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ABSTRACT
Previous reports have indicated that natural muscone has neuroprotective
effects against cerebral hypoxia injury; however, little is known in regards to
its pharmacological mechanism. In this study, we tried to evaluate the
neuroprotective effects and mechanisms of muscone against cerebral hypoxia injury
using an in vitro model. The cerebral hypoxia injury cell model was produced by
hypoxia/reoxygenation (H/R). The cell viability and apoptosis were measured using
the cell counting Kit-8 and the Annexin V-FITC/PI Apoptosis Detection kit,
respectively. To screen microRNAs regulated by muscone, we analyzed the gene
expression datasets of GSE84216 retrieved from gene expression omnibus (GEO).
Here, it was demonstrated that muscone treatment significantly alleviated the cell
apoptosis, oxidative stress and inflammation in H/R-exposed neurons. Subsequently,
through analyzing GSE84216 from the GEO database, miR-142-5p was markedly
upregulated by treatment of muscone in this cell model of cerebral hypoxia injury.
Further experiments revealed that downregulation of miR-142-5p eliminated the
neuroprotective effects of muscone against H/R induced neuronal injury.
Additionally, high mobility group box 1 (HMGB1), an important inflammatory
factor, was identified as a direct target of miR-142-5p in neurons. Meanwhile, we
further demonstrated that muscone could reduce the expression of HMGB1 by
upregulating miR-142-5p expression, which subsequently resulted in the inactivation
of TLR4/NF-κB pathway, finally leading to the improvement of cell injury in H/R-
exposed neurons. Overall, we demonstrate for the first time that muscone treatment
alleviates cerebral hypoxia injury in in vitro experiments through blocking activation
of the TLR4/NF-κB signaling pathway by targeting HMGB1, suggesting that
muscone may serve as a potential therapeutic drug for treating cerebral hypoxia
injury.
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INTRODUCTION
Brain hypoxia is one of the most common phenomenon that results in impaired
circulation and metabolic disruptions, which can trigger tissue infarctions, mainly in the
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brain because it consumes oxygen at a high rate (Miyamoto & Auer, 2000). Hypoxia is also
a major cause of foetal brain damage with long-lasting behavioral implications, including
mental retardation and cognitive deficit (Golan & Huleihel, 2006; Nyakas, Buwalda &
Luiten, 1996). This condition is mainly associated with oxygen free radicals, inflammation
and oxidative stress, which contributes to neurodegeneration and apoptosis (Wu et al.,
2017; Zhou et al., 2016; Zhou et al., 2015). Therefore, inhibition of the oxidative stress, cell
apoptosis and inflammatory response is one of the most important approaches for
protection against hypoxia induced damage, such as the use of agents with anti-oxidant,
anti-apoptosis and anti-inflammatory effects.

Muscone, 3-methylcyclopentadecanone, is the main ingredient of traditional Chinese
medicine musk (Du et al., 2018; Wang et al., 2014). In recent years, numbers of
studies have demonstrated that muscone exhibits the neuroprotective effects, and the
protective mechanisms may be attributed to its anti-oxidant, anti-inflammatory and
anti-apoptotic properties. For example, Wei et al. (2012) demonstrated that muscone
significantly improved middle cerebral artery occluded (MCAO) induced ischemic
cerebral dysfunctions in rats. Zhou et al. (2020) found that muscone could attenuate
neuroinflammation and neuronal damage in a rat model of cervical spondylotic
myelopathy. Liu et al. (2020) showed that muscone treatment displayed neuroprotective
effects in mice model of Alzheimer’s disease (AD). Furthermore, a previous evidence
suggests that muscone exerted cerebral protective effect on traumatic brain injury model
rats (Jiang et al., 2016). However, the molecular mechanism involved the neuroprotective
effects of muscone remain to be elucidated.

MicroRNAs (miRNAs) are ∼22-nucleotide single-stranded noncoding RNA, which
modulate post-transcriptional regulation of target genes by binding the complementary
sequences in the 3′-UTR of the target mRNA (Bartel, 2004). Increasing studies have
indicated the involvement of miRNAs in hypoxia induced injury in different organs
(Ghosh et al., 2010; Wang et al., 2010). For example, overexpression of miR-210 was
demonstrated to protect PC-12 cells against hypoxia-induced injury by targeting Bcl-2
adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), involving the PI3K/AKT/mTOR
signal pathway (Luan et al., 2017). Overexpression of miR-494 upregulated HIF-1a
expression through activating PI3K/Akt pathway under both normoxia and hypoxia, and
had protective effects against hypoxia-induced apoptosis in L02 cells (Sun et al., 2013).
Previous studies have demonstrated that some natural agents exert their biological
functions against cerebral hypoxia injury through regulating miRNAs. For instance,
Theaflavin was demonstrated to improve cerebral injury through regulating miR-128-3p
in rats (Li et al., 2019). Wang et al. (2020) found that Safflor Yellow B (SYB) could
attenuate brain injury via inhibition of miR-134 expression in rats. Thus, it is not
surprising that muscone may alter the expression profile of miRNA to modulate cell
apoptosis, inflammatory response and oxidative stress to improve cerebral hypoxia injury.

In the present study, we used an H/R-induced HT22 cell injury model to examine the
potential therapeutic effects of muscone on cerebra hypoxia injury, and investigate its
potential molecular mechanism. This is the first report about the functions of muscone in
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cerebral hypoxia injury in neurons. Our findings provide a potential new way for the
therapy of cerebral hypoxia injury.

MATERIALS AND METHODS
Cell culture and drug
The mouse hippocampal neuron line HT22 was purchased from the Cell Culture Center of
the Shanghai Institute (Shanghai, China) and cultured in DMEM (Gibco, Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin and streptomycin (Sigma-Aldrich, St. Louis, MO, USA) in a humidified
incubator with 5% CO2 at 37 �C. The medium was changed every 2 to 3 days, and the cells
were passaged two times/week. The cells between passages five and 10 were subjected
to H/R model. Muscone (cat no. sc-200528A) was obtained from Santa Cruz
Biotechnology, Santa Cruz, CA, USA and was dissolved in DMSO (St. Louis, MO, United
States) at 10 mm, and stored at −80 �C.

Induction of hypoxia/reoxygenation (H/R) model
The HT22 cells with entire media were plated 12 h before the experiment, and at the
beginning of the experiment, the HT22 cells cultured without glucose (glutamate) and
FBS were transferred to an anoxia environMent (92% N2, 3% O2 and 5% CO2) at 37 �C for
8 h. Subsequently, culture media was replaced with DMEM medium containing 4.5 g/l
glucose and supplemented with 10% FBS (Invitrogen, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA), 100 U/ml penicillin and 100 U/ml streptomycin (Solarbio Science &
Technology Co., Ltd., Beijing, China) and the cells were cultured under normoxic
conditions (95% air and 5% CO2) for 48 at 37 �C to induce reoxygenation. After
reoxygenation, cells were harvested for analyses.

In addition, the cells were divided into four groups including control group, H/R group,
H/R + DMSO group and H/R + Muscone group. Also, the H/R + Muscone group included
two subgroups, to which two different concentrations of Muscone (100 nM and 300 nM)
were added 1 h prior to the initiation of hypoxia. Cells in the H/R, H/R + DMSO and
H/R + Muscone groups were incubated for 8 h in a hypoxia condition and were then
subjected to 48 of reoxygenation under normoxic conditions.

Experimental protocols
To investigate the role of miR-142-5p in the protection of Muscone against H/R
injury, HT22 cells were divided into a control group, H/R group, H/R + Muscone group,
H/R + Muscone + inhibitor negative control (NC) group, H/R + Muscone + miR-142-5p
inhibitor group. In H/R + Muscone + miR-142-5p inhibitor/inhibitor NC groups,
HT22 cells were transfected with 50 nM miR-142-5p inhibitor/inhibitor NC, followed by
treatment with Muscone for 48 h immediately after 1 h the initiation of hypoxia.

Cell transfection
miR-142-5p mimics, miR-142-5p inhibitor or miR NC, were synthesized by GenePharma
(Shanghai, China). miR-142-5p mimics/inhibitor at a final concentration of 50 nM was
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transfected into HT22 cells using Lipofectamine� 3,000 (Invitrogen, Thermo Fisher
Scientific, Inc., Waltham, MA, USA), according to the manufacturer’s protocols. After 24 h
following transfection, HT22 cells were treated with muscone before 1 h exposure to
anoxia environMent, then cells were employed for further analysis. The efficiency of
transfection was evaluated by RT-qPCR.

Cell viability
For the detection of cell viability, HT22 cells (5 × 103/well) were seeded in 96-well plates
and incubated in corresponding medium supplemented with 10% FBS for 24 h. Then
the cells were handled as describe above, the cell viability was measured using Cell
counting Kit-8 (CCK-8; Dojindo, Kumamoto, Japan) assay. A total of 10 µl cell counting
Kit-8 solution (Dojindo, Kumamoto, Japan) was added into each well and incubated at
37 �C for a further 2 h, the absorbance was read at 450 nM using a microplate reader
(Model 680; Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Cell apoptosis assay
Cell apoptosis was evaluated using an Annexin V-FITC/PI Apoptosis Detection kit (BD
Biosciences, Mountain View, CA, United States) according to the manufacturer’s
instructions. Briefly, the treated cells were and dissociated with 0.25% trypsin, after which
the cells were collected by centrifugation (2,000×g, 5 min) and washed twice by ice-cold
PBS. Subsequently, the cells at 1 × 106 were resuspended in 200 ml binding buffer with 10 ml
Annexin V-fluorescein isothiocyanate and 5 ml propidium iodide and incubated in the
dark for 30 min, and the number of cells was determined using flow cytometry (BD
FACSCalibur; BD Biosciences, San Jose, CA, United States) and analyzed by FlowJo 8.7.1
software (Ashland, OR, USA). The lower left quadrant (Q4) was normal negative cells
(FITC−/PI−). The lower right quadrant (Q3) was the early apoptotic cells (FITC+/PI−).
The upper right quadrant (Q2) was the late apoptotic or necrotic cells (FITC+/PI+).
The upper left quadrant (Q1) represented the mechanically damaged cells (FITC−/PI+).
Apoptotic rate = ((early apoptotic cells + late apoptotic cells)/total number of cells) ×
100%.

The caspase 3 activity assay
Caspase-3 activity was measured using a Caspase-3 Activity kit (Beyotime Institute of
Biotechnology, Jiangsu, China) according to the manufacturer’s protocol. The optical
density was then detected at 405 nM using a microplate reader (Model 680; Bio-Rad
Laboratories, Inc., Hercules, CA, USA).

Measurement of intracellular ROS level
For ROS measurements, a Reactive Oxygen Species Assay Kit (Beyotime Biotechnology,
Haimen, Jiangsu, China) was performed. After above treatments, cells were collected and
resuspended in serum-free medium that contained 2′, 7′-dichlorofluorescein-diacetate
(DCFH-DA). Cells were incubated for 25 min at 37 �C, and observed using fluorescence
microscopy (IX70; Olympus, Tokyo, Japan) at 200× magnification, then the ROS levels
were measured at 488 nM excitation and 525 nM emission by a fluorescence
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spectrophotometer (BioTek, Winooski, VT, United States). Fluorescence of 10 randomly
selected areas was counted with Scion Image Software (Scion Co., Frederick, MD, USA).

Enzyme-linked immunosorbent assay (ELISA)
HT22 cells were harvested and centrifuged at 3,000×g for 10 min at 4 �C. Then, the
supernatant was assayed for IL-1β (cat no. 96-403), IL-6 (cat no. 96-407), IFN-a (cat no.
96-416), and IL-10 (cat no. 96-408) levels in accordance with the manufacturer’s protocols.
All ELISA kits were obtained from Merck-Millpore, Billerica, MA, USA.

Measurement of SOD and MDA levels
HT22 cells were lysed using RIPA buffer (Beyotime Institute of Biotechnology, Jiangsu,
China). The supernatant was collected after centrifugation at 3,000×g at 4 �C for 20 min.
The levels of superoxide dismutase (SOD) (cat no. S0103) and malondialdehyde (MDA)
(cat no. S0131) levels were detected according to the respective instructions (Jiancheng
Biotechnology Co., Ltd., Nanjing, China).

Sequencing data analysis
Profiling data GSE84216 obtained through next-generation sequencing (NGS) were
downloaded from the NCBI from the Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/). The original data were preprocessed using the “limma” package in R
(Ritchie et al., 2015). The fold changes (FCs) in the expression of individual miRNAs were
calculated, and differentially expressed miRNAs with |log2FC| > 1.0 and p < 0.05 were
considered to be significant. Hierarchical clustering of differentially expressed miRNA was
performed with dChip (version 2010.01; https://sites.google.com/site/dchipsoft/).

Real-time quantitative PCR analysis
Total RNA was extracted from cultured cells using a mirVanaTM miRNA Isolation Kit
(Thermo Fisher Scientific, Waltham, MA, USA) as the manufacturer’s instructions.
miRNA was reverse transcribed to cDNA using One Step PrimeScript� miRNA cDNA
Synthesis kit (Takara Bio, Inc., Tokyo, Japan) by incubating at 37 �C for 60 min.
For detection of HMGB1 mRNA, total RNA was reverse-transcribed to cDNA using
PrimeScript RT reagent kit (Takara Bio, Inc., Tokyo, Japan). Then miRNAs and mRNA
expression levels were carried out using the SYBR Premix Ex TaqTM (TaKaRa, Tokyo,
Japan) on the ABI PRISM 7,900 system (Thermo Fisher Scientific, Inc., Waltham, MA,
USA). U6 and GAPDH were used as internal controls for miR-142-5p and HMGB1,
respectively. The primers used for were as follows: miR-142-5p, RT, 5′-
GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCCATA -3′ F,
5′-CGGAGTGTAGTGTTTCCTACTT-3′; R, 5′-GCAGGGTCCGAGGTATTC-3′; U6 F,
5′-GCTTCGGCAGCACATATACTAAAAT-3′, R, 5′-CGCTTCAGAATTTGCGTGTC
AT-3′; HMGB1, F, 5′-GTGCAAACTTGTCGGGAG-3′, R, 5′-CGATACTCAGAGC
AGAAGAGG-3′; GAPDH F, 5′-CAGCCTCAAGATCATCAGCA-3′ and R, 5′-GTCTTC
TGGGTGGCAGTGAT-3′. The relative expression of each gene was calculated using the
2−ΔΔCt method (Livak & Schmittgen, 2001). The specificity of the primers for PCRs were
verified by BLASTN and DNA sequencing of the obtained PCR products.
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Luciferase reporter assay
The dual-luciferase reporter vector (pmirGLO; Promega, Madison, WI, USA) harboring
the wild-type and mutated HMGB1 3′-UTR were co-transfected with miR-142
mimics/inhibitor or miR-NCs into the HT22 cells using Lipofectamine 2,000 reagent
(Invitrogen, Carlsbad, CA, USA). Forty-eight hour after transfection, the firefly luciferase
activity was measured by dual-luciferase assays kit (Promega, Madison, WI, USA)
according to the manufacturer’s instructions. Renilla luciferase activity was used as an
internal control.

NF-κB activity assay
The HT22 cells were plated in six-well tissue culture plates at a concentration of 5 × 104

cells/well for 24 h. 2.5 mg of a NF-κB reporter plasmid (GenePharma, Shanghai, China) was
then transfected into HT22 cells. After 6 h, the cells were washed and then transfected with
50 nM miR-142-5p inhibitor/inhibitor NC, followed by treatment with Muscone for 24 h
immediately after 1 h the initiation of hypoxia. The cells were then washed in PBS and
harvested in 500 ml 1X passive lysis buffer. Luciferase activity was quantified using a
Promega luciferase assay kit on a luminometer. The experimental values were recorded
relative to those of untreated control samples.

Western blot
Total protein was extracted from cells using RIPA lysis buffer (Beyotime Institute of
Biotechnology, Jiangsu, China) with a protease inhibitor cocktail (Sigma-Aldrich, St. Louis,
MO, USA), and the protein concentration was determined by a BCA kit (Beyotime
Institute of Biotechnology, Jiangsu, China). Proteins (40 µg each line) were separated on
10% SDS-PAGE gels and transferred to PVDF membranes (Millipore, Billerica, MA, USA)
followed by incubation in a 5% skim milk solution for 1 h at room temperature.
Subsequently, the specific primary antibodies were incubated in the membranes at 4 �C
overnight, including TLR4 (1:1,000, rabbit mAb, cat. no. 14358), MyD88 (1:1,000, rabbit
mAb, cat. no. 4283), nuclear-p-p65 (1:500, cat. no. 3033), p65 (1:500, rabbit mAb, cat. no.
8242), p-IκBa (1:1,000, rabbit mAb, Ser32 cat. no. 2859), IκBa (1:1,000, rabbit mAb,
cat. no. 4812), HMGB1 (1:500, rabbit mAb, cat no. 6893) and β-actin (1:2,000, rabbit mAb,
cat. no. 4970). Subsequently, the corresponding goat anti-rabbit secondary antibodies (cat.
no. 7074, 1:2,000) were added into the membranes for 1 h at room temperature.
All antibodies were obtained from Cell Signaling Technology, Inc., Danvers, MA, USA.
The results were visualized with a chemiluminescence detection system (Millipore,
Billerica, MA, USA) and the quantification of the bands was performed using Quantity
One software (Bio-Rad, Hercules, CA, USA). Protein levels in cells were presented as fold
change normalized to an endogenous reference (β-actin protein).

Statistical analysis
All statistical data were analyzed using GraphPad Prism 5.0 software (GraphPad Software,
Inc., San Diego, CA, USA). Data are expressed as the mean ± SD. Statistical analysis was
performed by unpaired Student’s t-test or one-way ANOVA, followed by post hoc test.
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Pearson’s method was used in correlation test. p < 0.05 was considered to indicate a
statistically significant difference.

RESULTS
Muscone improved H/R-induced HT22 cell injury
In the current study, to explore whether Muscone could alleviate H/R-induced HT22
neurons injury, hypoxia/reoxygenation (H/R)-induced neurons injury model was
established through 8 h of hypoxia and 48 h of reoxygenation in HT22 neurons. As shown
in Fig. 1A, CCK-8 assay showed that H/R treatment can obviously decline the cell
viability compared with the control group, and this influence was attenuated by Muscone
(F = 39.1, df = 4, p < 0.01). Next, we detected the regulatory effect of Muscone (100 nM and
300 nM) on H/R-induced neuronal apoptosis. It was found that the activity of caspase
3 was dramatically increased in H/R group compared with the control group, whereas
Muscone significantly decreased the activity of caspase 3 in HT22 neurons following H/R
treatment (Fig. 1B; F = 71.1, df = 4, p < 0.01). Additionally, flow cytometry revealed that,
compared with the control group, H/R increased the apoptotic rate of HT22 neurons.
However, Muscone treatment significantly attenuated the cell apoptosis ratio caused by
H/R (Fig. 1C; F = 85.5, df = 4, p < 0.01). These results suggested that Muscone reduced
H/R-induced apoptosis rate in HT22 neurons. Furthermore, the indication of intracellular
oxidative stress, the ROS and MDA levels were much higher in the H/R group than that in
the control group. Of note, there was significant reduction in ROS and MDA level in
the Muscone-treated group compared with the H/R group (Figs. 1D and 1E; F = 89.89,
df = 4, p < 0.01; F = 57.62, df = 4, p < 0.01). In parallel with the increase in ROS and MDA,
we also observed that the activity of SOD was significantly decreased in H/R group
and significantly restored by Muscone treatment (Fig. 1F; F = 151.9, df = 4, p < 0.01).
Moreover, these effects of Muscone were in a dose-dependent manner, especially in 300
nM group. Collectively, these findings indicate that Muscone could improve H/R-induced
HT22 neurons injury by reducing cell apoptosis and oxidative stress.

Muscone suppressed H/R-induced inflammatory response
Inflammatory response is another important pathophysiologic process of cerebral hypoxia
injury (Lee et al., 2018; Millar et al., 2017). Therefore, we determined whether muscone
affects the inflammatory response in injured HT22 neurons. The results of ELISA assays
revealed that H/R exposure resulted in a significant elevation of pro-inflammatory factors
including IL-6, IL-1β and TNF-a, and a marked reduction of anti-inflammatory factor,
IL-10 compared with the control group. In contrast, muscone significantly reduced the
levels of these pro-inflammatory factors and enhanced the levels of anti-inflammatory
factor compared with H/R group (Figs. 2A–2D; F = 115.3, df = 4, p < 0.01; F = 105.6, df = 4,
p < 0.01; F = 39.72, df = 4, p < 0.01; F = 26.53, df = 4, p < 0.01). Collectively, these data
indicate that muscone improve H/R-induced HT22 neurons injury by reducing
inflammatory response.
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miR-142-5p was upregulated bymuscone in HT22 neurons in response
to H/R treatment
Recently, many Chinese medicinal herbs were demonstrated to exert their potential effects
through modulating miRNA expression profiles (Chu et al., 2019). To determine whether

Figure 1 Muscone alleviated H/R-induced inflammation, oxidative stress and apoptosis in HT22 cells. HT22 cells were treated with muscone
(100 nm and 300 nm) before H/R exposure. Then, cells were harvested for subsequent experiments. (A) The cell viability of each group was
determined by CCK‑8 assay. (B) The activity of caspase was measured by Caspase 3 Activity kit. (C) The rate of apoptosis was detected by Annexin
V/PI double staining followed by flow cytometry. (D) ROS production was detected by DCFH-DA assay. (E, F) The levels of SOD and MDA were
assessed using commercial kits. Data are presented as the mean ± SD of three independent experiments. �p < 0.05 and ��p < 0.01 vs. control group;
#p < 0.05, ##p < 0.01 vs. H/R group. Full-size DOI: 10.7717/peerj.13523/fig-1
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muscone has similar function, we analyzed the gene expression datasets of GSE84216
retrieved from GEO. A total of 40 miRNAs that were differentially expressed between
cerebral injury and Sham group were observed (Fig. 3A). In this dataset, miR-142-5p,
miR-423-3p, miR-199a-5p, miR-615-3p, and miR-125a-3p were significantly decreased,
while miR-200b-3p, miR-182-5p, miR-34c-5p, miR-448-3p and miR-148a-3p were
markedly increased, which are consistent with previous studies, suggesting the reliability of
this dataset. Notably, RT-qPCR analysis revealed that muscone treatment significantly
reversed the decreased expression of miR-142-5p caused by cerebral hypoxia injury in
H/R-injured HT22 cells, while muscone exerted no impacts on the expressions of other
miRNAs (Fig. 3B; F = 32.3, df = 2, p < 0.01). miR-142-5p was reported to have significant
implications in multi-organ injuries, such as myocardial injury and hepatic injury, and its
upregulation could improve these injuries (Li et al., 2020;Wang et al., 2016). Therefore, we
proposed that muscone may improve H/R-induced HT22 cell injury by upregulating miR-
142-5p expression.

Figure 2 Muscone improved H/R-induced inflammatory response. HT22 cells were treated with
muscone (100 nm and 300 nm) before H/R exposure. Then, cells were harvested for subsequent
experiments. (A–D) The IL-6, TNF-a, IL-1β, and IL-10 concentrations were determined by ELISA kits.
Data are presented as the mean ± SD of three independent experiments. �p < 0.05 and ��p < 0.01 vs.
control group; #p < 0.05, ##p < 0.01 vs. H/R group. Full-size DOI: 10.7717/peerj.13523/fig-2
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miR-142-5p knockdown abrogates the protective effects of muscone
against H/R-induced HT22 cell injury
To further explore the role of miR-142-5p in muscone-induced neuroprotection, miR-
142-5p expression was knocked down in the HT22 cells by miR-142-5p inhibitor
transfection. The results of RT-qPCR analysis revealed that miR-142-5p expression was
notably reduced after miR-142-5p inhibitor transfection (Fig. 4A; F = 89.6, df = 4,
p < 0.01). First, the effects of muscone on control cells were assessed and the results showed
that muscone (100 nM and 300 nM) had no influence on the cell viability, the activity
of caspase 3, ROS production and inflammation in HT22 cells (Fig. S1). Moreover,
we found that transfection of miR-142-5p inhibitor alone led to cell damage similarly

Figure 3 Muscone increased the expression of miR-142 in H/R-injured HT22 cells. (A) Data were retrieved from the Gene Expression Omnibus
(GEO) dataset, with the accession number GSE96985 and differentially expressed miRNAs were analyzed using the “limma” package. The color code
in the heat map is linear and the expression levels of miRNAs that were upregulated are shown in green to red, whereas the miRNAs that were
downregulated are shown from red to green. (B) HT22 cells were treated with muscone before H/R exposure. Then cells were harvested for sub-
sequent experiments. miR-423-3p, miR-199a-5p, miR-615-3p, miR-125a-3p, miR-142-5p, miR-200b-3p, miR-182-5p, miR-34c-5p, miR-448-3p and
miR-148a-3p were further analyzed using qRT-PCR. Date are presented as the mean ± SD of three independent experiments. �p < 0.05 and ��p < 0.01
vs. control group; ##p < 0.01 vs. H/R group. Full-size DOI: 10.7717/peerj.13523/fig-3
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Figure 4 miR-142-5p knockdown abrogates the neuroprotective effects of muscone against H/R-induced HT22 cell injury. HT22 cells were
pre‑transfected with miR-142-5p inhibitor or inhibitor NC for 30 min and then treated with muscone before H/R exposure. Then cells were
harvested for subsequent experiments. (A) The expression levels of miR-142-5p was measured by qRT-PCR after miR-142-5p inhibitor alone
transfection. (B) The cell viability of each group was determined by CCK‑8 assay. (C) The activity of caspase was measured by Caspase 3 Activity kit.
(D) ROS production was detected by DCFH-DA assay. (E, F) The levels of SOD and MDA were assessed using commercial kits. (G–I) The IL-6, IL-
1β and TNF-a concentrations were determined by ELISA kits. Data are presented as the mean ± SD of three independent experiments. �p < 0.05 and
��p < 0.01 vs. control group; ##p < 0.01 vs. H/R + mu scone + inhibitor NC group. Full-size DOI: 10.7717/peerj.13523/fig-4
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to the H/R-induced result (Fig. S1), suggesting miR-142-5p may play an important role
in H/R induced HT22 cell damage. Meanwhile, we also explore the functional effects
of miR-142-5p knockdown on H/R-induced HT22 cell injury. It was shown that the
H/R + miR142 inhibitor group exhibited much lower cell viability, higher activity of
caspase 3 and ROS production, lower levels of SOD, higher levels of MDA, as well as
higher IL-6, TNF-a, IL-1β and lower IL-10 concentrations in comparison with the
H/R + inhibitor group, suggesting that miR-142-5p knockdown could aggravate
H/R-induced HT22 cell injury (Fig. S2). Subsequently, we found that miR-142-5p
knockdown reversed the muscone-induced upregulation of cell viability in the
H/R-injured HT22 cells (Fig. 4B; F = 42.46, df = 4, p < 0.01). In addition, the effects of
miR-142-5p on the activity of caspase 3 in the presence of muscone under H/R conditions
were also investigated. As shown in Fig. 4C, miR-142-5p knockdown attenuated the
muscone-induced inhibition on the activity of caspase 3 under H/R conditions (F = 29.9,
df = 4, p < 0.01). Meanwhile, we also found that transfection of miR-142-5p significantly
weakened the inhibitory effect of muscone on cell apoptosis (Figs. 4D and 4E; F = 185.5,
df = 4, p < 0.01). Next, the roles of miR-142-5 in the effects of muscone on oxidative stress
were further examined in H/R-injured HT22 cells. It was shown that H/R-induced increase
in ROS levels was attenuated by muscone treatment; however, the inhibitory effects of
muscone was abolished by miR-142-5 knockdown (Fig. 4F; F = 43.3, df = 4, p < 0.01).
Meanwhile, the H/R-induced decrease in SOD levels were reversed by muscone treatment,
and the increased MDA levels were attenuated by muscone treatment; however, these
effects of muscone were eliminated by miR-142-5 knockdown (Figs. 4G and 4H; F = 46.32,
df = 4, p < 0.01; F = 31.3, df = 4, p < 0.01). We also examined the effects of miR-142-5p
knockdown on the inflammatory response in the presence of muscone under H/R
conditions. As expected, the increased expression levels of IL-6, IL-1β and TNF-a caused
by H/R were attenuated by muscone; however, these inhibitory effects of muscone were
also reversed by miR-142-5p knockdown (Figs. 4I–4K; F = 63.4, df = 4, p < 0.01; F = 88.0,
df = 4, p < 0.01; F = 52.27, df = 4, p < 0.01). Collective, these data suggest that miR-142-5p
mediated the neuroprotective effects of muscone against H/R-induced HT22 cell injury.

HMGB1 is a direct target of miR-142-5p
To further evaluate the mechanisms by which miR-142-5p mediates the neuroprotective
effects of muscone under H/R conditions, miRNA targets were investigated using two
bioinformatic tools (Targetscan and miRBase). As shown in Fig. 5A, miR-142-5p was
predicted as a putative miRNA targeting HMGB1, a well-known pro-inflammatory
mediator. To examine if miR-142-5p directly target HMGB1, a luciferase reporter assay
was performed. It was shown that overexpression of miR-142-5p significantly reduced,
whereas miR-142 inhibition increased the relative luciferase activity of HMGB1
3′-UTR wt. However, no obvious changes in the luciferase activity were found when
HT22 cells were co-transfected with HGMB1-3′-UTR mut reporter and miR-142-5p
mimics/miR-142 inhibitor (Fig. 5B). RT-qPCR analysis showed that HGMB1 mRNA
expression was significantly down-regulated after miR-142-5p mimics transfection and
increased by miR-142 inhibitor in HT22 cells (Fig. 5C). We also found that H/R exposure
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resulted in a significant increase in the expression of HGMB1 protein, compared with
control group, while the increased expression of HGMB1 protein was attenuated by
muscone treatment. Moreover, the inhibitory effect of muscone was reversed by miR-142-
5p knockdown (Fig. 5D; F = 62.07, df = 4, p < 0.01). These data suggest that HMGB1 is a
direct target of miR-142-5p in H/R-induced HT22 cells.

Figure 5 HMGB1 is a direct target of miR-142-5p. (A) The predicted complementary sequences for miR-142-5p in the 3′-UTR of HMGB1 and the
mutations are shown in the seed region of miR-142-5p. (B) The HT22 cells were co-transfected with either pmirGLO-HMGB1-3′-UTR or pmir-
GLO-HMGB1-mut-3′-UTR, and miR-142-5p mimics/inhibitor or corresponding NC and the relative luciferase activity were measured. ��p < 0.01
vs. mimic NC. ##p < 0.01 vs. inhibitor NC. (C) The HT22 cells were transfected with miR-142-5p mimics/inhibitor or corresponding NC, and the
HMGB1 protein level was measured using Western blot analysis. β-actin was used as an internal control. (D) HT22 cells were pre‑transfected with
miR-142-5p inhibitor or inhibitor NC for 30 min and then treated with muscone before H/R exposure. Then cells were harvested for subsequent
experiments. HMGB1 protein level was measured using Western blot analysis. Data are presented as the mean ± SD of three independent
experiments. ��p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. H/R; &&p < 0.01 vs. H/R + muscone group.

Full-size DOI: 10.7717/peerj.13523/fig-5
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Muscone inactivates the TLR4/NF-κB signaling pathway in H/R-injured
HT22 cells
The TLR4/NF-κB pathway is known to be involved in neuronal inflammatory response
and oxidative stress associated with cerebral injury (Chen et al., 2020; Zhang et al., 2019).
Since HMGB1 is an important mediator for efficient induction of TLR4/NF-κB pathway, it
was proposed that this pathway maybe involved in the neuroprotective effects of muscone
under H/R conditions. It was shown that TLR4, MyD88, p-IκBa and nuclear p-p65
were significantly increased in HT22 cells exposed to H/R, indicating that H/R activated
TLR4/NF-κB signaling pathway. However, these effects were reversed by muscone
treatment (Figs. 6A and 6B). It was also observed that the inhibitory effects of muscone
on these protein expressions were attenuated by miR-142-5p knockdown in HT22 cells
under H/R conditions (Figs. 6A and 6B). To further confirm the association between
miR-142-5p and TLR4/NF-kB signaling pathway, the NF-κB activity assay was performed.
As shown in Fig. 6C, the NF-κB activity was significantly increased under H/R stimulation,
whereas it was attenuated after muscone treatment. As expected, the inhibitory effects
of muscone on the NF-κB activity was reversed by miR-142-5p knockdown (F = 88.5,
df = 4, p < 0.01). All these data suggest that Muscone inactivates the TLR4/NF-κB signaling
pathway through regulating miR-142-5p expression in H/R-injured HT22 cells.

Figure 6 Muscone inactivates the TLR4/NF-κB signaling pathway in H/R-injured HT22 cells. HT22 cells were pre-transfected with miR-142-5p
inhibitor or inhibitor NC for 30 min and then treated with muscone before H/R exposure. Then cells were harvested for subsequent experiments.
(A) Protein levels of TLR4, MyD88, p-IκBa and nuclear p-p65 were detected by western blot analysis. (B) The bands were semi-quantitatively
analyzed by using ImageJ software. (C) NF-κB activity was assessed using the NF-κB activity assay. Data are presented as the mean ± SD of three
independent experiments. ��p < 0.01 vs. control group; #p < 0.05 and ##p < 0.01 vs. H/R; &&p < 0.01 vs. H/R + muscone group.

Full-size DOI: 10.7717/peerj.13523/fig-6
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DISCUSSION
In the present study, muscone protected HT22 cells against H/R injury by suppressing
apoptosis, oxidative stress and inflammatory response. Mechanistically, our findings
showed that muscone upregulated the expression levels of miR-142-5p, subsequently
decreased expression of HGMB1 by binding to 3′-UTR region of HGMB1 mRNA, leading
to the inactivation of TLR4/NF-κB pathway, thereby exerting protective effects against H/
R-induced HT22 cell injury. These findings suggest that muscone may be used as a
candidate agent to treat cerebral hypoxia injury.

In recent years, the progress in research on neuroprotective effects of traditional
Chinese medicine has been increasingly investigated in brain injury (Cheng & Lee, 2016;
Feigin, 2007; Ip et al., 2016). Muscone, a ventral glandular secretion of the male musk deer
obtained from musk, has been extensively studies in animal models of cardiovascular and
cerebrovascular disorders due to its anti-oxidant, anti-inflammatory and anti-apoptotic
properties (Liang et al., 2010; Wu et al., 2011; Zhang et al., 2007). Notably, muscone
exerted neuroprotection in middle cerebral artery occluded (MCAO) rats, as reflected by
the reduction of cerebral infarct volume, neurological dysfunction and inhibition of
cortical neuron apoptosis (Wei et al., 2012). The results in this study revealed that muscone
markedly reduced cell apoptosis, oxidative stress and inflammatory response in H/R-
injured HT22 cells. These results suggested that muscone may improve H/R-induced
injury in HT22 cells. However, the underlying mechanisms of the neuroprotective effects
of muscone have not yet been elucidated.

Numerous studies have shown that miRNAs are involved in the modulation function of
traditional Chinese medicine (TCM) in brain injury (Bian, Shan & Chen, 2017; Ma et al.,
2020). For example, Rhodiola crenulata attenuated hypobaric hypoxia (HH)-induced brain
injury by regulating apoptosis and mitochondrial energy metabolism via the miR-210/
ISCU1/2 (COX10) signaling pathway (Wang et al., 2019b). Chu et al. (2019) showed that
Ginsenoside Rg1 (Rg1) protected PC12 cells against neuronal injury by alleviating
oxidative stress through inhibiting miR-144 activity. Yang et al. (2021) found that Gualou
Guizhi Decoction (GLGZD) down-regulated miR-155, mediating subsequent
neuroinflammation and resulting in neuroprotection in MCAO rats. Wang et al. (2019a)
reported that Trametenolic acid B (TAB) could efficiently improve learning and memory
ability of injured rats and suppress mitochondrial-mediated neuron apoptosis through
modulation of miR-10a. Nevertheless, whether miRNAs are involved the improvement of
muscone in H/R-injured HT22 cells remains unclear. In this study, 40 differentially
expressed-miRNAs were observed between cerebral injury and Sham group through
retrieving the gene expression datasets GSE84216. Notably, treatment with muscone was
identified to cause miR-142-5p upregulation in injured HT22 cells. A recent study showed
that miR-142-3p were identified as markers after traumatic brain injury that could be
useful for distinguishing severity and improvement over time (Mitra et al., 2017). Another
study has shown that down-regulation of miR-142-5p could attenuate oxygen-glucose
deprivation and reoxygenation (OGD/R)-induced neuron injury through promoting Nrf2
expression (Wang et al., 2017). However, whether miR-142-5p contributed to the
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protective effects of muscone on hypoxia injury remain unknown. In the present study, our
results revealed that miR-142 inhibition abolished the neuroprotective effects of muscone
in vitro, suggesting that miR-142 upregulation contributes to the neuroprotective effects of
muscone in H/R induced cell injury.

High mobility group protein B1 (HMGB1) is a highly conserved DNA-binding protein
that is locate in the nucleus of mammalian cells. During hypoxia injury, HMGB1, as an
endogenous ligand of Toll-like receptors 4 (TLR4), is secreted into the cytoplasm (Liu
et al., 2016), and the extracellular HMGB1 can stimulate TLR4/NF-κB pathway, thereby
triggers the release of ROS and pro-inflammatory cytokines including TNF-a, IL-6 and
IL-1β, which further enhances inflammatory response and causes tissue damage (van
Beijnum, Buurman & Griffioen, 2008; Zhang et al., 2017). Previous studies have
demonstrated that suppression of HMGB1/TLR4/NF-κB pathway could improve cerebral
injury in mice (Cheng et al., 2017; Tang et al., 2007). For example, Zhai et al. (2020) found
that dexmedetomidine (Dex) treatment can alleviate cerebral injury in rats by inhibiting
the HMGB1/TLR4/NF-κB signaling pathway. Xie et al. (2019) showed that inhibiting
HMGB1/TLR4/NF-κB pathway triggered inflammation was associated with
neuroprotective effects of Notoginseng leaf triterpenes (PNGL) against cerebral injury.
Therefore, whether the protective role of muscone against H/R injury was associated with
HMGB1/TLR4/NF-κB pathway attracted our attention. In our study, HMGB1 was
confirmed as a direct target of miR-142-5p, which is consistent with a previous study
(Jiang et al., 2017). Therefore, we hypothesized that muscone may exhibit its
neuroprotective effect against cerebral hypoxia injury through inhibiting HMGB1-
mediated TLR4/NF-κB pathway. Based on western blot, we found that H/R stimulation led
to increased expression levels of TLR4, MyD88, p-IκBa and nuclear p-p65; however, these
effects can be attenuated by muscone, which was antagonized by miR-142-5p knockdown,
suggesting that muscone effectively inhibited activation of HMGB1 mediated TLR-4/NF-
κB signaling pathway by upregulating miR-142-5p expression.

However, there are some limitations of our study. First, we use the HT-22 cells which
possess glycolytic phenotype as a neuronal model, therefore, we will explore the effects
of muscone on the level of cell viability, ROS and apoptotic markers in primary neuronal
cell cultures. Second, we used oxygen deprivation (95% N2 and 5% CO2) condition in
the beginning, but there was more shedding of cells. Thus, we finally changed the cell
culture condition to hypoxia/reoxygenation (92% N2, 3% O2 and 5% CO2). Although this
approach has also been reported in the literatures, we will further using oxygen
deprivation/reoxygenation model in future. Third, cell death process is a dynamic event
with subsequent activation of particular processes and neuro-inflammatory response is
usually a consequence of primary injury. However, only one time point was used in our
study. In future, we will detect cell activity, apoptosis, inflammatory response at different
time points after reoxygenation to assess the dynamic processes regulated by drugs on
measured parameters. Finally, our study the differences between two experimental groups
(H/R + inhibitor NC and H/R + miR142 inhibitor) in the TLR4/NF-κB signaling pathway
detection were not evaluated; thus, data interpretation could be somehow affected, and
further studies are warranted to confirm these results.
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CONCLUSIONS
In summary, we for the first time demonstrate that muscone treatment can protect
neurons against H/R-induced injury by suppressing inflammatory response, oxidative
stress and apoptosis through the miR-142-5p/HMGB1/TLR-4/NF-κB pathway. All these
findings suggest that muscone may be a promising neuroprotective agent of ischemic
stroke damage, which warrants further research in the application of muscone in the
treatment of ischemic stroke.
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