to the 18th century with
the first descriptions of scrapie, a naturally occurring neurological disease of sheep and
goats [13]. More than two centuries later, scrapie remains the archetypal prion disease,
with the misfolded and disease-associated form of the prion protein still referred to as
the scrapie isoform (PrPSc) by a large proportion of the scientific community. Seminal
in vivo and in vitro investigations led by Stanley Prusiner using scrapie-infected tissue
were instrumental in characterizing many of the properties associated with prion diseases,
including (i) the transmissibility between individuals of the same species and in some
instances across species [14–16], (ii) the identification that a protein forms the major, if
not sole, component of the infectious agent [8,17–19], demonstrating a resistance to pro-
teolytic digestion [8,17–19], high temperatures [20], and conventional decontamination
methods [21–23], (iii) the propensity of the misfolded and disease-associated prion protein
to aggregate in the CNS, (iv) the prolonged asymptomatic incubation periods associated
with the disease [14,15], (v) the existence of multiple isolates or strains of prions with
diverse biological properties [24–26] and (vi) the phenomenon of the “species barrier”,
more commonly referred to as transmission barrier, in which there may be inefficient
transmission of infectivity between different species [27].

Early studies of scrapie also provided the first clues to the aetiology of human prion
diseases with the observations by William Hadlow and colleagues that the neuropatho-
logical features described in scrapie were strikingly similar to that of kuru, an obscure
progressive neurological disease that was endemic amongst the Fore-linguistic tribes of the
Eastern highlands of Papua New Guinea during the 1950s [28]. With the transmissibility of
scrapie already established, Hadlow raised the possibility that kuru may also be a transmis-
sible disease. This transmissibility was confirmed several years later with a seminal study
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by Carleton Gajdusek, Clarence Gibbs, and Michael Alpers, in which they described the
development of a kuru-like illness in non-human primates experimentally inoculated with
brain isolates of a kuru case, confirming for the first time that a human neurological disease
could be transmissible [29]. Gajdusek and colleagues extended the evidence for human
transmissible prion diseases with the subsequent intracerebral injection of non-human
primates with brain homogenates from CJD patients, and later with brain isolates from
patients with Gerstmann–Sträussler–Scheinker (GSS) syndrome [30,31].

2.2. Models of Prion Disease
2.2.1. Animal Models

Experimental animal models have become a mainstay in prion disease research and
have been employed to address many aspects of prion disease [32]. The earliest experi-
mental animal models used sheep, goats, and non-human primates and have resulted in a
number of seminal studies including, the first evidence of the transmissibility of animal
and human prion diseases [14,15,29], the first recognition that BSE and vCJD shared a
similar pathological phenotype [33] and more recently, experimental transmissions in
sheep provided a valuable model in which to assess potential risks associated with blood
transfusion [34–36].

The development of rodent models during the 1960s marked a milestone in prion
disease research, providing a more economical and practical model in which to study
prion disease with significantly shorter incubation periods compared to large animal
models [37–39]. Initial studies using wild-type hamsters and mice were invaluable in
providing an understanding of the biology of prion strains [40,41] and transmission barriers,
as well an insight into the pathogenesis of the infectious agent having established an early
involvement of the peripheral nervous system [42–44]. The strain phenomenon is one
of the most intriguing features of prion disease and is best demonstrated following the
intracerebral inoculation of wild-type mice with different scrapie isolates. Distinct strains
of the transmissible agent were identified based on the individual biological properties of
the inoculated mice (primarily by the incubation period and neuropathological phenotype),
which are then stable on subsequent serial passage [40,41,45]. These strain properties
have been accounted for by differences in the conformation of PrPSc but are also heavily
influenced by the prion protein genotype, and in the case of human prion diseases in
particular, the polymorphism at codon 129 on the human prion protein gene (PRNP).
In a seminal study by MBruce and colleagues, the experimental transmission of vCJD
brain isolates in wild-type mice resulted in transmission properties (incubation period and
lesion profile) that were indistinguishable from those obtained with BSE but that differed
from those obtained with sCJD [46]. This provided the first convincing evidence that
these two diseases were caused by the same prion strain. Further studies on wild-type
mice demonstrated that vCJD peripheral tissues (spleen and tonsil) known to contain
demonstrable quantities of PrPSc were infectious to wild-type mice [47]. Over the last
decade, wild-type mice continued to play an invaluable role in the strain characterisation
of vCJD in cases identified in the UK and worldwide [48–51].

During the early 1980s, the generation of mice expressing novel transgenes ushered a
new era, not only in prion research but in the understanding of other disease mechanisms,
including other protein misfolding neurodegenerative disorders [52]. A large proportion of
transgenic mice used in prion research have been developed to investigate and circumvent
the species barrier with the development of mouse lines that expressed prion gene se-
quences from other species. In a seminal study by Prusiner and colleagues, transgenic mice
expressing hamster PrP demonstrated significantly shorter incubation periods compared
to wild-type mice when inoculated with a scrapie-infected hamster isolate [53]. While the
mechanism of the species barrier is still not clear, it is thought to be heavily influenced by
the degree of homology in the primary PrP amino acid sequence between the PrPSc of the
donor and PrPC of the recipient species, the physiological differences between the species
in question, and the animal prion strain, as enciphered in the conformation of PrPSc. In
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the investigation of human prion disease, different sCJD types were found to transmit
inefficiently to wild-type mice, often without clinical symptoms [46]. The generation of
different transgenic mouse lines expressing the PRNP gene provided the first opportunity
to observe more extensive transmission characteristics of sCJD and other human prion
diseases. There are two main methods for the generation of transgenic mice; random
genetic insertion and gene targeting. In this regard, differences in the susceptibility to
prion disease from transgenic mouse models have been observed. These differences can be
partially attributed to the over-expression of the prion protein and to the insertion point
of the prion protein gene into the recipient species. The gene targeting technology consist
of the direct replacement of the mouse prion protein gene (Prn-p) gene with the genetic
material for insertion. In the case of human transgenic mice, insertion of PRNP. A series of
transmission experiments by the groups of Jean Manson and Tetsuyuki Kitamoto have used
gene targeting in the development of several “humanised” transgenic mice, in which the
Prn-p gene was directly replaced by PRNP. These mouse lines have been used to investigate
specific familial mutations associated with disease as well as extensive studies on the effect
of the naturally occurring methionine (M) to valine (M) polymorphism at codon 129 on
PRNP, which is a recognised risk factor for human prion diseases. Overall, these two
transgenic procedures have been invaluable in investigating human prion diseases and
have enabled the study of the effects of the codon 129 polymorphism, assessing the risks
for potential human-to-human transmission of prion disease, and evaluating the zoonotic
potential from animal prion diseases [32].

2.2.2. Cell-Free Conversion Assays

Over the past two decades, the cell-free conversion assays have been developed in a
concerted effort to pursue alternatives to the use of animal models in prion research [54].
The introduction of these cell-free assays offered the potential for a more rapid and eco-
nomical model in which to study a number of aspects relating to prion disease, combined
with the ability to manipulate experimental conditions within a controlled environment.
In basic terms, these methodologies allow the in vitro amplification of PrPSc present at
low levels in tissues and biological fluids to levels that are detectable by conventional
laboratory techniques.

Following several years of refinement, two cell-free assays are most widely used in
prion disease.These are the protein misfolding cyclic amplification (PMCA) assay and
Real Time Quaking Induced Conversion (RT-QuIC) assay. Fundamentally, these assays
require a number of basic elements including, (i) a source of PrPSc (seed), (ii) an excess
of PrPC (substrate), (iii) a mechanism for energy input and, (iv) a suitable method in
which to detect the amplified misfolded prion protein product. The PMCA assay was
first described by Claudio Soto and colleagues in 2001 with the serial dilution of scrapie-
infected brain homogenate (seed) into crude brain homogenate from uninfected Syrian
hamsters (substrate) [55]. Following successive rounds of sonication (ultrasound) and
incubation, amplified PrPSc was detected by conventional Western blot protocols following
proteolytic treatment to detect the partially protease-resistant form of the prion agent,
the PrPres [55]. A number of modified PMCA protocols and aggregation assays have
been developed and have proved a valuable tool in providing support of the protein-only
hypothesis [56–60]. More recently, PMCA has proved a useful tool in the understanding
of many aspects of prion biology; including, the effects of PRNP codon 129 genotype [61];
the species barrier and zoonotic potential of prions [62–64], and the propagation of prion
strains [65,66]. PMCA has also shown great potential in the development of a diagnostic
tool in the diagnosis of vCJD, having shown sufficient sensitivity and specificity to detect
PrPSc in urine [67], blood [68–70], and recently in CSF samples [71,72] from vCJD cases. The
RT-QuIC assay employs shaking rather that sonication during the amplification process.
In a further variance to PMCA, RT-QuIC uses purified recombinant PrP as the substrate
rather than brain homogenate or cell extracts used in PMCA, with the conversion and
amplification of the recombinant PrP monitored in real time using the fluorescent dye



Biomolecules 2021, 11, 207 6 of 23

thioflavin-T [73,74]. Due to the high sensitivity and specificity of RT-QuIC in the analysis of
CSF samples from sCJD patients, RT-QuIC analysis is included in the clinical diagnosis of
sCJD in the United Kingdom (UK) (https://www.cjd.ed.ac.uk/sites/default/files/criteria.
pdf;) [75,76].

The development, optimisation, and multiple application of the cell-free assays have
provided valuable information on the protein misfolding phenomena associated with pro-
tein misfolding disorders, principally involving animal and human prion diseases [54,77].
The complementation of these molecular assays along with experimental animal mod-
els will further continue providing evidence on the complexity surrounding the prion
biology and a further understanding of other neurodegenerative disorders related to
protein misfolding.

2.3. Animal Prion Diseases and Their Zoonotic Potential

Since the first descriptions of scrapie in sheep, a range of animal prion diseases have
been identified including BSE in cattle, CWD in cervids, transmissible mink encephalopathy
(TME) in farmed mink, and feline spongiform encephalopathy (FSE) in domestic and exotic
cats. In contrast to human prion diseases, the vast majority of animal prion diseases have
an infectious aetiology. This has inevitably raised concerns over the potential cross-species
transmission to humans, particularly through possible dietary exposure to the infectious
agent [78].

To date, there is no robust epidemiological evidence to suggest that naturally occurring
prion disease of sheep are a risk factor in the development of human prion disease. This
is largely based on early prevalence studies that have reported the incidence of CJD in
countries considered scrapie-free (Australia and New Zealand) to be similar to countries
where scrapie remains endemic in sheep [79]. Likewise, inoculation of scrapie isolates in
non-human primates and in humanised transgenic mice expressing wild-type levels of PrP
have provided limited evidence of transmission, consistent with the presence of a significant
species barrier protecting humans from infection with scrapie prions [80–84]. However,
the recent demonstration of PrPSc within the brain of a proportion of scrapie challenged
transgenic mice overexpressing human PrP, and the development of a clinical disease in a
non-human primate intracerebrally inoculated with natural scrapie isolates, suggest that
the zoonotic potential of scrapie prions to humans cannot be discounted [85,86].

In the wake of the BSE epidemic in the UK during the 1980s, concerns over the cross-
species transmission of BSE to humans resulted in the UK government instigating a national
surveillance program to monitor any changes in the incidence or phenotype of human prion
diseases. In 1996, through this national program, a novel human prion disease, referred
to as vCJD, was described in patients of an uncharacteristically young age with a much
longer disease duration than that typically observed in sCJD [12]. The emergence of this
novel prion disease so closely following the BSE epidemic inevitably raised concerns that
vCJD may have resulted from human exposure to the BSE agent through the consumption
of contaminated meat products. This hypothesis was confirmed following experimental
transmission in wild-type and transgenic mouse models, and in non-human primates,
which demonstrated that BSE and vCJD had indistinguishable transmission properties,
indicating a single strain of agent associated with these two prion diseases [33,46,87–89].
Currently, 232 clinical cases of vCJD have been identified worldwide, the majority of
which have been reported in the UK (n = 178) [http://www.cjd.ed.ac.uk/sites/default/
files/worldfigs.pdf]. Of the 232 vCJD cases with genetic analysis, all but a single case has
occurred in individuals homozygous for methionine at codon 129 on PRNP. The remaining
vCJD case, and the most recently identified in the UK, marked the first clinical case of
pathologically confirmed vCJD to be recognised in a methionine/valine heterozygote (MV)
individual [90]. The subsequent transmission of brain tissue from this vCJD MV individual
to wild-type and transgenic mice has supported earlier experimental evidence in the same
mouse model, demonstrating that other PRNP codon 129 genotypes are susceptible to
infection with the BSE agent but may be subject to prolonged incubation periods [50,91,92].

https://www.cjd.ed.ac.uk/sites/default/files/criteria.pdf
https://www.cjd.ed.ac.uk/sites/default/files/criteria.pdf
http://www.cjd.ed.ac.uk/sites/default/files/worldfigs.pdf
http://www.cjd.ed.ac.uk/sites/default/files/worldfigs.pdf
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Since the introduction of several strict control measures in the UK during the 1980s, only
rare cases of BSE have been reported over the last few decades.

Current concerns over the zoonotic potential of animal prion diseases have focused
on CWD, a highly contagious prion disease of cervids. CWD was first described in 1967
as an unusual wasting disorder affecting mule deer in Colorado [93]. Since this original
description, CWD has been reported in a wide range of wild and farmed cervid species,
spreading across 26 North American states and three Canadian provinces [94]. CWD is
the most contagious animal prion diseases, spreading directly through animal-to-animal
contact and indirectly through environmental contamination, with infectivity detected
in bodily fluids and excreta including, placenta, saliva, faeces, and urine [95–97]. Of
particular concern when assessing the zoonotic potential of CWD is the presence of PrPSc

in peripheral tissues, many of which are included in the human food chain such as skeletal
muscle, heart, and kidney [98]. Furthermore, experimental transmission studies have
demonstrated the presence of multiple CWD strains, increasing the uncertainty over the
potential cross-species transmission [99]. However, while experimentally, CWD has been
transmitted to a range of animal species including ferret, racoon, mink and cattle, the risk
of CWD transmission to humans is thought to be low [100]. Currently, epidemiological
studies have provided no evidence of an association between CWD and the prevalence of
human prion disease, and no novel human prion diseases have been identified in any North
American state where CWD is endemic [101–104]. Likewise, experimental inoculation of
CWD-infected brain isolates to transgenic mice expressing human PrP have failed to show
substantial evidence of transmission, while transmissions to non-human primates have
provided variable results [97]. Experimental modelling of the zoonotic potential of CWD
using cell-free assays, particularly the PMCA assay reported molecular compatibility of
CWD PrPSc using human PrPC as a substrate [63,105–108].

While these studies are reassuring and suggest a significant species barrier between
humans and CWD in cervids, the recent identification of CWD in free-ranging reindeer,
moose, and red deer in Europe (Norway and Finland) has heightened concerns over the
zoonotic potential, particularly as early indications suggest that the European cases of
CWD may represent a new strain of CWD prions [109–111]. The extent of these concerns
can be demonstrated by the implementation of a culling program in the affected reindeer
population, introduced as an attempt to contain this outbreak. Experimental analysis and
transmission studies involving infected material from the European cases are ongoing in
several laboratories, results of which will provide a much clearer picture of the relationship
between CWD cases found in Europe with those found in North America and the zoonotic
potential of these recently identified cases.

2.4. Acquired Human Prion Diseases

While human prion diseases are rare, their transmissibility, lengthy incubation pe-
riods, and resistance to conventional decontamination methods present a considerable
risk to public health. Kuru was the first human prion disease shown to be transmissible
between humans [29]. However, the potential public health risks from the spread of kuru
to the wider population were limited by the mode of transmission; specifically, by the
ritualistic consumption of the brain and other tissues of the deceased during funeral cere-
monies [112]. Following an imposed cessation on the practice of endocannibilism in the
mid-1950s, numbers of kuru cases started to decline, and the disease is now considered
extinct. The final deaths from kuru were recorded in 2003, over 50 years after the practice
of endocannibilism was prohibited, providing a startling example of the lengthy incubation
periods associated with this group of disorders [113]. Of greater concern to the wider
population came in 1974 with a case report describing the first transmission of CJD in a
patient who had received a corneal graft from a donor who had died from sCJD [114].
Retrospective review of case notes and subsequent reports described a small number of
additional cases of iCJD in a further recipient of corneal graft and in patients operated
on with contaminated neurosurgical instruments or stereotactic electroencephalogram
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electrodes (Figure 2) [115–117]. However, the greatest numbers of iCJD cases recorded
worldwide (> 400 cases) have occurred in recipients of contaminated cadaveric human
growth hormone (hGH) or human gonadotrophin hormones, and in recipient of human
dura mater (hDM) grafts [118] (Figure 2). Following the identification of the first hGH-
associated iCJD cases in the mid-1980s [119–121], the administration of hGH in the UK,
and all other pituitary hormones was immediately stopped and replaced with recombi-
nant pituitary hormones. Similarly, the use of commercially distributed cadaveric dura
mater was replaced following the first recognition of hDM-iCJD in 1987. Despite these
mitigations, cases of hGH-iCJD still occur in the UK, with the most recent death reported
in 2020, reminiscent of the 40 years or more incubation periods that were first observed in
kuru [122,123].

Figure 2. Schematic timeline (grey arrows) of the first reporting (as referenced) of acquired forms of
Creutzfeldt-Jakob disease (CJD) and the possible human-to-human transmission of amyloid-beta
(Aβ) pathology. The routes of exposure to prion protein aggregates, resulting in iatrogenic CJD
(iCJD), are well-documented and include medical interventions such as cadaveric human growth
hormone (hGH), cadaveric dura mater grafting (hGH), and through a small number of neurosur-
gical procedures. The recent re-examination of brain tissue from iCJD cases have suggested that
Aβ neuropathology may also spread through similar routes of exposure. Concerns that the Aβ

neuropathology may be a consequence of cross-seeding with co-existing prion protein aggregates
were discounted following the observation of Aβ neuropathology in a proportion of hGH recipients
who died from causes unrelated to CJD. While secondary transmission of variant CJD (vCJD) via
transfusion medicine has been reported, no such instances of transmission have been identified
for other pathogenic proteins. However, as the timeline for the identification of possible iatro-
genic transmission of Aβ neuropathology occurs decades after that of acquired forms of CJD, the
possibility of the transmission Aβ neuropathology via transfusion medicine requires further investi-
gation, particularly due to the high presence of Aβ that accumulates in cerebral blood vessels in the
iCJD patients.
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More recently, secondary transmission of vCJD was established with three clinical
cases of vCJD associated with blood transfusion [124] (Figure 2). All three cases were
identified through the Transfusion Medicine Epidemiology Review (TMER) project, a
look back study established in the UK in 1997 in response to the emergence of vCJD, to
look for any evidence that CJD may have transmitted via the UK blood supply. While
epidemiological studies had provided no evidence that sCJD was transmissible via blood
transfusion [125,126], the detection of infectivity in vCJD lymphoreticular tissues [47] had
demonstrated that vCJD had a very different pathogenesis to sCJD, and one that could make
vCJD more susceptible to this route of transmission. This was further supported by animal
studies demonstrating that BSE could be experimentally transmitted via transfusion with
blood collected from infected animals during the clinical and asymptomatic phase of the
disease [36]. The three cases of secondary vCJD identified by the TMER study occurred in
patients who had received transfusions with non-leukodepleted red cell concentrates from
asymptomatic donors who subsequently developed vCJD [124]. Retrospective analysis
of medical records from the blood donors and recipients showed an incubation period of
approximately 7–9 years in the blood recipients and the period prior to clinical signs in the
donors of 1–3 years.

In 2004, a case of asymptomatic vCJD infection was reported in the UK in a patient
who died from a non-neurological disorder five years after receiving a red cell transfusion
from a donor who subsequently developed vCJD [127] (Figure 2). While no evidence of
PrPSc was detected in the brain of this individual, biochemical and immunohistochemical
analysis showed PrPSc accumulation in the spleen and cervical lymph node [127]. Subse-
quent inoculation of spleen tissue in wild-type and transgenic mice expressing human PrP
confirmed infectivity associated with the spleen in this case [128]. A significant feature of
this case was the MV heterozygosity at PRNP codon 129. With all clinical vCJD cases re-
ported previously having been methionine homozygote at codon 129 (MM), this suggested
that MV individuals may be susceptible to vCJD infection but with extended incubation
periods. Following this report, a second suspected case of asymptomatic vCJD in a PRNP
codon 129 MV individual was reported in a haemophiliac patient, which raised additional
concerns over the safety of UK plasma products [129]. In 2016, the first clinical case of
pathologically confirmed vCJD in a PRNP codon 129 individual was reported confirming
that other PRNP genotypes were susceptible to vCJD infection [90]. This was supported by
experimental transmission in transgenic mice, which demonstrated that susceptibility to
vCJD varies according to the host genotype [50,92].

2.5. Current Public Health Risks From Human Prion Diseases

Clinical cases of vCJD have been in decline, having reached a peak in 2000 with
28 deaths. While this may be reassuring, the identification of vCJD in a PRNP codon
129 heterozygous individual, the last reported case of vCJD in the UK, raised concerns over
a potential second wave of vCJD in this genotype [90]. Additionally, the detection of infec-
tivity in lymphoreticular tissues during the long asymptomatic incubation periods [47,128]
and reports of transfusion-transmission of vCJD infectivity from asymptomatic vCJD pa-
tients [124], questioned the numbers of the UK population harboring asymptomatic vCJD
infection and the possible risk of further secondary human transmission via blood transfu-
sion and potentially from surgery. In the absence of a blood-based assay for vCJD, three
retrospective studies investigating PrP accumulation in formalin-fixed appendix tissue
were undertaken to address these concerns [130–133]. This followed the observation of PrP
positivity in appendix tissue removed from two patients that went on to develop clinical
vCJD eight months and two years after their appendectomies [134]. Positive staining for
the prion protein was reported in appendix specimens examined in all three studies and
has provided a current estimated prevalence of asymptomatic vCJD infection in the UK
of approximately 1 in 2000 of the population [131,133]. Genetic analysis of the positive
appendix samples showed PrP accumulation in appendix specimens from all possible
PRNP codon 129 genotypes [133,135], thus supporting data from experimental animal
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studies that showed all three PRNP codon 129 genotypes are susceptible to vCJD infection
but may be subject to lengthy incubation periods [92]. Interestingly, data from the most
recent appendix study showed PrP positivity in appendix specimens collected prior to the
BSE epidemic and in specimens collected from patients born following the implementation
of measures aimed at protecting the human food chain [132,133]. The identification of these
positive specimens hypothesised that dietary BSE exposure in the UK population may
have occurred over a wider time period that initially thought or that there may be a low
prevalence of abnormal PrP in lymphoreticular tissues that does not progress to vCJD [133].
There remains some uncertainty over the interpretation of the abnormal PrP detected in
the appendix in this series of prevalence studies in relation to vCJD infectivity. However,
the detection of vCJD PrPSc in tissues and organs remains a surrogate marker of infectiv-
ity, which is largely supported by bioassay in experimental animal models [47,128,136].
Therefore, the prevalence of asymptomatic vCJD in the UK population estimated as high
as 1 in 2000 and potentially over a larger proportion of the population continues to have a
significant impact on public health concerns and emphasises the continued importance of
ongoing surveillance of human prion diseases in the UK.

3. Human-to-Human Transmission of Other Pathogenic Proteins

Extensive study of prion disease has demonstrated an ever-increasing number of prop-
erties shared with more common neurodegenerative conditions [137]. Notable amongst
these are, (i) increasing age as a risk factor in the development of the disease, (ii) the
presence of inherited and sporadic forms, (iii) a pathological hallmark characterised by
the accumulation in the brain of misfolded and disease-associated protein, (iv) a common
model of self-propagation and disease progression, in which abnormally folded isoforms
of a disease-associated protein interacts to form β sheet structures that aggregate to form a
seed that results in the formation of other abnormally folded isoforms, (v) the cell-to-cell
spread of the aggregated protein in a systematic process along well-defined neuroanatom-
ical pathways and (vi) the identification of different strains or variants of the misfolded
proteins, suggesting the ability to aggregate in different conformational states [137]. Ad-
ditionally, experimental evidence suggesting resistance to conventional decontamination
protocols, a defining property of PrPSc, has also been reported with Aβ from AD cases
and α-synuclein in patients with multiple system atrophy (MSA) [138–140]. While more
recently, the resistance of misfolded proteins to protease degradation, again a property
thought largely restricted to PrPSc, has been reported for some forms of α-synuclein [141].
Because of such parallels with prion diseases, a new terminology was introduced for the
group of pathogenic proteins that underlie these neurodegenerative disorders and includes
prion-like, prionoid, quasi-prion and propagon [7,142,143]. Whilst there remains some
debate surrounding this terminology, the rationale was to denote a group of proteins
with the propensity to misfold and aggregate homotypic molecules, as described in prion
diseases, but in the absence of any demonstrable infectivity [144]. However, such com-
monalities have inevitably raised the question over the potential human transmissibility
of pathogenic protein aggregates other than PrPSc, which would have significant public
health implications.

3.1. Experimental Animal Models of Pathogenic Protein Transmission

Over the last decade, a wealth of experimental data has been published addressing the
potential transmissibility of neurological conditions and the misfolded protein aggregates
that underlie them. Such studies have largely been based on experimental approaches used
in the demonstration of the transmissible nature of prion diseases. A significant number of
these investigations focus on Aβ, tau, and α-synuclein, the proteins that underlie some of
the most commonly occurring neurodegenerative diseases.

Reminiscent of prion diseases, the earliest studies involved the direct inoculation
of diseased brain material from patients with different neurological conditions into non-
human primates. Mirroring their seminal work on kuru and CJD, Gajdusek and Gibbs
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investigated the potential transmissibility of AD with the direct inoculation of brain tissue
from 52 patients with AD (familial and sporadic AD cases) into non-human primates.
Whilst no evidence of a clinical disease was reported in any animal, neuropathological
analysis of a proportion of animals inoculated with brain isolates from two familial AD
(fAD) patients did show a pathology that was indistinguishable from that of prion dis-
ease [145]. However, as these results were not replicated in subsequent experiments, it has
been hypothesised that the presence of prion pathology in these animals was most likely a
result of unrecognised and co-existing prion disease in the two fAD patients and unrelated
to AD pathology. In a later publication summarising data from the National Institutes of
Health’s (NIH) 30-year-long series of experimental transmission of human prion disease
in non-human primates, Gajdusek and colleagues included data from the inoculation of
brain isolates from over 600 patients who were diagnosed with a wide variety of neuro-
logical disorders including MND, HD, PD with dementia, and Picks disease [146]. In this
large-scale study, no conclusive evidence of disease transmission was reported from any
of the non-prion related neurological conditions, even after post-inoculation intervals of
more than nine years. These two studies provide supporting evidence that prion diseases
are unique amongst neurodegenerative conditions in their ability to recapitulate a clinical
disease in non-human primates. However, a caveat to both studies, remains a lack of
in-depth neuropathological investigations and as such have not addressed the question of
whether the associated protein pathology may be transmissible in non-human primates, as
in prion disease. In two later studies, clinical signs of disease were again absent but Aβ

aggregation was observed in the brains of non-human primates at post-mortem following
the intracerebral injection of Aβ containing brain extracts from AD cases [147,148]. The
Aβ pathology was present in the brain parenchyma (Aβ plaques) and in cerebral blood
vessels as cerebral amyloid angiopathy (CAA). Age-matched control animals did not show
these neuropathological changes. While Aβ pathology was observed in the majority of
inoculated animals, tau aggregates, also a major protein associated with AD, was not
reported in either study [147,148]. In a more recent study, intracerebral inoculation of AD
brain isolates in a different non-human primate model demonstrated that both Aβ and tau
aggregates can be induced in the brain. Furthermore, longitudinal cognitive assessments,
electroencephalography (EEG), and morphological magenetic resonance imaging (MRI)
performed at a series of time points post-inoculation showed neuronal loss, progressive
atrophy, and alteration of neuronal activity in the animals, as well as evidence of cognitive
impairment [149]. In addition to Aβ and tau from AD tissues, α-synuclein aggregation was
induced in non-human primates by the intracerebral injection of Lewy body-rich extracts
from the brains of PD patients. The resulting α-synuclein pathology extended beyond the
site of inoculation and, consistent with PD pathology, neurodegeneration and α-synuclein
pathology in the recipient brain was most marked in the dopaminergic neurons of the
substantia nigra [150,151].

Like prion diseases, the development of transgenic mice expressing different trans-
genes has transformed the ability to investigate the potential for the transmission of other
neurological conditions and the specific protein aggregates that underlie them [152]. Many
of the observations from these transgenic mouse models have strengthened the evidence
for fundamental similarities between aspects of the pathology of prion diseases with the
pathology of other neurodegenerative conditions. The production of mice expressing the
amyloid precursor protein (APP) gene has provided a useful model in which to examine
the intracerebral seeding of Aβ pathology in mice inoculated with exogenous, misfolded
Aβ from AD patients. Such Aβ seeding was first reported in the early 2000s by Lary
Walker and colleagues, who described Aβ aggregation in the brain parenchyma of APP-
transgenic mice intracerebrally inoculated with Aβ-rich extracts from patients with AD
disease [153,154]. The Aβ pathology extended beyond the site of injection and in some
mice, contralateral to the site of injection, indicating the cell-to-cell spread of the aggregated
protein through defined neuroanatomical pathways [153,154]. Numerous studies using
multiple transgenic lines have since reported Aβ seeding in the brain following intrac-
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erebral injection of AD brain isolates. Of particular significance was the observation that
Aβ aggregation was induced in transgenic mice that do not spontaneously develop Aβ

pathology in their lifetime [155]. Collective data from these studies have demonstrated that
(i) Aβ can aggregate in the brain parenchyma (Aβ plaques) and within the cerebral blood
vessels, (ii) the accumulation of Aβ in the brain is time and concentration-dependent [156],
(iii) Aβ aggregation in the brain occurs even using sub-attomolar concentrations of Aβ

from AD patients [157], (iv) Aβ aggregation may be induced from Aβ-rich brain samples
from patient who had AD, patients showing mild cognitive impairment and from patients
who had no evidence of cognitive decline but who had AD pathology in their brain [158]
and, (v) the seeding of Aβ in the brain can be induced by the introduction of exogenous Aβ

via the intravenous route but with a slower time-course than that of intracerebral inocula-
tions [159]. Aβ aggregates have also been induced following intraperitoneal inoculation of
transgenic mice, but these studies did not use Aβ seeds of human origin [160,161]. Whilst
many of these properties are reminiscent of that described in prion diseases, the question of
whether the strain phenomenon is applicable to other misfolded proteins is an important
and current focus of research. APP transgenic mouse models have added to the evidence
for different conformations of Aβ following the demonstration of distinct transmission
properties (incubation period and patterns of neuropathology) in these mice following
intracerebral inoculation with brain material from fAD and sporadic AD. Crucially, these
strain-like properties were stable on serial passage [162].

As with the generation of APP mice in the study of Aβ transmission, several transgenic
mouse lines have been generated to model the seeding of tau pathology. Numerous studies
have demonstrated that the intracerebral inoculation of brain tissue from individuals with
AD and different tauopathies, examples of which are; progressive supranuclear palsy
(PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD) (Figure 1),
can induce the formation of tau aggregates in both tau-transgenic mice and in wild-type
mice [163,164]. The ability to induce tau seeding in wild-type mice is in contrast to Aβ

aggregates and provides a valuable model in which to study the seeding of tau pathology
in mice that do not spontaneously develop tau pathology in their lifetime. Many of the
transmission properties of tau are reminiscent of that demonstrated by Aβ and PrPSc in
transgenic mice. Intracerebral inoculation of tau-containing brain extracts showed tau
pathology spreads in the brain via the cell-to-cell spread and propagation from the site
of injection to the surrounding brain regions. Frequently, the morphology of the newly
formed tau aggregates in the brain emulates the pathology found in the human tauopathy
source. This is best observed in transgenic mice inoculated with brain isolates from AD
cases, where much of the pathology targets the hippocampus. Reminiscent of prion disease,
inoculation of brain isolates from different tauopathies induced tau pathology in mice that
differed in morphology, regional distribution, cell-type specificity, and pattern and rate of
spread. Each of these properties indicate that tau, like PrPSc and Aβ, can adopt multiple
molecular conformations giving rise to different prion strains. [165–167]. Again, these
different tau conformations are stable on subsequent passage. Like Aβ, tau aggregates
are also seeded by the intraperitoneal inoculation of exogenous tau, but this has not been
demonstrated using tau aggregates from human brain isolates [168]. While the seeding
potential of PrPSc and Aβ has been shown to favour smaller soluble oligomers, the seeding
potential of tau aggregates is thought to favour the larger insoluble fragments.

Other misfolded protein aggregates investigated by the generation of transgenic
mouse models includes α-synuclein, which underlies PD, dementia with Lewy bodies (LBs),
and multiple system atrophy (MSA). Like Aβ and tau in AD, α-synuclein pathology in PD
follows a distinct and consistent pattern of progression in the diseased brain. This pattern
of progression is indicative of a similar cell-to-cell spread of α-synuclein. Compelling
evidence for this came from the observation of α-synuclein pathology in healthy nigral
neuron cells, 14 years after they were grafted into the striatum of a PD patient [169].
Following on, α-synuclein-rich isolates extracted from the brains of PD patients were
sufficient to induce the seeding of pathological α-synuclein in wild-type mice [150,170].
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Similarly, α-synuclein derived from the brains of patients with MSA were also effective
in at seeding α-synuclein pathology and in some instances, were sufficient to produce a
neurological disease [171]. Whilst limited studies investigating the presence of α-synuclein
strains are available in mouse models, differences in the incubation period and pattern
of neuropathology in transgenic mice inoculated with MSA isolates was indicative of
separate α-synuclein strains [171]. This was supported by the failure to induce α-synuclein
pathology in the same mice inoculated with α-synuclein-rich extracts from PD.

3.2. Human Transmission of Pathogenic Proteins

The inadvertent human-to-human transmission of prions associated with a number of
medical interventions raised the possibility that other misfolded proteins may be capable of
transmitting via similar iatrogenic sources of infection (Figure 2). Treatment with contami-
nated human pituitary-derived growth hormone is one of the most commonly associated
causes of iCJD. Reports of Aβ, tau, and α-synuclein aggregates in the pituitary gland of
some elderly patients and in some patients with neurodegenerative conditions [172–174],
prompted a retrospective review of the National Hormone and Pituitary Program (NHPP)
cohort database and the medical literature to establish an association between neurodegen-
erative conditions and a history of hGH treatment [174]. While no association was reported,
the study was limited by a lack of neuropathological evidence on the presence of protein
aggregates in the brain of the hGH recipients. This was subsequently addressed in four in-
dependent reports examining a total of 80 iCJD-hGH cases originating from the UK, France,
and USA [175–178]. Of the 80 cases, 73 had sufficient post-mortem fixed tissue samples
for full neuropathological analysis, of which 26 (36%) reported substantial Aβ pathology
consistent with AD in the brain parenchyma and/or in cerebral blood vessels. No clinical
manifestations of AD were identified in any of the hGH recipients. The co-occurrence of Aβ

and PrPSc aggregates has been reported previously in human prion diseases, particularly in
genetic prion diseases that are associated with PrPSc amyloid plaque formation [179–181].
As all 73 cases had clinical iCJD, the possibility that the Aβ aggregates may have resulted
from cross-seeding with the co-existing PrPSc was raised. However, in one of the largest
studies, Ritchie and colleagues reported Aβ pathology in the brain of 5 out of 12 hGH
recipients who died of causes unrelated to CJD [176]. This data, combined with the lack of
evidence of any associated genetic risk factor in the development of Aβ pathology and the
relatively young age (<55 years) of the hGH-iCJD patients, were highly indicative that the
Aβ in these patients was linked to exogenous Aβ aggregates present in the hGH. This was
supported following the detection of substantial levels of Aβ and tau contaminants in some
of the archived hGH batches analysed from the UK and France [177,182]. Furthermore,
experimental transmission of samples of UK hGH extracts in transgenic mice expressing
APP showed that these extracts had sufficient levels of Aβ to induce the seeding of Aβ

in the brain [182]. While tau contaminates were also identified in the hGH batches, little
evidence of tau pathology has been identified in the hGH recipients investigated, perhaps
indicative of a different biological mechanism in the seeding of tau pathology.

A history of cadaveric Dura Mater grafting is another medical intervention commonly
associated with iCJD cases worldwide (Figure 2) [118]. Co-existing pathology in DM-iCJD
patients was first reported in 2006 with the description of Alzheimer-type senile plaques
and CAA in the brain of a 28-year-old iCJD patient who had received a dura mater graft
in childhood [183]. The Aβ accumulation was initially reported as an incidental finding,
perhaps related to the early trauma in the brain. It was a further 10 years until the possibility
was raised that the Aβ pathology in this patient may have seeded from exogenous Aβ

aggregates present in the grafted dura mater [184]. Since this report, substantial Aβ

pathology has been described in the brain parenchyma and cerebral blood vessels in a
further 28 out of 38 DM-iCJD patients investigated with sufficient post-mortem tissue, after
post dura mater graft transplant intervals of over 20 years. [178,184–187]. Regardless of the
relatively young age of the patients and the high prevalence of Aβ pathology, the presence
of co-existing PrPSc raised the possibility of cross-seeding in the brain. However, the
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demonstration of Aβ deposits in the grafted dura mater tissue in some of these cases, and
the significant association with subpial Aβ deposition and meningeal amyloid angiopathy,
support a causal relationship between dura mater grafting and Aβ accumulation. [184].
This is further supported by three recent independent publications reporting intracerebral
haemorrhage associated with sporadic CAA in five young individuals (<48 years) who
received a cadaveric dura mater graft in childhood, in the absence of any evidence of
CJD [188–190].

Whilst only a small number of iCJD cases worldwide have been associated with con-
taminated neurosurgical instruments, the potential for this to be a mechanism of inducing
Aβ aggregation in the brain was raised following the observation of Aβ accumulation in
the brains of APP transgenic mice intracerebrally challenged with Aβ-contaminated steel
wires [191]. Following reports on the cadaveric dura mater graft recipients, diagnosis of
intracerebral haemorrhage associated with CAA in young individuals was adopted in a
recent investigation looking at other neurosurgical interventions as a potential mechanism
in the transmission of Aβ pathology. A retrospective review of the medical literature
and neuropathology archive at the National Hospital for Neurology and Neurosurgery
(NHNN) identified seven individuals under the age of 42 years and one 57-year-old patient
who presented with intracerebral haemorrhage associated with CAA, all of which had
undergone neurosurgical procedures in childhood [192]. With no associated genetic risk
in developing early onset CAA, the possibility that the Aβ pathology was induced by Aβ

aggregates present on the neurosurgical instruments has been proposed. This has been
supported by two subsequent case reports of CAA-related intracerebral haemorrhage in
three patients, under 30 years of age with a history of neurosurgery in childhood [193,194].

There is no definitive evidence to suggest that sCJD is transmissible via blood transfu-
sion [125,126]. However, secondary transfusion-transmission of vCJD infectivity has been
described in four individuals [124,127,128]. In the context of transfusion-associated risks
for other neurodegenerative conditions, there is no current evidence that blood transfusion
is a risk factor in the development of disease. However, with increased levels of plasma Aβ

reported in blood from elderly donors and a lack of experimental studies, the possibility
of transfusion transmission of AD or AD pathology, after an extended incubation period
cannot be discounted and supports further investigation [195,196].

4. Concluding Remarks and Future Perspectives

Prion diseases remain unique among neurodegenerative conditions, with the potential
to transmit disease from person-to-person as rare events after a prolonged incubation
period. Lessons learned from instances of acquired prion diseases have resulted in the
implementation of a range of safety measures in order to prevent future iatrogenic trans-
mission of CJD, further secondary transmission of vCJD, and the potential zoonotic spread
from other animal prion diseases. However, with prevalence studies suggesting that a
significant number of the UK population may be harbouring asymptomatic vCJD infec-
tivity, and with the appearance of vCJD in a patient heterozygote for methionine and
valine at PRNP codon 129, prion diseases remain a considerable public health concern.
Of additional concern is mounting evidence that other misfolded proteins, specifically
Aβ, can transmit from person-to-person in a prion-like mechanism of propagation and
spread through similar routes of exposure to those described in iCJD. In contrast to prion
diseases, the full clinical and neuropathological phenotype of AD has not been reproduced
in these individuals; in particular, there is a notable absence of neurofibrillary tangles
and progressive cognitive decline. While this may be reassuring, the ability to induce
Aβ aggregation in the brain through medical interventions may have wider implications
for public health. In particular, current reports of substantial Aβ seeding in the cerebral
blood vessels in patients, decades after neurosurgical interventions, suggest there may
be future vascular complications associated with iatrogenic-CAA, including intracerebral
haemorrhage, perivascular inflammation, and cognitive impairment [197]. Of additional
consideration is the potential transmission of prion or prion-like pathology through the
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possible contamination of newly developed advanced cell therapies (ACT). These concerns
and implications were recently addressed in a detailed review by De Sousa et al. [198].
While experimental evidence from animal mouse models has demonstrated that tau and
α-synuclein, like Aβ, can be seeded from the brains of patients with a range of tauopathies
and synucleinopathies, there remains no evidence for the human transmission of tau or α-
synuclein pathology between individuals. As evidence for the transmission of pathogenic
proteins are based on small cohorts of patients or on single case reports. The implemen-
tation of large-scale, systematic studies are necessary in order to adequately assess the
potential risks associated with the potential transmission and propagation of misfolded
protein in humans.
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