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Abstract

Truncated models are imperative to efficiently analyze the finite data that we observe in

almost all the real life situations. In this paper, a new truncated distribution having four

parameters named Weibull-Truncated Exponential Distribution (W-TEXPD) is developed.

The proposed model can be used as an alternative to the Exponential, standard Weibull and

shifted Gamma-Weibull and three parameter Weibull distributions. The statistical character-

istics including cumulative distribution function, hazard function, cumulative hazard function,

central moments, skewness, kurtosis, percentile and entropy of the proposed model are

derived. The maximum likelihood estimation method is employed to evaluate the unknown

parameters of the W-TEXPD. A simulation study is also carried out to assess the perfor-

mance of the model parameters. The proposed probability distribution is fitted on five data

sets from different fields to demonstrate its vast application. A comparison of the proposed

model with some extant models is given to justify the performance of the W-TEXPD.

1 Introduction

Truncated probability models are efficiently used when stochastic variable is confined in some

domains. They are required in almost every field like astronomy, epidemiology, biometry,

engineering and economy. For instance, the government is interested to know the population

of families who are living in New York city having monthly income more than 50,000 US dol-

lars. Another example is recruitment of police officials who meet the minimum prerequisite

academic qualification. In engineering, the measurements are taken by using a detector which

detects the signals above a specific limit and the weak signals are not taken into account. In all

the above situations we need truncated probability distributions to model them.

Weibull and Exponential distributions are immensely utilized in reliability and lifetime

analysis due to their simplicity and easy mathematical manipulations. The Weibull distribu-

tion is generated by the Swedish physicist [1]. It is commonly used for modeling reliability,

electrical engineering [2], mechanical engineering [3], life time and environmental sciences

data due to wide-variety of shapes. A considerable literature discussing the methods of estima-

tion of Weibull parameters is given by [4, 5]. [6] stating that Weibull distribution becomes
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reversed J-shaped, exponential and bell shaped for the shape parameter <, = and> 0 respec-

tively. A comprehensive account on truncated Weibull distribution is given by [7, 8]. [9] fits

the truncated Weibull distribution in different areas like to analyse the diameter of trees by

truncating data at a specific threshold level and to infer the height of small trees. [10] studies

the method of moments to compute the moment expression for two parameters, three-param-

eters and truncated (left, right and doubly) Weibull distributions. Exponential distribution is

also famous for modeling the data due to availability of good estimators, and its nice mathe-

matical properties (e.g. being memory less). [11] defines the maximum likelihood estimator of

scale parameter for Exponential distribution.

[12] computes the parameter estimates of truncated Gamma probability density function

(pdf). [13] distinguishes the worth of truncated probability density function in hydrology by

computing the truncated moment expressions (TMEs) as well as complete moments of differ-

ent densities and notify that complete moments are regarded as a special case of truncated

moment expressions. [14] utilizes both skew-Cauchy (SK-CD) and truncated skew-Cauchy

(TSK-CD) probability functions for modeling the exchange rate between the U.K pound ster-

ling and the U.S dollar from 1800 to 2003 and verdicts that TSK-CD is a better probability

function to model the data set contrary to SK-CD. [15] studies the truncated version of the

Birnbaum-Saunders (BS) distribution to enhance a forecasting of actuarial model, specifically

for modeling data regarding insurance payments that establish a deduction.

In the field of hydrology, [16] uses the generalized exponential (GE) distribution to study

the flood frequency for Polish Rivers. [17] employs Weibull density function to study accrual

failure detector and calls it “Weibull Distribution Failure Detector for Cloud Computing”. [18]

introduces a new generalized form of Weibull probability model i.e. “Alpha logarithmic trans-

formed Weibull distribution” (ALTW) to model the failure time of turbocharger of engine.

In engineering, [19] fitted the micro-level spatial joint and macro-level model with condi-

tional autoregressive (CAR) to analyze the zonal crash using three years urban highway data in

the USA. They conclude that micro-level model better fits the data. [20] proposes a new Bayes-

ian Spatio-temporal model to study the association between frequency of free way incidence

and other risk factors. [21] considers the mixed logit model to identify the main factors of sin-

gle and multiple vehicle accidents. Similarly, in another study [22] applies the mixed logit

model to analyze the significant factors of single vehicle (SV) and multiple vehicle (MV) acci-

dents by using the 10 years truck drivers data at rural highway of the USA. [23] develops Wei-

bull-Lindely distribution by compounding of two distributions and highlights its worth by

fitting it on three medica data sets. [24] introduces U-statistics for Weibull distribution param-

eters and compares it with nine parameter estimation techniques.

Some distinct characteristics motivated us to demonstrate the W-TEXPD like: (i) it is dis-

tinctive by the induction of a new scale parameter obtained from the new truncated trans-

formed distribution along with the usual induction of location parameter; (ii) the W-TEXPD

shows monotonic, non-monotonic and bathtub shaped hazard rates which make the

W-TEXPD a better model than those lifetime models that only demonstrate constant or

monotonically increasing/decreasing hazard rates; (iii) it can be viewed that various known

lifetime classical models are the special cases of W-TEXPD; (iv) it can be observed that

W-TEXPD is appropriate for fitting the scattered, skewed (spread) and/or heavy tailed (flat

curved) data which may not be appropriately fitted by other typical probability density func-

tions; and (v) the results achieved by Monte Carlo simulation study for different sample

sizes reveals the stability of the model parameters. Finally, we intend to find that how well

W-TEXPD performs as compared to several renowned classical lifetime models by using five

data sets having skewed and heavy tailed data.
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The manuscript is sorted as: In Section 2, W-TEXPD is described and its characteristics

such as hazard function, cumulative hazard function, raw and central moments, skewness,

kurtosis, Shannon’s entropy and order statistics are derived. In Section 3, Maximum likelihood

estimates of the model parameters are obtained. In Section 4, Monte Carlo simulation study is

performed to examine the performance of W-TEXPD for different choices of the model

parameters. In Section 5, the feasibility of the proposed model is studied by fitting it to the real

data sets and comparing with some baseline models. Some concluding remarks are recorded

in Section 6.

2 Weibull-Truncated Exponential distribution (W-TEXPD)

[25] suggests a new method for generating a family of truncated distributions called T-XT fam-

ily of distributions by using a new function given as

WðFðxTÞÞ ¼ � logf1 � Fðxjx > tÞg: ð1Þ

Let X be a non-negative random variable truncated on left having probability density func-

tion (pdf) f(xT) and distribution function (cdf) F(xT) on domain [τ,1). Also let T be a random

variable with pdf r(t) and cdf R(t) on interval [−1� a� t� b�1).

Then the cdf of T-XT family of distributions is

GðxTÞ ¼

Z� log f1� Fðxjx>tÞg

t

rðtÞdt; ð2Þ

GðxTÞ ¼ R½� logf1 � FðxTÞg�; ð3Þ

where R(t) is the cdf of random variable T, while the corresponding pdf of T-XT family of dis-

tributions is

gðxTÞ ¼ r½� logf1 � F xjx > tÞgð �
f ðxjx > tÞ

1 � Fðxjx > tÞ
; x > t: ð4Þ

gðxTÞ ¼ r½� logf1 � F xTð Þg�
f ðxTÞ

1 � FðxTÞ

� �

; ð5Þ

gðxTÞ ¼ r½HðxTÞ�h½xT�: ð6Þ

The idea presented in Eq (2) is extended by the method of generating a new family of distri-

butions called T-X family of distributions proposed by [26] which is the extension of Beta Gen-

erated distributions originally introduced by [27].

Suppose X be an exponential random variable having density function

f ðxÞ ¼ ye� yx; ð7Þ

with corresponding cdf

FðxÞ ¼ 1 � ye� yx: ð8Þ

The T-Truncated Exponential distribution defined by [25] is expressed as:

gðxÞ ¼ yrfyðx � aÞg: ð9Þ
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Let T be the Weibull random variable having pdf

rðtÞ ¼
b

ab
tb� 1e� ðt=a Þ

b

; 0 < t <1: ð10Þ

The Weibull-Truncated exponential distribution (W-TEXPD) is defined by using Eq (9) as

gðxÞ ¼
y

a

� �b

bðx � tÞb� 1e�
yðx� tÞ
af g

b

t < x <1: ð11Þ

Where

τ ————> Location parameter.

θ, α———–> Scale parameter.

β————> Shape parameter.

Some special cases of W-TEXPD

• W-TEXPD reduces to Exponential distribution for τ = 0 and θ, β = 1.

• W-TEXPD reduces to Weibull for τ = 0, θ = 1.

• W-TEXPD reduces to Shifted Gamma-Weibull [28] and three parameter Weibull [29] distri-

bution for θ = 1.

Fig 1 displays different shapes of W-TEXPD for different values of the parameters.

Some characteristics of W-TEXPD are:

Lemma 2.0.1. The hazard function of W-TEXPD is

hðtÞ ¼
f ðtÞ

1 � FðtÞ
¼

f ðtÞ
RðtÞ

:

hðtÞ ¼ b
y

a

� �b

ðt � tÞb� 1
:

ð12Þ

Fig 2 highlights that the W-TEXPD can model both monotonically and non-monotonically

hazard rate shapes with different values of the parameters.

Lemma 2.0.2. The cumulative hazard function of W-TEXPD is computed as

HðtÞ ¼
Zx

0

hðtÞdt:

HðtÞ ¼
y

a

� �b

ðx � tÞb; b > 0:

ð13Þ

Lemma 2.0.3. The pth percentile of W-TEXPD is given by

GðxÞ ¼ P:

1 � e�
yðx� tÞ
af g

b

¼ P;

x ¼ tþ
a

y
log ð1 � PÞ:

ð14Þ

PLOS ONE Weibull-truncated exponential distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0249001 April 6, 2021 4 / 24

https://doi.org/10.1371/journal.pone.0249001


Fig 1. PDF of W-TEXPD for different values of α, β and θ.

https://doi.org/10.1371/journal.pone.0249001.g001
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Lemma 2.0.4. The first four raw moments of W-TEXPD are given by

EðXÞ ¼
Z1

t

xgðxÞdx;

EðXÞ ¼ tþ
a

y
Gð

1

b
þ 1Þ:

ð15Þ

EðX2Þ ¼ b
y

a

� �bZ1

t

x2ðx � tÞb� 1e� f
yðx� tÞ
a gbdx;

EðX2Þ ¼ t2 þ
a

y

� �2

Gð
2

b
þ 1Þ þ 2

ta

y
Gð

1

b
þ 1Þ:

ð16Þ

EðX3Þ ¼

Z1

a

x3gðxÞdx;

EðX3Þ ¼ t3 þ
a

y

� �3

Gð
3

b
þ 1Þ þ 3t

a

y

� �2

Gð
2

b
þ 1Þ þ 3t2 a

y

� �
Gð

1

b
þ 1Þ:

ð17Þ

EðX4Þ ¼ t4 þ 4t3
a

y

� �
Gð

1

b
þ 1Þ þ 6t2 a

y

� �2

Gð
2

b
þ 1Þ þ 4t

a

y

� �3

Gð
3

b
þ 1Þ þ

a

y

� �4

Gð
4

b
þ 1Þ: ð18Þ

Fig 2. h(t) of W-TEXPD for different values of α, β and θ.

https://doi.org/10.1371/journal.pone.0249001.g002
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Lemma 2.0.5. The first four central moments of W-TEXPD are given by

m1 ¼ 0: ð19Þ

m2 ¼ VarðxÞ ¼ Eðx2Þ � fEðxÞg2
;

VarðxÞ ¼
a

y

� �2

Gð
2

b
þ 1Þ � Gð

1

b
þ 1Þ

� �2
" #

:
ð20Þ

m3 ¼ m3
= � 3m1

=m2
= þ 2ðm1

=Þ
3
;

m3 ¼
a

y

� �3

Gð
3

b
þ 1Þ þ Gð

1

b
þ 1Þ 6t2 y

a
�
a

y

� �

� 3t2 a

y

� �
þ 2

y

a

� �2

þ 6t
y

a

� �2
" #

:
ð21Þ

m4 ¼ m4
= � 4m1

=m3
= þ 6ðm1

=Þ
2
m2

= � 3ðm1
=Þ

4
;

m4 ¼

4t3 y

a

� �
G 1

b
þ 1

� �
� 6t2 y

a

� �2
G 2

b
þ 1

� �
� 12t2 y

a

� �
G 1

b
þ 1

� �
� 4tG 3

b
þ 1

� �

þ12t a

y

� �2
G 1

b
þ 1

� �n o3

� 6t2 a

y

� �2
G 2

b
þ 1

� �
þ fG 1

b
þ 1

� �
g

2
� fG 1

b
þ 1

� �
g

2
G 2

b
þ 1

� �n o

þ8t3 a

y

� �
G 1

b
þ 1

� �
� a

y

� �4
G 1

b
þ 1

� �
4G 3

b
þ 1

� �
þ 3 G 1

b
þ 1

� �n o3
� �

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:
ð22Þ

Lemma 2.0.6. The skewness and kurtosis of W-TEXPD are defined as

Skewness ¼
m3

ðm2Þ
3=2

;

Skewness ¼
a

y

� �3
G 3

b
þ 1

� �
þ G 1

b
þ 1

� �
6t2 y

a
� a

y

� �
� 3t2 a

y

� �
þ 2 y

a

� �2
þ 6t y

a

� �2
h i

a

y

� �3
G 2

b
þ 1

� �
� fG 1

b
þ 1

� �
g

2
h i3=2

:

ð23Þ

Kurtosis ¼ m4

ðm2Þ
2 ;

Kurtosis ¼

4t3 y

a

� �
Gð 1

b
þ 1Þ � 6t2 y

a

� �2
Gð 2

b
þ 1Þ � 12t2 y

a

� �
Gð 1

b
þ 1Þ

� 4tGð 3

b
þ 1Þ þ 12t a

y

� �2
fGð 1

b
þ 1Þg

3
� 6t2 a

y

� �2
Gð 2

b
þ 1Þ

þfGð 1

b
þ 1Þg

2
� fGð 1

b
þ 1Þg

2
Gð 2

b
þ 1Þ þ 8t3 a

y

� �
Gð 1

b
þ 1Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

a

y

� �4
G 2

b
þ 1

� �
� fG 1

b
þ 1

� �
g

2
h i2

:

ð24Þ

Theorem 2.1. Let XT be a stochastic variable following W-TEXPD, then Shannon entropy is
given by

ZxT
¼ 1þ

ðb � 1Þ

b
C þ b ln

y

a

� �� �

� ln b
y

a

� �b
( )

:
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Proof. The Shannon entropy of a random variable XT is a measure of uncertainty given as

ZxT
¼ Ef ln gðxTÞg ¼

Z1

t

f� ln gðxTÞg gðxTÞdxT;

ZxT
¼ �

lnfb y

a

� �b
g
R1

t

gðxTÞdxT þ
R1

t

ðb � 1Þ ln ðxT � tÞgðxÞdxT

� y

a

� �bR1

t

ðxT � tÞ
bgðxTÞdxT

2

6
6
6
6
4

3

7
7
7
7
5
;

ZxT
¼

y

a

� �bR1

t

ðxT � tÞ
bgðxTÞdxT � ðb � 1Þ

R1

t

ln ðxT � aÞgðxÞdxT

� lnfb y

a

� �b
g
R1

t

gðxTÞdxT

2

6
6
6
6
4

3

7
7
7
7
5
;

ZxT
¼

y

a

� �b

I1 � ðb � 1ÞI2 � ln b
y

a

� �b
( )

: ð25Þ

I1 ¼ b
y

a

� �bZ1

a

ðxT � aÞ2b� 1e� f
yðxT � aÞ

a gbdxT;

let

yðxT � aÞ
a

� �b

¼ u;

I1 ¼
y

a

� �� bZ1

0

ue� udu;

I1 ¼
a

y

� �b
;

I2 ¼

Z1

a

ln ðxT � aÞgðxTÞdxT;

I2 ¼ b
y

a

� �bZ1

a

f ln ðxT � aÞgðxT � aÞb� 1e� ðy=a Þ
bðxT � aÞbdxT;

ðxT � aÞb ¼ u;
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b
y

a

� �bZ1

a

f ln ðx � tÞgðx � tÞb� 1e� ðy=a Þ
bðx� tÞbdx ¼

1

b

y

a

� �bZ1

0

lnue� ðy=a Þ
budu;

I2 ¼
1

b

y

a

� �bZ1

0

lnue� ðy=a Þ
budu:

To solve the above integral, we use the following combinations of logarithms and exponen-

tial given by [30] (Jeffrey and Zwillinger. 2007, 7th edition, Eq. (4.331.1), p. 571).

Z1

0

lnue� mudu ¼ �
1

m
ðC þ lnmÞ ½Rem > 0�;

I2 ¼ �
1

b
fC þ b ln

y

a

� �

g:

By using I1 and I2, Eq (25) becomes

ZxT
¼ 1þ

ðb � 1Þ

b
C þ b ln

y

a

� �� �

� ln b
y

a

� �b
( )

:

Theorem 2.2. The rth order statistics fr;n (x) of a random sample of size n for the W-TEXPD
distribution is given by

fr;nðxÞ ¼ b
y

a

� �b

ðx � tÞb� 1
fFðxÞgr� 1

f1 � FðxÞgn� rþ1
:

Proof. By definition

fr;nðxÞ ¼ Cr;ngðxÞfGðxÞgr� 1
f1 � GðxÞgn� r

;

or

fr;nðxÞ ¼ Cr;nf ðxÞfFðxÞgr� 1
f1 � FðxÞgn� r

ð26Þ

where

f ðxÞ ¼
y

a

� �b

bðx � aÞb� 1e� f
yðx� aÞ
a gb ;

FðxÞ ¼ 1 � e� f
yðx� aÞ
a gb

fr;nðxÞ ¼ b
y

a

� �b

ðx � tÞb� 1
fFðxÞgr� 1

f1 � FðxÞgn� rþ1
:

ð27Þ
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3 Estimation of model parameters by using Maximum Likelihood

(ML) method

In this Section, we estimate the unknown parameters of W-TEXPD by applying maximum

likelihood estimation method as defined by [31]. The log-likelihood function of W-TEXPD is

given by:

lnLðt; y; a;b; xÞ ¼ ln
Yn

i¼1

b
y

a

� �b

ðx � tÞb� 1e� f
yðx� tÞ
a gb

" #

;

lnLðt; y; a;b; xÞ ¼

n lnbþ nb lny � nb lnaþ b
Xn

i¼1

ln ðxi � tÞ �
Xn

i¼1

ln ðxi � tÞ

� y

a

� �bX
n

i¼1

ðxi � tÞ
b

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

ð28Þ

Now computing the first partial derivatives of (28) with respect to τ, θ, α, β and equating

the results to zero, we have

@ lnLðt; y; a; b; xÞ
@t

¼ Min½xi�; i ¼ 0; 1; 2::::::::::; n; ð29Þ

@ lnLðt; y; a;b; xÞ
@y

¼
nb
y
�
by

b� 1

ab

Xn

i¼1

ðxi � tÞ
b
¼ 0; ð30Þ

@ lnLðt; y; a; b; xÞ
@a

¼ by
b
a� ðbþ1Þ

Xn

i¼1

ðxi � tÞ
b
�

nb
a
¼ 0; ð31Þ

@ lnLðt; y; a; b; xÞ
@b

¼

n
b
þ n ln y � n lnaþ

Xn

i¼1

ln ðxi � tÞ �
y

a

� �b ln y

a

� �Xn

i¼1

ðxi � tÞ
b

� y

a

� �bX
n

i¼1

ðxi � tÞ
b ln ðxi � tÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ 0; ð32Þ

respectively. Since the Eqs (30) to (32) are not in closed form, we use a well-known iterative

method i.e. Newton Raphson to obtain the approximate ML estimates for the parameters θ, α
and β.

3.1 Asymptotic confidence bounds

It is observed that ML estimates of the unknown parameters θ, α, β of W-TEXPD are not in

closed forms. In this situation, we compute the asymptotic confidence bounds of W-TEXPD

based on the asymptotic distribution of the MLE.

The Fisher Information matrix can be used for interval estimation and hypothesis testing.

For W-TEXPD, Information matrix is obtained by computing the second partial derivatives of

PLOS ONE Weibull-truncated exponential distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0249001 April 6, 2021 10 / 24

https://doi.org/10.1371/journal.pone.0249001


the Eqs (30) to (32) as:

In ¼

Iaa Iab Iay

Iba Ibb Iby

Iya Iyb Iyy

0

B
B
B
@

1

C
C
C
A
;

the entries of Fisher Information matrix of W-TEXPD are:

Iaa ¼
@

2 lnLðt; y; a;b; xÞ
@a2

¼
nb
a2
�
bðbþ 1Þy

b

abþ2

Xn

i¼1

ðxi � tÞ
b
: ð33Þ

Ibb ¼
@

2 lnLðt; y; a;b; xÞ
@b

2
¼

� n
b2 � 2 y

a

� �b ln y

a

� �Xn

i¼1

ðxi � aÞb

� y

a

� �b ln y

a

� �Xn

i¼1

f ln ðxi � tÞgðxi � tÞ
b

� y

a

� �b ln y

a

� �bX
n

i¼1

f ln ðxi � tÞgðxi � tÞ
b

� 2 y

a

� �bX
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6
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6
6
6
6
6
6
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7
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@
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@y
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y

2
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b
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Iya ¼
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b
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b
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The asymptotic confidence intervals are obtained by using either the approximate normal

distribution or the approximate log-normal distribution of the ML estimates ĝ ¼ ðâ; b̂; ŷÞ.
The estimated standard errors of â; b̂ and ŷ are expressed as:

sðâ; b̂; ŷÞ ¼
ffiffiffiffiffiffiffiffiX

jj

r
; where

P
¼ ½In�

� 1
:

For instance, the expressions for (1 − ξ)100% confidence interval of α calculated by using

the approximate normal distribution and log-normal distribution are

â � dx=2 sðâÞ: ð39Þ

and

â expf� dx=2 sðâÞ=âg;

or

âedx=2 sðâÞ=â � a � âedx=2 sðâÞ=â ; ð40Þ

respectively, where δξ/2 is the 1 − δξ/2 percentile of standard normal distribution. The log-nor-

mal approximation works well if the standard error of parameters is greater than half of their

point estimate.

4 Simulation study

The core feature of probability is randomness and uncertainty. The randomness exists in every

field of life. Simulation imitates the realization of a random experiment, so that random values

are generated (that are deterministic) by using an appropriate model designed on the basis of

random experiment. A simple such model can be a probability distribution that is used to

sketch a real mechanism that produces values of some quantity of interest.

Here, we carry out Monte Carlo simulation studies to assess the performance of maximum

likelihood estimates (MLEs) using the R programming. The Monte Carlo simulations are run

1000 times and in each replication, random sample of size n is drawn from the W-TEXPD (α,

β, θ). The model parameters are estimated by maximum likelihood method.

Table 1 presents the average point estimates of three parameters with standard errors (SEs),

bias and mean square errors (MSEs) for the sample sizes 20, 50, 100 and 200. A fixed seed is

used to generate such random numbers implying that all results of these studies can always be

exactly replicated.

The assessment is based on a simulation study by applying following steps:

1. Generate one thousand samples of size n each using Eq (14).

2. Compute the MLEs for the one thousand samples, say (â; b̂; ŷ) for i = 1,2,3,. . ...,1000.

3. Compute the SEs of the MLEs for the one thousand samples.

4. Compute the biases and mean square errors by using

bias ¼
1

1000

X1000

i¼1

d̂ i � d;
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and

MSE ¼
1

1000

X1000

i¼1

bs2
a
þ fbiasðd̂ iÞg

2

respectively.

Table 1 shows that biases and MSEs vary with respect to n. The biases and MSEs for each

parameter approaches to zero as sample size increases.

5 Real life application

5.1 Application 1: Aeronautical engineering

To demonstrate the strength of W-TEXPD, we use Aeronautical Engineering data set to show

that the proposed distribution can be a better model than the base line distributions i.e. Wei-

bull, truncated Exponential (TEXPD), Gamma and Exponential distributions. We re-analyse

Table 1. Average estimated values, corresponding SEs (given in parentheses) bias and MSE of model parameters.

Actual n Average Estimate (S.E) Bias MSE

â b̂ ŷ â b̂ ŷ â b̂ ŷ

α = 0.1

β = 0.5

θ = 2.0

20 0.08583

(0.00021)

0.66002

(0.00208)

1.99978

(0.00003)

-0.01417 0.16001 -0.00001 0.00007 0.02991 0.00001

50 0.09253

(0.00005)

0.72130

(0.00116)

1.99985

(0.00001)

-0.00747 0.22130 -0.00014 0.00005 0.05033 0.00000

100 0.09603

(0.00002)

0.73558

(0.00103)

1.99999

(0.00004)

-0.00397 0.23558 -0.00007 0.00001 0.05655 0.00001

200 0.09793

(0.00001)

0.74491

(0.00110)

1.99991

(0.00001)

-0.00207 0.24492 -0.00004 0.00004 0.06119 0.00001

α = 0.1

β = 1.0

θ = 2.0

20 0.09378

(0.00034)

1.03364

(0.00171)

2.00001

(0.00003)

-0.00622 0.03364 0.00001 0.00016 0.00404 0.00001

50 0.09842

(0.00011)

1.02537

(0.00159)

2.00006

(0.00009)

-0.00158 0.02537 0.00006 0.00001 0.00317 0.00000

100 0.09942

(0.00003)

1.02011

(0.00125)

2.00000

(0.00002)

-0.00057 0.02011 0.00000 0.00001 0.00196 0.00000

200 0.09979

(0.00001)

1.01700

(0.00102)

2.00000

(0.00000)

-0.00002 0. 01700 0.00000 0.00000 0.00133 0.00000

α = 0.1

β = 1.0

θ = 5.0

20 0.09399

(0.00032)

1.03973

(0.00196)

5.00016

(0.00001)

-0.00060 0.03973 0.00016 0.00014 0.00542 0.00001

50 0.09857

(0.00001)

1.02870

(0.00171)

5.00001

(0.00000)

-0.00142 0.02871 0.00001 0.00001 0.00377 0.00000

100 0.09950

(0.00003)

1.02194

(0.00130)

5.00000

(0.00000)

-0.00005 0.02194 0.00000 0.00001 0.00218 0.00000

200 0.09980

(0.00001)

1.01827

(0.00105)

5.00000

(0.00000)

-0.00002 0.01827 0.00000 0.00000 0.00144 0.00000

α = 2.5

β = 1.0

θ = 2.0

20 2.50850

(0.00301)

1.00439

(0.00096)

2.00047

(0.00031)

0.00850 0.00439 0.00047 0.00915 0.00095 0.00010

50 2.50775

(0.00126)

1.01231

(0.00132)

2.00001

(0.00000)

0.00775 0.01231 0.00001 0.00166 0.00189 0.00000

100 2.50491

(0.00079)

1.01451

(0.00130)

2.00000

(0.00000)

0.00491 0.01451 0.00000 0.00065 0.00191 0.00000

200 2.50192

(0.00015)

1.01335

(0.00097)

2.00000

(0.00000)

0.00192 0.01335 0.00000 0.00002 0.00113 0.00000

https://doi.org/10.1371/journal.pone.0249001.t001
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the data extracted from [32] to illustrate our proposed model. The data given below are the

failure times of air conditioning system in an airplane. [33] used Exponentiated Exponential

distribution to model the same data and estimate the parameter as well. The data set of 31

observations is recorded as: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11,

3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52 and 95.

Table 2 reveals certain descriptive statistics regarding set of observations under study which

tells that the data set is positive skewed and heavy tailed towards right.

Table 3 provides the estimated values along with standard errors of unknown parameters of

W-TEXPD, Weibull, Gamma, Exponential and Truncated Exponential (TEXPD) distributions

by using ML method. The negative log-likelihood, Akaike information criterion (AIC) and

Bayesian information criterion (BIC) are computed to compare the models. A distribution

with the highest negative log-likelihood value and the smallest AIC and BIC values indicates

the better model contrary to other fitted distributions. The values in Table 3 verdict that the

proposed model has the highest value of negative log-likelihood and the lowest values of AIC

and BIC supporting the new suggested distribution.

Table 4 provides the values of different test statistics which are used to analyse the goodness

of fit for the distributions. The distribution having the smallest value of test statistics fits the

best. It is obvious from values in the Table 4 that the W-TEXPD distribution leads to a better

fit than the Weibull, Gamma, Exponential and TEXPD distributions.

We graphically study the efficacy of new proposed distribution W-TEXPD by sketching

pdf, Q-Q, cdf and P-P plots for the above data set to check the goodness of fit. From Fig 3, it is

Table 2. Descriptive statistics of failure times of 31 air conditioners of airplane.

Min. Q1 Q2 Mean Q3 Max. S.D. Skewness Kurtosis

1.00 11.50 21.00 58.03 79.00 261.00 71.21 1.74 5.14

https://doi.org/10.1371/journal.pone.0249001.t002

Table 3. Negative log-likelihood values (̂l), MLEs of model parameters, the corresponding SEs (given in parentheses) and the statistics AIC and BIC of failure times

of 31 air conditioning system of airplane.

Model Estimates Statistic

l̂ â â b̂ ŷ AIC BIC

W-TEXPD -153.67 1.00 0.145

(0.070)

0.738

(0.105)

0.003

(0.001)

313.35 317.65

Weibull -156.10 — 52.883

(11.853)

0.848

(0.116)

— 316.21 319.079

Gamma -156.39 — 0.014

(0.004)

0.807

(0.176)

— 316.77 319.64

Exponential -156.89 — 0.017

(0.003)

— — 315.78 317.22

TEXPD -156.353 1.00 0.018

(0.003)

— — 314.71 316.32

https://doi.org/10.1371/journal.pone.0249001.t003

Table 4. Goodness of fit statistic of failure times of 31 air conditioners of airplane.

Model W-TEXPD Weibull Gamma Exponential TEXPD

K-Smirnov 0.140 0.159 0.176 0.221 0.228

C-Von 0.091 0.118 0.143 0.253 0.284

A-Darling 0.633 0.659 0.783 1.359 1.734

https://doi.org/10.1371/journal.pone.0249001.t004
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evident from pdf plot that theoretical/predicted probabilities are closer to the empirical histo-

gram which highlights that W-TEXPD better fits the data set. The corresponding cdf, Q-Q and

P-P plots suggest the same results as well. It is also observed that the W-TEXPD follows the

diagonal line more closely than the empirical line.

5.2 Application 2: Electrical engineering

In this section, we use a real data set to show that the W-TEXPD distribution can be a better

model than Weibull, truncated Exponential (TEXPD), Gamma and Exponential distributions.

The following data set is taken from [7] which represents the failure times of 50 components

(per 1000h). [34] use McDonald modified Weibull distribution to model the same data set.

The data set of 50 observations is recorded as: 0.036, 0.058, 0.061, 0.074, 0.078, 0.086, 0.102,

0.103, 0.114, 0.116, 0.148, 0.183, 0.192, 0.254, 0.262, 0.379, 0.381, 0.538, 0.570, 0.574, 0.590,

0.618, 0.645, 0.961, 1.228, 1.600, 2.006, 2.054, 2.804, 3.058, 3.076, 3.147, 3.625, 3.704, 3.931,

4.073, 4.393, 4.534, 4.893, 6.274, 6.816, 7.896, 7.904, 8.022, 9.337, 10.940, 11.020, 13.880, 14.730

and 15.080.

The descriptive statistics in Table 5 connotes that the data are highly spread, skewed and

long right tailed.

Fig 3. The fitted pdf of W-TEXPD on the histogram of failure times of 31 air conditioning system of airplane along with their cdf, Q-Q and probability plots.

https://doi.org/10.1371/journal.pone.0249001.g003
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Table 6 provides parameter estimates of the fitted distributions along with (̂l), AIC and BIC

values. The above table shows that the suggested model leads to better fit than the baseline dis-

tributions i.e. Weibull & TEXPD, Gamma and Exponential distributions for describing the

certain data.

The smallest values of goodness of fit statistic, i.e. K-S, C-Von and A-Darling for

W-TEXPD in Table 7 prove that the proposed model fits the given data best among the other

models.

We graphically studied the performance of W-TEXPD by sketching pdf, Q-Q, cdf and P-P

plots. We can observe in Fig 4 that the closer empirical and theoretical lines show that the

W-TEXPD better fits the above data.

5.3 Application 3: Mechanical engineering

To demonstrate the strength of W-TEXPD, we fit our suggested model on the data extracted

from [35]. The following observations are the numbers of revolutions (in millions) before fail-

ure of 23 ball bearings in a life testing experiment. [28, 36] use the Gamma-Weibull and

extended generalized Gamma distributions to model the same data respectively. The data set

of 23 observations is: 17.88, 28.92, 33.00, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56,

67.8, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4.

Table 8 reveals certain descriptive statistics of the under study data suggesting that the data

are slightly skewed and right tailed.

Table 6. Negative log-likelihood values (‘̂), MLEs of model parameters, the corresponding SEs (given in parentheses) and the statistics AIC and BIC of failure time

of 50 components (per 1000 hours).

Model Estimates Statistic

l̂ â â b̂ ŷ AIC BIC

W-TEXPD -95.86 0.036 -0.279

(4.755)

0.583

(0.067)

-0.124

(2.111)

197.73 203.46

Weibull -102.07 — 2.514

(0.568)

0.661

(0.074)

— 208.14 211.97

Gamma -102.18 — 0.163

(0.042)

0.545

(0.091)

— 208.37 212.19

Exponential -110.13 — 0.300

(0.042)

— — 222.25 224.17

TEXPD -109.58 0.036 0.304

(0.042)

— — 221.17 223.08

https://doi.org/10.1371/journal.pone.0249001.t006

Table 7. Goodness of fit statistic of failure time of 50 components (per 1000 hours).

Model W-TEXPD Weibull Gamma Exponential TEXPD

K-Smirnov 0.140 0.159 0.176 0.221 0.228

C-Von 0.091 0.118 0.143 0.253 0.284

A-Darling 0.633 0.659 0.783 1.359 1.734

https://doi.org/10.1371/journal.pone.0249001.t007

Table 5. Descriptive statistics of failure times of 50 components (per 1000 hours).

Min. Q1 Q2 Mean Q3 Max. S.D. Skewness Kurtosis

0.036 0.207 1.414 3.329 4.499 15.080 4.184 1.423 4.092

https://doi.org/10.1371/journal.pone.0249001.t005
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Table 9 provides parameter estimates. The larger value of (̂l) and the smaller values of AIC

and BIC reflect a better model. In this aspect, it is evident from the statistics that the suggested

model provids a better fit than the baseline distributions i.e. Weibull & TEXPD, Gamma and

Exponential distributions for the certain data.

Table 10 gives numerical values of goodness of fit tests. We can make an upshot from these

statistical values that suggested model better fits to the above data.

The histogram that is superimposed by the empirical pdf in Fig 5 also suggest that

W-TEXPD better fits the data. Similarly P-P plot also support the proposed model and gives

evidence that it is a pliable probability model for such type of data.

5.4 Application 4: Bio-chemical engineering

This example consist of vinyl chloride data which has been taken from the clean up-gradient

monitoring wells in μmg/L. [37] utilized following data set to estimate the upper confidence

Fig 4. The fitted pdf of W-TEXPD on the histogram of failure times of 50 components (per 1000 hours) along with their cdf, Q-Q and probability plots.

https://doi.org/10.1371/journal.pone.0249001.g004

Table 8. Descriptive statistics of ball bearing data.

Min. Q1 Q2 Mean Q3 Max. S.D. Skewness Kurtosis

17.88 47.20 67.80 72.24 95.88 173.40 37.48 0.94 3.49

https://doi.org/10.1371/journal.pone.0249001.t008
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Table 9. Negative log-likelihood values, MLEs of the model parameters, the corresponding SEs (in parentheses) along with AIC and BIC values.

Model Estimates Statistics

l̂ â â b̂ ŷ AIC BIC

W-TEXPD -112.91 16.25 1.18

(2.56)

1.52

(0.25)

0.02

(0.04)

231.81 235.22

Weibull -113.69 — 2.10

(0.33)

81.90

(8.60)

— 231.38 233.64

Gamma -113.03 — 4.03

(1.14)

0.06

(0.02)

— 230.05 232.32

Exponential -121.44 — 0.01

(0.003)

— — 244.88 246.01

TEXPD -115.58 — 0.02

(0.004)

— — 233.15 234.29

https://doi.org/10.1371/journal.pone.0249001.t009

Table 10. Goodness of fit statistic.

Model W-TEXPD Weibull Gamma Exponential TEXPD

K-Smirnov 0.109 0.151 0.123 0.307 0.233

C-Von 0.034 0.582 0.039 0.537 0.240

A-Darling 0.240 0.329 0.216 2.814 1.272

https://doi.org/10.1371/journal.pone.0249001.t010

Fig 5. Estimated pdf and P-P plot of W-TEXPD, Weibull, Gamma, Exponential and TEXPD distributions.

https://doi.org/10.1371/journal.pone.0249001.g005
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level (UCL) for the mean Vinyl chloride to facilitate the researchers to compare it with the

average obtained from down-gradient monitoring well. Similarly, [38] also model the same

data by using a New Extended Burr XII distribution. The observations of the Vinyl Chloride

data are: 0.2, 2.0, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 6.8, 1.2, 0.5, 5.3, 3.2, 2.7,

2.9, 2.3, 1.0, 0.2, 2.5, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 0.4, 5.1.

Table 11 displays certain descriptive statistics of the under study data reflecting that the

data set is skewed and right tailed.

The statistics in Table 12 display that the suggested model W-TEXPD better explains the

vinyl chloride data than the classical probability distributions.

Table 13 shows the values of goodness of fit test statistics. It is oberved that W-TEXPD has

the smallest values which establish that this model fits the best among the rest.

One can clearly observe from histogram and P-P plots of W-TEXPD and the other models

given in Fig 6 that the proposed distribution provides the best fit among the competitive mod-

els for the Vinyl chloride data.

5.5 Application 5: Environmental sciences

The data is taken from a book “Loss Distributions” [39]. In 1977 the following 40 losses, due to

wind-related catastrophes, were recorded to the nearest $ 1,000,000. These data include only

those losses of 2,000,000 or more; and, for convenience, they have been ordered and recorded

in millions. [40] fits Alpha-Power Pareto distribution and [41] fits Lomax exponential model

on the same data. The observations in the data set are: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4,

4, 5, 5, 5, 6, 6, 6, 6, 8, 8, 9, 15, 17, 22, 23, 24, 24, 25, 27, 32 and 43.

Table 11. Descriptive statistics of Vinyl chloride data (μg/L).

Min. Q1 Q2 Mean Q3 Max. S.D. Skewness Kurtosis

0.10 0.50 1.15 1.88 2.47 8.00 1.95 1.60 5.01

https://doi.org/10.1371/journal.pone.0249001.t011

Table 12. Negative log-likelihood values, MLEs of model parameters, the corresponding SEs (in parentheses) along with the AIC and BIC values.

Model Estimates Statistic

l̂ â â b̂ ŷ AIC BIC

W-TEXPD -53.19 0.09 0.121

(0.93)

0.86

(0.12)

0.07

(0.56)

112.38 116.96

Weibull -55.45 — 1.01

(0.13)

1.88

(0.34)

— 114.90 117.95

Gamma -55.41 — 1.06

(0.22)

0.56

(0.15)

— 114.82 117.88

Exponential -55.45 — 0.53

(0.09)

— — 112.90 114.43

TEXPD -53.77 — 0.56

(0.09)

— — 109.53 111.06

https://doi.org/10.1371/journal.pone.0249001.t012

Table 13. Goodness of fit statistic.

Model W-TEXPD Weibull Gamma Exponential TEXPD

K-Smirnov 0.088 0.092 0.097 0.089 0.105

C-Von 0.025 0.043 0.051 0.041 0.061

A-Darling 0.220 0.282 0.313 0.272 0.486

https://doi.org/10.1371/journal.pone.0249001.t013
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Fig 6. Estimated pdf and P-P plot of W-TEXPD, Weibull, Gamma, Exponential and TEXPD models.

https://doi.org/10.1371/journal.pone.0249001.g006

Table 14. Descriptive statistics of 40 losses due to wind-related catastrophes.

Min. Q1 Q2 Mean Q3 Max. S.D. Skewness Kurtosis

2.00 2.00 5.00 9.50 13.50 43.00 10.433 1.503 4.369

https://doi.org/10.1371/journal.pone.0249001.t014

Table 15. Negative log-likelihood values (‘̂), MLEs of model parameters, the corresponding SEs (given in parentheses)along with the AIC and BIC values for 40

losses due to wind-related catastrophes.

Model Estimates Statistic

l̂ â â b̂ ŷ AIC BIC

W-TEXPD -73.96 2.00 -0.024

(0.025)

0.359

(0.049)

-0.008

(0.077)

153.92 158.83

Weibull -123.55 — 9.507

(1.637)

1.001

(0.121)

— 251.10 254.37

Gamma -123.42 — 0.116

(0.029)

1.108

(0.225)

— 250.85 254.12

Exponential -123.54 — 0.105

(0.017)

— — 249.10 250.74

TEXPD -114.57 2.00 0.133

(0.021)

— — 231.15 232.79

https://doi.org/10.1371/journal.pone.0249001.t015
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Table 14 shows that there is a large variation in the data. Furthermore, observations under

study are positively skewed and flat towards right.

Table 15 provides the estimated values along with standard errors of unknown parameters

by using ML method for W-TEXPD and rest of the fitted models. The negative log-likelihood,

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are computed

to compare the models. The values in Table 15 highlight that the proposed model is statistically

better than Weibull, Gamma, Exponential and Truncated Exponential (TEXPD) distributions.

Table 16 provides the values of different test statistics which are used to analyze the good-

ness of fit of the distributions. The distribution having the smallest value of test statistics fits

Table 16. Goodness of fit statistic of 40 losses due to wind-related catastrophes.

Model W-TEXPD Weibull Gamma Exponential TEXPD

K-Smirnov 0.224 0.190 0.205 0.189 0.315

C-Von 0.422 0.343 0.398 0.341 1.041

A-Darling 3.029 2.055 2.313 2.049 2.165

https://doi.org/10.1371/journal.pone.0249001.t016

Fig 7. The fitted pdf of W-TEXPD on the histogram of 40 losses due to wind-related catastrophes along with their cdf, Q-Q and probability plots.

https://doi.org/10.1371/journal.pone.0249001.g007
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the best. It is obvious from the values in the Table 16 that the W-TEXPD distribution gives a

better fit than the Weibull, Gamma, Exponential and TEXPD distributions.

The graphical study reveals the performance of the W-TEXPD by sketching pdf, Q-Q, cdf

and P-P plots in terms of the goodness of fit. It is evident from Fig 7 that the observed proba-

bilities plotted against the predicted probabilities are closer and follow the diagonal line.

Hence, it is concluded that W-TEXPD is the best choice for modeling the above data.

6 Concluding remarks

In this research paper, we introduce a new four parameter left truncated distribution called

Weibull-Truncated Exponential distribution (W-TEXPD) by employing a new generator. The

objective of the present research is to provide a trucated model for finite data. Besides, the

additional scale parameter shows a significant impact on the shape of the distribution. A num-

ber of distributions are observed as the special cases of the proposed distribution.

It is demonstrated through real life applications that the truncated distribution can quite

effectively be used to model a variety of data sets from different fields. It is also concluded that

our proposed model better fits the data comprising extreme and/or scattered values as well as

skewed (spread) and heavy tailed (flat curved) data. W-TEXPD is effectively applied in engi-

neering and environmental sciences where such type of truncated data are commonly encoun-

tered. In future research, we will make a study to compare these estimators for censored data.
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