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Long-read sequencing holds great potential for transcriptome analysis because
it offers researchers an affordable method to annotate the transcriptomes
of non-model organisms. This, in turn, will greatly benefit future work
on less-researched organisms like unicellular eukaryotes that cannot rely on
large consortia to generate these transcriptome annotations. However, to
realize this potential, several remaining molecular and computational chal-
lenges will have to be overcome. In this review, we have outlined the
limitations of short-read sequencing technologyand how long-read sequencing
technology overcomes these limitations. We have also highlighted the unique
challenges still present for long-read sequencing technology and provided
some suggestions on how to overcome these challenges going forward.

This article is part of a discussion meeting issue ‘Single cell ecology’.
1. Introduction
The rapid progress and application of sequencing technology after the completion
of the Human Genome Project has led to a vastly expanded knowledge of
the genome sequences present in the eukaryotic tree of life. However, owing to
the cost and technological limitations, truly high-quality genome references have
been limited to a core of organisms of large scientific or economic interest. Further,
our knowledge of which parts of genomes constitute genes and which transcript
isoforms these genes produce, i.e. high-quality transcriptome annotation, is
even more scarce [1]. As a result, much of the diversity of transcriptomes in
less-researched organisms like unicellular eukaryotes remains unexplored.

Transcriptome annotations are of great value to researchers because they are
required for us to understand how genome sequences and changes to these
sequences are interpreted by the cellular machinery. They are also required for
many functional analyses. Without accurate transcriptome annotations, we
cannot, for example, perform RNA-seq experiments to investigate differential
expression of genes or predict which proteins are present in a tissue or organism.

Now, sequencing technology is reaching a point where it might soon be feas-
ible to affordably generate high-quality genome references and transcriptome
annotations of a much wider range of organisms than previously possible—
including unicellular eukaryotes. However, while genomeswill soon be relatively
reliably assembled into chromosome-scale scaffolds, technological limitations
cause transcriptome annotation approaches to lack behind in their ability to
identify genes and their isoforms expressed from these chromosomes.

Genome assembly is now entering a golden age where high-quality
‘centromere-to-telomere’genomesequences canbeassembled throughamixof sev-
eral technologies, including short-read sequencing, linked short-read sequencing
(e.g. Hi-C), long-read sequencing and optical mapping [2–4]. These powerful and
relatively affordable approaches are going to be of outsize benefit for non-model
organisms fromunicellular eukaryotes to polar bears that in thepast did not receive
the attention and large sums of money required to generate a high-quality genome
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Table 1. Sequencing technology characteristics. (Read number per dollar is hard to establish considering different pricing structures and instrument costs. Here,
we assume a laboratory would use sequencing cores for Illumina and PacBio sequencing while performing ONT MinION sequencing themselves.)

technology read number/$1 k read accuracy (%) consensus accuracy

Illumina NextSeq ∼2 × 108 99.9 N/A

Pacific Biosciences (PacBio) sequel ∼4 × 105 89 >99%

Oxford Nanopore Technologies (ONT) MinION ∼5 × 106 88 >97.5%a

aConsensus accuracy using our R2C2 approach as published [9,10].
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reference thehardway—chromosomemaps, Sanger sequencing
of bacterial artificial chromosome libraries, etc.

Most of these advances in genome assembly are not trans-
ferable to transcriptome annotation. Currently, short- and
long-read sequencing protocols are used for transcriptome
annotation but have underlying limitations that make reach-
ing a ‘reference-level’ transcriptome annotation both highly
labour intensive and often simply impossible.

Here, we discuss the potential and limitations of long-read
based full-length transcriptome sequencing for transcriptome
annotation and lay out a path towards realizing this potential.
0097
2. What are the limitations of short-read
sequencing technology?

The analysis of what RNA transcripts (annotation) is present
in a sample and at what level (quantification) has relied on a
mix of technologies over the last three decades. Early efforts
to annotate and quantify complex eukaryotic transcriptomes
were highly labour intensive. During the early 1990s, efforts
to evaluate RNA sequences on a large scale relied heavily on
expressed sequence tags (ESTs), whereby complementary
DNA (cDNA) molecules were individually cloned, screened
and Sanger-sequenced to determine full-length mRNA
sequences and observe semi-quantitative changes in gene
expression [5]. The Sanger-sequencing based serial analysis of
gene expression (SAGE) method improved quantification and
reduced cost by concatenating smaller 15–20 bp fragments of
many cDNA molecules together for sequencing [6]. However,
because of the short length of analysed fragments SAGE was
inherently less useful for annotation. Hybridization-based
microarray approaches completely eschewed annotation but
simplified the quantification of already annotated genes [7].

The introduction of massively parallel sequencing in the
mid-to-late 2000s completely changed transcriptome annotation
and quantification. When massively parallel sequencing—best
represented by the now dominant Illumina technology—
became available to research laboratories it could generate
millions of sequencing reads at a length of approximately
30 nucleotides (nt). Although initially intended for the sequen-
cing of genomic DNA, researchers quickly found ways to
leverage the power of these sequencers for transcriptome
analysis in the form of the RNA-seq assay. RNA-seq sequences
short cDNA fragments at extremely high throughput and
quickly displaced microarray-based transcriptome analysis
for a number of reasons including cost considerations as well
as the ability to detect previously unknown transcripts and
quantify the use of individual splice sites. In the last decade,
Illumina sequencers have steadily and massively improved,
although these improvements have come with compromises
in experimental design. Most prominently newer Illumina
sequencers require additional precautions to avoid sample
cross-contamination during the sequencing reaction [8].

Current Illumina sequencers like the NovaSeq can gener-
ate billions of sequencing reads at a length of 150 nt allowing
the multiplexed analysis of hundreds to thousands of
samples in a single run (table 1). At this read length and
output, RNA-seq reads are not only useful for transcriptome
quantification but also for annotation. Consequently, efforts
like GENCODE and RefSeq heavily rely on this data type
for their respective annotation approaches [11,12]. Paired
with literally hundreds of sample preparation techniques
and analysis pipelines, transcriptome analysis by short-read
RNA-seq [13] is now a core component of research in
nearly all fields of biology.

So, while it is clear that RNA-seq has revolutionized tran-
scriptome annotation and quantification, it is also becoming
increasingly clear that it is ultimately a stop-gap solution of
limited power born out the limitations of short-read sequen-
cing. These limitations prevent RNA-seq from annotating and
quantifying transcriptomes on the level of RNA transcript
isoforms, i.e. transcript variants expressed by the same gene
using combinations of alternative splice sites, transcription
start sites (TSSs) and transcription termination or polyA
sites. Thus, to fully understand the fundamentals of gene
expression, isoform information will be required.
(a) Limitations in transcriptome assembly algorithms
Despite its dominant position in transcriptome analysis,
short-read RNA-seq has so far failed at capturing the true
complexity of eukaryotic transcriptomes. While RNA-seq can
interrogate individual transcript features like splice sites,
TSSs and polyA sites, it fails at determining how these
individual features are combined into transcript isoforms.
This is owing to the fact that the read length of short-read
sequencers is too short to capture entire transcripts from end-
to-end (figure 1). Incomplete fragments of transcripts, there-
fore, have to be computationally assembled into full-length
isoforms. This is done using powerful algorithms performing
de novo (e.g. TRINITY, RNASPADES [14,15]) or genome-guided
transcriptome assemblies (e.g. CUFFLINKS, STRINGTIE [16,17]).
All of these assemblers ultimately fail at discerning complex
transcript isoforms expressed by the same gene because of
limitations of the underlying data. First, RNA-seq reads often
do not cover the ends of transcripts leaving TSS and polyA
sites unresolved [18]. Second, alternative transcript features
are too far apart to be resolved by RNA-seq raw data, i.e. if a
transcript has two alternative splice sites 1000 bp apart, no
individual RNA-seq read will ever connect those two events.
Computational methods that take this into account have been
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Figure 1. Fundamental difference between short- and long-read sequencing of transcripts. Short RNA-seq reads only capture small fragments of transcripts. RNA-
seq data, therefore, lacks unambiguous isoform data leading to the inference of many erroneous isoforms. Long-read full-length cDNA data captures transcripts
end-to-end making isoform inference unambiguous.
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developed, however, they still fail at deconvoluting complex
isoform mixtures [19].

(b) Limitations in short-read sequencing technology
To date, no RNA-seq protocol has succeeded in providing
data capable of overcoming this assembly challenge and reco-
vering full-length isoforms in a high-throughput manner.
Although short-read sequencing technology has increased its
sequencing length capability to approximately 300 nt from
the original approximately 30 nt, it still cannot sequence the
vast majority of transcripts from end-to-end. To get around
the read length limitation, creative specialized protocols have
been developed. The most successful methods include
synthetic long read (SLR) and spISO-seq, which operate on
the principle of splitting one sample into hundreds or thou-
sands of separate reactions using either 384-well plates or
microdroplets [20,21]. This separation allows the generation
of individual sequencing libraries that ideally only contain
one transcript isoform for any specific gene. These libraries
can then be sequenced and analysed separately which
massively simplifies computational assembly and reducesmis-
assemblies. However, while improving on general RNA-seq
methods, neither method succeeds at efficiently generating
transcript isoforms. SLR generates a low number of transcripts
most of which are incomplete at the 30 end, while spISO-seq
generates sparse ‘read-clouds’ that can connect individual
splice sites but fail at consistently capturing 50 and 30 ends of
transcripts. Additionally, both SLR and spISO-seq approaches
have complex library preparation workflows that cannot be
multiplexed and require specialized instrumentation which
has prevented them from being widely adopted.

While it is not inconceivable that a future short-read
based protocol will ultimately succeed at isoform-level
analysis, this task currently appears to be well beyond the
capabilities of short-read sequencing.
3. How can the potential of long-read
transcriptome sequencing be realized?

We believe that long-read sequencing is on the verge of
disrupting transcriptome analysis similarly to how short-read
sequencing did a decade ago. In contrast with short-read
sequencing, long-read sequencing technology as provided by
Pacific Biosciences (PacBio) andOxfordNanopore Technologies
(ONT) has the potential to identify and quantify isoforms
simply by sequencing cDNA or mRNA molecules end-to-end
from 30 polyA tail to 50 cap.
Just like short-read sequencing, long-read technology was
initially intended for genomic DNA sequencing, but it was
only a matter of time until cDNA copies of RNA transcript
molecules were sequenced on PacBio and ONT sequencers.

Initial studies used long reads for the targeted analysis of
specific highly complex transcripts [22] or to add small
amounts of long-read data to short-read RNA-seq data
[23,24]. Increasing read throughput has allowed the analysis
of whole transcriptomes of diverse organisms with long-read
data alone [9,25–27] and in addition to the analysis of cDNA,
ONT sequencers now offer the ability to sequence RNA
directly [28,29]. Finally, long-read technology has been used
to analyse the transcriptomes of single cells [30–32].

These papers clearly highlight the potential of long-read
sequencing to identify new isoforms and isoform features
like new splice sites, TSSs and polyA sites, which is essential
to unambiguously annotate and quantify transcriptomes.
These papers also lay out a path for the future: in the short-
term, long-read technologywill be a boon for the transcriptome
annotation of non-model organisms. With a moderate invest-
ment generating long-read transcriptome data for a variety
of tissues and organs present in a non-model organism, tran-
scriptome annotations will get close to the comprehensiveness
and quality of highly curated mouse and human transcrip-
tomes. In the long-term, we believe long-read technology
has the potential to entirely replace short-read RNA-seq for
transcriptome analysis.

However, to realize this potential, long-read transcrip-
tome analysis still has to overcome several challenges that
are currently limiting its progress.
4. What are the challenges of long-read
sequencing?

Although the above examples have highlighted the potential
for long-read technology, there still remains significant chal-
lenges which affect both PacBio and ONT to varying degrees:
(a) RNA integrity, (b) length bias, (c) read throughput,
(d) read accuracy, and (e) data analysis.

In order for long-read sequencing to be a main driver in
pushing the transcriptome field forward these challenges
will have to be overcome.

(a) RNA integrity
All current long-read transcriptome sequencing approaches
suffer from experimental artefacts caused by degraded
RNA molecules.
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Figure 2. Long-read transcriptome sequencing approaches do not cover long transcripts. Swarmplots of length distributions of 1000 randomly sampled PacBio [9],
ONT dRNA and cDNA [28] reads covering the GM12878 (human lymphoblast cell line) transcriptome. These distributions are not representative of the length dis-
tribution of the human transcriptome as annotated by GENCODE. *While we show the most recent dataset on GM12878 we could find for PacBio technology it is
several years old and might not be fully representative of current platform performance.
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While ONT and PacBio sequencers make it possible to
sequence entire transcripts end-to-end, this only matters if
the vast majority of sequenced transcript molecules are fully
intact. The integrity of RNA going into long-read sequencing
experiments is therefore of the highest importance. However,
it is not yet clear what represents the best extraction and
processing method for RNA.

Single-cell studies circumvent this issue by performing
reverse transcription (RT) directly on cell lysates resulting in
high-quality results [30,32], but this is not possible for bulk
samples comprising tissues or many cells because highly con-
centrated cell lysates inhibit RT reactions. Current efforts to
dissociate, lyse and extract RNA from bulk samples mostly
rely on physical disruption and trizol or tri-reagent based pro-
tocols. These protocols are either followed by precipitations
often resulting in phenol and guanidium contamination
which can compromise RNA integrity, or require a column-
based clean-up potentially fragmenting long RNA transcripts
in a way similar to high molecular weight genomic DNA.

Going forward we will need systematic studies comparing
extraction methods for the integrity for very long transcripts
(greater than10 kb)whichcannotbemeasuredby the frequently
used RNA Integrity Number value which is calculated by
evaluating the integrity of the much shorter rRNA transcripts
at approximately 2 kb (18S) and approximately 5 kb (28S).

We believe these efforts are likely to succeed. Moving
from short-read to long-read sequencing has already led to
the genomics community rethinking the way it extracts
DNA—from mostly column-based to precipitation-based
approaches—leading to the successful sequencing of DNA
molecules almost 1 million base-pairs in length [2].

(b) Length bias
All current long-read transcriptome sequencing approaches
are biased towards short transcripts. As a result, the lengths
of reads produced and therefore transcripts sequenced by
these various approaches do not reflect the transcript lengths
as determined by annotation efforts like GENCODE. While
the expression of short and long transcripts surely varies
for each sample and each sample will only include a fraction
of all transcripts in the GENCODE annotation, the fact
remains that current long-read approaches appear to have a
hard time capturing long transcripts.

This bias is rooted in the way samples are prepared for
sequencing as well as the sequencing technology itself. To pre-
pare full-length eukaryotic mRNA molecules for sequencing,
protocols for PacBio and ONT sequencers today rely on some
version of RT using oligo-dT priming most often paired with
template switching as featured in the Smart-seq2 protocol [18].
This RT step generates cDNA with known 30 and 50 ends that
can be polymerase chain reaction (PCR) amplified. PCR amplifi-
cation is required to generate enough cDNA for sequencing
library preparation—several micrograms for either technology.
However, if cDNA is PCR amplified, short transcripts are more
likely to be successfully amplified, thereby generating a pool of
cDNA skewed towards full-length short transcripts (less than
2 kb) and shorter amplification artefacts of long transcripts.

While ONT sequencers can now sequence RNA directly,
recent studies have shown that this does not overcome RNA
degradation or length-bias issues. In fact, incomplete transcript
sequences represent the majority of the produced data and this
issue increases with increased transcript length making direct
RNA sequencing currently challenging for transcripts over
2 kb in length (figure 2) [28].

In addition to length biases of sample preparation, both
PacBio and ONT sequencers themselves have a bias towards
shorter molecules.

To systematically test the bias of different RNA extraction,
sample preparation and sequencing methods, new approaches
will be needed. Unfortunately, current synthetic RNA spike-in
mixtures like External RNA Controls Consortium and spike-
in RNA variant control mixes (Lexogen), only contain mol-
ecules less than 2.5 kb which is simply not long enough to
determine bias against long transcript molecules (figure 2).
To truly determine length bias, it would require sequencing
of a well-defined eukaryotic human transcriptome, e.g.
human cell line GM12878, using an RNA molecule length
independent short-read RNA-seq method. While short-read
RNA-seq would not be able to systematically resolve isoforms,
assemblies of these reads can be used to estimate transcript
lengths. Comparing representation of transcripts of different
lengths in long-read datasets prepared with different protocols
will then help reveal biases of these protocols.

The question then still remains: how do we overcome the
inherent limitations of PCR amplification, sequencing library
preparation, and the cDNAand direct RNA sequencing process
itself. One thing that is certain is that future efforts will have to
overcome these limitations or, ironically, the world of long
transcripts will remain closed to long-read transcriptomics.

It will be up to the wider genomics community as well as
PacBio and ONT to address these limitations. While adding
complexity to sample preparations and distorting sample com-
positions, size selections on the RNA or cDNA level might
mitigate length bias in sample preparation. Also, reducing
cDNA amounts required for sequencing reactionsmight elimin-
ate the need for PCR entirely. Additionally, PacBio sequencers
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Figure 3. Error-prone reads pose analysis challenge. Representative alignments of ONT cDNA [28] reads. Thirty read alignments (grey) to the first two exons of the
CD19 gene (dark blue) are shown. Read alignments contain many insertions (orange), mismatches (red) and deletions (thin line) within exons. These errors com-
plicate the detection of exact transcript sequences and exact positions of splice sites, TSSs and polyA sites.
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have already made big strides reducing the length bias of their
library preparation and sequencing reactions in the last few
years and it would be surprising if this was not a big focus of
ONT as well. Finally, one way to get around the length-bias of
sequencing library preparation and sequencing reactions them-
selves is to dissociate transcript length from the length of the
DNA/RNA being sequenced, i.e. making all DNA/RNA going
into a sequencing reaction approximately the same length.
This could be done by randomly ligating transcripts into large
chimeric molecules or generating large DNA concatemers
containing many copies of the same transcript [31].

(c) Read throughput
All sequencing-based transcriptome analysis is ultimately
limited by the number of reads available for analysis.

More reads result in better data but so far there has not
been a rigorous study to identify the exact numbers of long
sequencing reads required to exhaustively analyse a complex
eukaryotic transcriptome. Because sequencing-based transcrip-
tome analysis follows the same sampling principle regardless
of read length, it stands to reason that these numbers will
be similar to those required for short-read RNA-seq assays.
Therefore, greater than 30 million reads will be required for a
shallow analysis of a transcriptome of a bulk sample capturing
the isoforms of genes with medium and high expression [33].
This, however, represents an ideal scenario assuming a single
isoform per gene. If we think about treating individual iso-
forms as individual genes, it follows that significantly deeper
sequencing will be needed to identify and quantify them.
Indeed, it has been suggested by a deep-sequencing survey of
alternative-splicing in human tissue that there are, on average,
seven alternative splicing events per multi-exon gene [10].
Therefore, to truly explore the complexity of mammalian
transcriptomes, greater than 100 000 000 of reads covering
full-length transcripts will be required per tissue or organ.

In contrast with bulk samples, estimating the read depth
required for single cell analysis ismorestraightforwardas it is lim-
ited by experimental constraints. Most workflows in the rapidly
expanding field of single cell transcriptome analysis attach
unique molecular identifiers to each cDNA molecule generated
for each individual cell, thereby giving us a direct way to deter-
mine the number of reads needed to capture all or most of
thesemolecules [34]. 10XGenomics single cell analysis approach,
for example, generates less than 20 000 cDNAmolecules per cell
[35]. To reliably capture greater than 90% of these molecules,
sampling statistics dictate the need for approximately 45 000
sequencing reads per cell and consequently 45 000 000
sequencing reads for the analysis of a 1000 cell cDNA pool.

In short, future long-read transcriptome analysis of bulk
and single cell samples will require tens to hundreds of millions
of reads at a reasonable cost. While ONT sequencers now
routinely generate severalmillions of reads per $1000 of sequen-
cing, PacBio sequencers produce approximately 400 000 reads
per $1000 of sequencing (table 1). This means that achieving
the sequencing depth required for exhaustive transcriptome
analysis is now borderline feasible with ONT sequencers but
would deplete all but the largest of research budgets if using
PacBio sequencers.

It is going to be highly interesting to see how the newly
released ONT PromethION and PacBio Sequel II will change
this equation once in researchers’ hands as they both represent
significant improvements in read throughput over the ONT
MinION and PacBio Sequel, respectively.

(d) Read accuracy
As long as a PacBio or ONT read captures the sequence of a
full-length transcript and is accurate enough to be correctly
aligned to a single genomic location, it is useful for analysis.
There is no line in the metaphorical read-accuracy sand
beyond which this transcript sequence becomes useless for
analysis, because different downstream applications will
require different levels of accuracy to be implemented. It is,
however, no surprise that more accurate reads are always
preferable over less accurate reads.

Both PacBio and ONT long-read technologies sequence
individual DNA (or RNA) molecules and as such are inher-
ently more error-prone than short-read Illumina sequencing
which can rely on the combined signal of thousands of
copies of DNA molecules to determine the base sequence.
Because the raw read length of PacBio sequencers is much
longer than an average transcript molecule, circularized
cDNA molecules can be read multiple times to generate a
more accurate consensus. As a result, PacBio’s IsoSeq protocol
generates cDNA circular consensus sequences (CCS) that can
achieve greater than 99% (Q20) accuracy (table 1) [9,30].

While ONT raw read length far exceeds transcript length,
there currently exists no commercial product to—like PacBio’s
CCS approach—take advantage of this read length to improve
read accuracy through consensus generation. Because of this,
cDNA or direct RNA sequencing on ONT (1D) generates
sequences of 88% (Q9) accuracy (figure 3).

This low accuracy creates some serious drawbacks
regarding downstream analysis including the inability to
accurately demultiplex single cell data. This is problematic
because working with single cells will be required for the
analysis of unicellular organisms that are not culturable in a
laboratory environment.

Single cell approaches like 10XGenomics Chromiumwork-
flow or the Drop-seq protocol can process many hundreds to
thousands of cells in parallel using water-in-oil emulsions
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to produce highly multiplexed single cell cDNA pools [35,36].
In this process, cell-specific identifiers—short nucleotide
sequences—are attached to each cDNAmolecule that is reverse
transcribed from mRNA. Consequently, assigning a cDNA
molecule to the cell it originated from, i.e. demultiplexing,
requires accurately determining the sequence of its cell-specific
identifier. Without sufficiently accurate sequencing, molecules
will therefore be mis-assigned or lost [30].

ONT are working to improve their basecalling accuracy
and have announced a commercial consensus approach to be
released in 2019 that should address this issue. Until then,
the ONT research community including our own laboratory
has recognized this issue and developed consensus sequencing
approaches [37]. Specifically targeted for cDNA, the R2C2
approach we developed circularizes cDNA and uses rolling
circle amplification to generate long concatemeric molecules
that can be sequenced and processed into consensus sequences
[31]. At $1000 sequencing cost the R2C2 approach can currently
produce several million sequencing reads at greater than 97.5%
(∼Q16) median accuracy [38].

It is unclearwhetherONT consensus approacheswill be able
to reach the accuracy of PacBio circular consensus reads because,
while errors in PacBio sequencing data are not entirely random,
they are less systematic than ONT errors [39]. Systematic errors
which recur in the same base context, e.g. around homopoly-
mers (stretches of the same base longer than 5 nt) can pose
insurmountable challenges for consensus-based error-correc-
tion. Error-correcting algorithms like Nanopolish [40], Racon
[41] or Medaka [42] are beginning to address this by either
making use of the ionic current based raw signal generated by
ONT sequencers or by incorporatingONT-specific errormodels.

While it remains to be determinedwhat accuracywill be suf-
ficient for reliably identifying regular transcript isoforms,
increasing the accuracy of individual reads to beyond 99% will
not only be required for single cell cDNA demultiplexing but
also the analysis of individual transcripts that contain unique
sequences not encoded in the genome, i.e. B and T cell receptor
transcripts, aswell as transcripts that contain basemodifications.

(e) Data analysis
The goal of long-read transcriptome analysis is twofold. First, it
aims to identify all transcript isoforms present in a sample, then
quantify their expression (ideally in an allele-specific manner).

In contrast with short-read RNA-seq where bioinfor-
maticians have spent the last decade creating a large number
of tools for data analysis steps including read alignment,
expression quantification and transcriptome assembly, the
tools for long-read analysis are still in their infancy. Although
long-read technology circumvents many of the bioinformatic
assembly challenges of short-read data, error-prone long-read
data has created its own new set of challenges. These
challenges have necessitated new algorithms for the efficient
analysis of longer reads.

Nevertheless, interest among bioinformaticians towards
long-read technology is steadily increasing and off-the-shelf
tools to analyse long reads are being developed and published.
Below is an overview of what the current state of tools is and
what we perceive the outstanding challenges in the long-read
cDNA field are.

(i) Aligning long-read data
Aligning reads to genome sequences is at the core of most tran-
scriptome analysis (figure 4). Luckily there are several good
options available for the spliced alignment of noisy long reads.
The GMAP [43] and BLAT [44] aligners, originally developed
for the alignment of ESTs perform surprisingly well for aligning
noisy long reads.However, just like thePacBiodevelopedBLASR
[45] aligner, they are simply too slow for the effective analysis of
millions of reads. The recently released minimap2 [46] aligner
seems to address the issue of speed while maintaining align-
ment accuracy and has quickly been adopted among the ONT
community. The only trade-off we have observed (however not
systematically investigated) is that minimap2—potentially
owing to the relatively large default seed size of 15 nt—seems
to lack sensitivity when aligning reads to very short terminal
exons. We hope that future improvements in long-read accuracy
will allowalignment algorithms to ‘dial in’ that trade-off between
avoiding spurious short alignments and detecting even the
shortest of potentially un-annotated terminal exons.

(ii) Isoform identification
Transcriptome annotation includes the identification of new
gene features as well as how these new features are combined
with known features into isoforms (figure 4). This is where
long-read transcriptome sequencing holds the largest
promise. However, the tools available for the identification
isoforms from long read data are still in their infancy.

While PacBio supplies the IsoSeq3 analysis pipeline for the
analysis of their cDNA CCS reads, previous work indicates
that this pipeline tends to over-report potential isoforms [47].
There currently exist three pipelines for the analysis of ONT
cDNA or direct RNA sequencing data. Both Pinfish released
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by ONT and FLAIR released by the Brooks laboratory at Uni-
versity of California Santa Cruz (UCSC) are intended for
regular 1DONTdata anddealwith thehigh error-rate indiffer-
entways.Of these twopipelines, onlyFLAIRhas beenused in a
publicly available manuscript and deals with inaccurate ONT
reads by using short-read Illumina reads to correct splice junc-
tions and identifies and quantifies isoform data; however, it
does not use nanopore reads for de novo splice site detection
and relies on annotation and short-read data [28].

Specifically designed for the analysis of R2C2 reads, the
Mandalorion pipeline developed by our laboratory at UCSC
takes advantage of the higher accuracy of R2C2 reads to ident-
ify and quantify isoforms without the need for Illumina data,
while also identifying new gene features and isoforms [31].

One thing to consider when identifying isoforms is how
to deal with raw data containing molecular biology artefacts.
First and foremost, this includes the amplification of either
fragmented RNA or genomic DNA. While, ideally, these arte-
facts should be minimized during sample preparation, any
pipeline should be equipped to recognize potentially incor-
rect isoforms stemming from them. Tools like Sqanti which
can detect these types of artefacts can serve as quality control
for future isoform identification pipelines [48].

(iii) Isoform quantification
Quantifying and performing differential expression analysis
of transcript levels on the isoform instead of the gene level
brings with it a large set of new challenges.

First, it will be a challenge to decide at which point a
known and a newly identified isoform should be treated as
the same or equivalent isoforms. Containing different splice
sites surely differentiates isoforms, but whether different
TSSs that are three nucleotides apart and reside within the 50

untranslated region differentiate isoforms is not at all clear.
FLAIR and Mandalorion deal with this by analysing all

samples that have to be compared at the same time to create
a shared list of isoforms. This creates large computational over-
heads because adding a single sample to a dataset requires the
reanalysis of the entire dataset.

Second, it will be a challenge to systematically differentiate
allele-specific isoform expression (figure 4). To differentiate
alleles, we will need accurate and phased information of
sequence variants differentiating the haplotypes present in a
sample, because extracting this information from error-prone
long-read transcriptome data is inherently suboptimal. How-
ever, if sequence variants are known, tools like HapCUT2 can
be used to assign full-length cDNA to parental alleles [49].
This in principle allows for allele-specific expression analysis.

We are, however, optimistic that approaches that sort
aligned reads based on the variants they contain are only
a temporary solution. In the future, it is likely that alignment
algorithms will be able to take advantage of fully diploid
genome sequences during alignment to immediately align
reads to the haplotype they originate from. Then, ideally,
future tools will identify allele-specific isoforms based on
these alignments and quantify them using approaches similar
to RNA-seq by expectation maximization (RSEM), which uses
expectation maximization to accurately quantify expression
using short-read data [50].

(iv) Modification detection
RNA transcripts are known to be host to a much larger variety
of base modifications than genomic DNA. Except for A-to-I
modificationswhich are read by the RTenzyme asG and there-
fore appear in cDNA, RNAmodification cannot be detected by
standard cDNA sequencing as performed by Illumina, PacBio
and ONT [51].

Direct RNA sequencing, which is now possible on ONT
sequencers, therefore holds great potential for modification dis-
covery (figure 4). To realize this potential both computational
and experimental workflows will need to be developed and
improved. Although anecdotal evidence exists that modifi-
cation information can be extracted from ONT base and raw
data, no experimental and computational workflows exist yet
to systematically establish and validate the detection of the
large variety of modifications present in RNA [28]. Further-
more, improvements to experimental workflows will have to
reduce the RNA input requirements which currently limit
direct RNA sequencing to large samples or cell lines.

The detection of DNAmodifications using raw PacBio data
may serve as a cautionary tale here [52]. While the detection of
methylated bases was shown to be possible using raw PacBio
data, this approach never managed to compete with Illu-
mina-based bisulfite sequencing for methylation detection.
However, direct RNA sequencing has the potential to detect
RNA modifications for which currently no other sequencing
assay exist and might therefore fill a unique niche in the
genomic toolset.
5. Conclusion
There is little doubt in our minds that full-length transcrip-
tome sequencing using long-read technologies is the future
of transcriptome annotation because it has too many inherent
advantages over short-read approaches.

A single accurate long read covering a full-length transcript
can—base-accurately—determine its TSS, all splice sites and
polyA site, thereby immediately identifying the isoform
the transcript represents. By contrast, regular short-read
RNA-seq protocols rarely detect TSSs and polyA sites and
usually only covers a subset of splice-sites with each individual
read, leaving the researcher with a large computational pro-
blem when trying to identify isoforms which often has no
unambiguous solution.

We are confident that in the next few years, by addressing
the challenges we describe here, long-read sequencing will
make high-quality transcriptome annotations readily achiev-
able within a reasonable budget. This will be of particular
interest to researchers working on organisms that have not
attracted the attention of large consortia. Unicellular eukar-
yotes, in particular, could benefit hugely from this approach.
Going forward, using 10X Genomics or Drop-seq approaches
paired with long-read sequencing technology would allow for
the amplification and sequencing of full-length cDNA from
single-cell organisms to generate detailed isoform-level tran-
scriptome annotations. Processing tens of thousands of cells
this way could help generate an atlas of unicellular eukaryotes
and would vastly expand our knowledge of the diversity of
eukaryotic life.
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