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We performed simultaneous acquisition of EEG-fMRI in seven patients with Unverricht-Lundborg disease (ULD) and in
six healthy controls using self-paced finger extension as a motor task. The event-related desynchronization/synchronization
(ERD/ERS) analysis showed a greater and more diffuse alpha desynchronization in central regions and a strongly reduced post-
movement beta-ERS in patients compared with controls, suggesting a significant dysfunction of the mechanisms regulating active
movement and movement end. The event-related hemodynamic response obtained from fMRI showed delayed BOLD peak latency
in the contralateral primary motor area suggesting a less efficient activity of the neuronal populations driving fine movements,
which are specifically impaired in ULD.

1. Introduction

The analysis of the EEG recorded during motor performance
(self-paced movement) provides information about the
movement-related changes in oscillatory cortical activity.
In normal subjects, an amplitude attenuation of specific
frequency components (event-related desynchronization,
ERD) in the α- and β-bands precedes a voluntary movement
and reflects cortical activation concurring with movement
planning. At the end of the movement, event-related
synchronization (ERS) in the β-band replaces ERD [1].
Simultaneous EEG-fMRI acquisition during performance of
a motor task enables the identification of changes of brain
activity in motor areas and provides information on the
source of the event generator.

In Unverricht-Lundborg disease (ULD) patients, vol-
untary movements are selectively impaired by the pres-
ence of action myoclonus [2]. In these patients, ERD/ERS
changes highlight increased and diffuse activation of the
motor cortex during movement planning and severely

reduced postexcitatory inhibition of the motor cortex
[3].

We simultaneously acquired EEG and fMRI in order to
study the spatiotemporal pattern of ERD/ERS resulting from
self-paced extension of the index finger in ULD patients and
to explore the correlation with hemodynamic changes.

2. Material and Methods

We enrolled 7 right-handed patients (mean age: 29.1±10
years; four women) with ULD, whose main clinical features
are reported in Table 1 and 6 right-handed healthy controls
(mean age: 29.1 ± 6.7 years; five women). In all patients,
the diagnosis of ULD was established on the basis of the
typical electroclinical presentation and of the genetic finding
of dodecamer expansion at cstb gene [4].

2.1. Motor Task. Inside the bore of the scanner, subjects laid
supine with their arms relaxed; their head was stabilized
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Table 1: Patient data.

Subject, Age [yrs], Sex Disease duration [yrs] AED Simplified myoclonus rating

1, 22, f 12 VPA, TPM, CLZ 2

2, 26, f 16 VPA, CZP 2

3, 36, m 22 VPA, LVT, PB 2

4, 25, m 14 VPA, CZP, piracetam 3

5, 49, m 34 VPA, TPM 2

6, 22, f 11 VPA, LVT, TPM 2

7, 24, f 12 VPA 3

AED: antiepileptic drugs; VPA: valproate; TPM: topiramate; CLZ: clobazam; CZP: clonazepam LVT: levetiracetam; PB: phenobarbital. Simplified myoclonous
rating [5]: 2: mild myoclonous, interference with fine movements and/or speech, no interference with walking; 3: moderate myoclonous, patient still able to
walk without support.

with adjustable padded restraints on both sides. They were
instructed to remain as still as possible throughout the
experiment, to keep their eyes open and avoid blinking
during the task. Subjects were asked to perform brisk (i.e.,
lasting less than one second) self-paced extensions of the
right index, with a time interval between the end of a
movement and the onset of the following one of about
10 seconds. Each subject was trained for several minutes
before the experiment. The movement was monitored by
electromyography (EMG) and visual observation.

2.2. EEG-fMRI Acquisition. EEG was acquired using an
MR compatible EEG amplifier (SD MRI 32, Micromed,
Treviso, Italy) and a cap providing 30 Ag/AgCl electrodes
positioned according to the 10/20 system. Impedance was
kept below 5 kΩ. Electrocardiogram (ECG) and EMG were
simultaneously recorded. The EMG activity was recorded
from pairs of Ag/AgCl surface electrodes placed bilaterally 2–
3 cm apart over the right index flexor muscles. EEG data were
acquired at the rate of 1024 Hz using the software package
provided by the manufacturer.

Imaging was performed on a 1.5 T MR scanner (Magne-
tom Avanto, Siemens AG, Erlangen, Germany). Functional
images were acquired with an axial gradient-echo echo-
planar sequence (21 slices, TR = 2000 ms, TE = 50 ms, 2 ×
2 mm2 in-plane voxel size, 5 mm slice thickness, no gap). A
T1-weighted anatomical scan (160 slices, TR = 1640 ms, TE =
2 ms; 1 mm3 isotropic voxels) was also acquired.

The scanner provided a trigger signal corresponding
to the excitation of the first slice of each volume, which
was recorded by the EEG system enabling real-time artefact
removal, making possible to monitor the EEG signal as well
as task performance through EMG.

2.3. Data Analysis. The imaging gradient artefact and the
ballistocardiogram were digitally removed from the EEG
using an adaptive filter [6], implemented on software
provided by the manufacturer.

Movement onset was determined by the beginning of the
burst of EMG activity. EEG data were epoched four seconds
before and three seconds after movement onset. Epochs with
artefacts, incomplete muscle relaxation between movements,
and intertrial interval shorter than 8 seconds were excluded

from the analysis. A reference period at rest, from 3500 to
2500 ms before movement onset, was considered. Each trial
was digitally band-pass filtered from 1 Hz below to 1 Hz
above the individual frequencies of the most movement-
sensitive power peaks in α- and β-bands. The filtered EEG
data were then squared and averaged over all trials and over
time (one value every 125 ms). The ERD or ERS values were
calculated according to the following formula:

ERD/S(k) = A(k)− R
R

× 100, (1)

where A(k) is the power at sample k and R represents
the mean power of the reference period (negative values
correspond to ERD, positive values to ERS).

The statistical significance of the differences between the
mean power observed during the reference period and that
measured during the subsequent 125-milisecond intervals
was expressed as a probability value using Wilcoxon’s signed
rank test. The power changes were considered significant
when the P value was less than .05. ERD/ERS data analysis
was performed using software developed in Matlab (Math-
works Inc., Natick, MA, USA). For statistical analysis, we
divided the time course of ERD/ERS in five epochs of 1
second each (t1:−2.5 to −1.5 s, t2: −1.5 to −0.5 s, t3: −0.5
to 0.5 s, t4: 0.5 to 1.5 s, t5: 1.5 to 2.5 s) and we compared the
values measured on F4, C4, P4, F3, C3, P3, Fz, Cz, and Pz
electrodes.

The fMRI data were analyzed by means of the
SPM5 software (Wellcome Neuroimaging Dept., Institute
of Neurology, London, UK). Preprocessing included three-
dimensional motion correction, slice-timing correction,
Gaussian smoothing, and normalization into MNI (Mon-
treal Neurological Institute) space. First-level analysis was
performed by general linear model (GLM), using the event
function from EMG, convolved with the canonical hemo-
dynamic response function, as regressor. Three-dimensional
regions of interest (ROIs) were manually drawn for each
subject by an experienced operator on the contralateral and
ipsilateral primary motor areas as well as on the contralateral
supplementary motor area. The average signal time-course
was obtained, and the amplitude and latency of the peak of
the fitted hemodynamic response were measured.

For statistical analysis, the Mann-Whitney U test was
applied.
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Figure 1: Color maps showing the grand average of α-ERD in control subjects (a) and in patients (b). Color scale: maximum ERD and ERS
are coded in blue and red. The lower panels show the grand average of α-ERD time series recorded from contralateral (c) and ipsilateral (d)
central derivations in patients and controls.

3. Results

All subjects performed the motor task well: the mean
movement duration was on average longer in the patients
group (535.8±110.3 versus 728.6±195.5 ms; P = .062).
The α- and β-band peak frequencies, selected as movement
reactive EEG frequency, were lower in the patient group with
respect to controls and in α-band this difference reached
statistical significance (α: 11.3±0.8 versus 9.1±1.6 Hz, P =
.02; β: 22±5.6 versus 18.6±1.5 Hz).

3.1. ERD/ERS Analysis. In all subjects α- and β-ERD were
observed (Figure 1). The time course of the α- and β-
desynchronization was similar for the two groups, but
in patients the desynchronization in the α-band was sig-
nificantly greater in the contralateral central derivation

(−48.5±13 versus −58.4 ± 9.6; P = .032, for controls and
patients, Figure 1(c)) and also involved the midline and the
ipsilateral central derivations (Table 2 and Figures 1(b) and
1(d)).

The expected postmovement β-ERS was observed in all
controls; it was undetectable in two patients, whereas in the
remaining patients it was significantly smaller with respect
to that measured in controls (107.5±86.9 versus 31.3±8.8;
P = .025, for controls and patients, Table 2 and Figure 2).

3.2. fMRI Analysis. The peak amplitude of the hemodynamic
response was comparable in controls and patients in the
contralateral (0.56±0.18% versus 0.63±0.30%, P = .6)
and ipsilateral (0.17±0.15% versus 0.15±0.14%, P = .8)
motor areas as well as in the contralateral supplementary
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Figure 2: Color maps showing the grand average of β-ERD/ERS in control subjects (a) and patients (b). Color scale: maximum ERD and
ERS are coded in blue and red. The lower panel (c) shows the grand average of β-ERD/ERS time series recorded from the contralateral
central derivation in patients and controls.

motor area (0.58±0.15% versus 0.60±0.17%, P = .8). There
was, however, a trend towards longer response latency in
patients, which reached statistical significance in the con-
tralateral motor area (3.1±0.4 s versus 3.6±0.5 s, P = .011)
and approached statistical significance in the contralateral
supplementary motor area (3.1±0.4 s versus 3.4±0.2 s, P =
.08); the effect was not found in the ipsilateral motor area
(2.7±0.2 s versus 3.3±0.8 s, P = .1) (Figure 3).

4. Discussion and Conclusions

The changes found in ERD/ERS pattern of ULD subjects
suggest an increased activation of motor cortex during
movement planning and a significant reduction of post-
excitatory inhibition. These data overlap those obtained
in our previous study [3] on EEG signal recorded in

standard laboratory and demonstrate the applicability of the
eventrelated protocol during simultaneous EEG/fMRI.

Differently from ERD/ERS, fMRI did not highlight any
clear difference in the amplitude of cortical activation in
ULD patient with respect to controls. The hemodynamic
response analysis allowed detecting subtle but significant
effects on the time course of activation that showed a
delayed peak in ULD patients. This finding, together with
the slightly longer duration of individual movements in
patients with respect to controls, may agree with a less
efficient performance of the motor cortex in this disorder,
characterized by a prominent motor dysfunction resulting
in action activated myoclonic jerks. Based on the present
data, the ERD/ERS changes detectable on EEG appear to
be more reliable with respect to fMRI in detecting the
cortical dysfunction characterizing ULD patients, being
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Figure 3: Time-courses of the hemodynamic response for controls
(blue) and patients (red).

Table 2: Statistical analysis of ERD/ERS values assessed in subse-
quent epochs.

Alpha
ERD

F4 C4 P4 F3 C3 P3 Fz Cz Pz

t1 — 0.015 — — — — — 0.032 —

t2 — 0.010 — — — 0.042 — — —

t3 — 0.003 — — — — — 0.003 —

t4 0.045 0.010 — — 0.015 0.004 0.007 0.003 0.032

t5 — — — — — — — 0.007 —

Beta
ERD/ERS∗

F4 C4 P4 F3 C3 P3 Fz Cz Pz

t1 — — — — — — — — —

t2 — — — — — — — — —

t3 — — — — — — — — —

t4 0.032 — 0.007 — 0.032 — 0.015 — —

t5 — 0.032 0.022 — 0.012 — — 0.010 —

Results of U-Mann Whitney test between patients and controls group. —=
not significant.∗t1- t3 correspond to beta ERD and t4-t5 to beta ERS.

able to detect and quantify the functional changes of the
neuronal pools impaired by the disease. A final conclusion
cannot however be reached because of the small number
of observation that limited the statistical power; moreover,
further analyses exploring the functional connectivity during
motor performance may allow to better detect subtle changes
in the BOLD signals [7].
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