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Microbiota of the Oropharynx 
and Endoscope Compared to the 
Esophagus
Ikenna C. Okereke   1, Aaron L. Miller2, Catherine F. Hamilton1, Adam L. Booth3, 
Gabriel L. Reep4, Clark L. Andersen5, Sandy T. Reynolds1 & Richard B. Pyles2

The role of the microflora in the development of esophageal disease is still largely unknown and is 
being investigated in more detail. Our goal was to determine how the microbiota levels of endoscope 
and uvular swabs compared to the levels of tissue biopsies along various points of the esophagus. 17 
patients with Barrett’s esophagus agreed to participate in the study. Biopsies of esophageal mucosa 
were taken from the (1) proximal esophagus, (2) mid-esophagus, (3) distal esophagus, and (4) Barrett’s 
esophagus. Swabs were also taken from the uvula and the endoscope. Throughout the esophagus, 17 
bacterial genera were detected from the samples. The microflora pattern obtained from the uvula and 
endoscopic swabs did not correlate well with mucosal biopsies along any aspect of the esophagus. There 
were statistically significant differences in the levels and proportions of bacteria found when comparing 
the uvula swab to the esophageal biopsies and when comparing the endoscope swab to the esophageal 
biopsies. Obtaining a simple swab of the uvula or endoscope itself appears to be a poor substitute for 
tissue biopsy of esophageal mucosa when evaluating microflora patterns. When performing microflora 
studies of the esophagus, mucosal biopsies should be used for analysis.

The role of intraluminal microbiota in causing disease in the gastrointestinal tract is increasingly being studied1,2. 
Various diseases in other aspects of the gastrointestinal tract have well-known associations with specific microbi-
ota, such as Helicobacter pylori with peptic ulcer disease and gastric mucosal-associated lymphoid tissue (MALT) 
lymphoma3–5. Diseases such as eosinophilic esophagitis and esophageal adenocarcinoma also have been associ-
ated with particular microbiome expression patterns6,7. There are several methods which can be used to collect 
specimen, and some centers have used a sample from one aspect of the gastrointestinal tract as a wide surrogate of 
representation of the microbiome of the entire gastrointestinal tract8–10. But it has been shown that the microbial 
composition varies at different regions of the esophagus, likely as a result of the differences in the intraluminal 
environment in the proximal versus distal esophagus11,12.

There is still debate about the most reliable technique to analyze the microbial composition in the esophagus. 
Endoscopy with mucosal biopsy is the most common technique used, but this procedure requires anesthesia for 
the patient, is invasive and has a small but existent risk of causing bleeding within the esophagus. Performing the 
analysis using a swab of the endoscope or the oropharynx would be less invasive, but previous literature has not 
investigated how similar these swabs are compared to analysis on mucosal tissue. Our goal was to determine how 
similar the microbial composition was on oropharyngeal and endoscope swabs compared to mucosal biopsies.

Materials and Methods
Endoscopy.  After obtaining institutional review board approval (University of Texas Medical Branch Review 
board, IRB # 17-0215), 17 patients with Barrett’s esophagus agreed to participate and were included in the study. 
Three of the patients had low-grade dysplasia, while the remaining patients had no dysplasia. The study was 
performed in accordance with institution regulations. Patients with Barrett’s esophagus were chosen because 
they were scheduled to receive routine surveillance endoscopy for Barrett’s esophagus as clinically indicated. All 

1Division of Cardiothoracic Surgery, University of Texas Medical Branch, Galveston, TX, USA. 2Department of 
Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. 3Division of Pathology, 
University of Texas Medical Branch, Galveston, TX, USA. 4Division of Gastroenterology, University of Texas Medical 
Branch, Galveston, TX, USA. 5Department of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA. 
Correspondence and requests for materials should be addressed to I.C.O. (email: ikokerek@utmb.edu)

Received: 12 February 2019

Accepted: 4 July 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-46747-y
http://orcid.org/0000-0001-5652-985X
mailto:ikokerek@utmb.edu


2Scientific Reports |         (2019) 9:10201  | https://doi.org/10.1038/s41598-019-46747-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

patients with a known diagnosis of Barrett’s esophagus who were scheduled to undergo surveillance biopsy and 
agreed to participate in the study were included. Informed consent was obtained from each patient.

Prior to its use, the endoscope was sterilized and placed in a sterile container. The endoscope was then imme-
diately placed into the esophagus without contacting any other surfaces, and swabbed immediately following 
removal from the esophagus. During the endoscopy, biopsies of the esophagus were taken from the (1) proximal 
esophagus, (2) mid-esophagus, (3) distal esophagus, and (4) Barrett’s esophagus and collected for research pur-
poses. Swabs were then taken of the uvula and of the endoscope itself, using a sterile swab. The biopsies of the 
esophagus and the swabs were performed prior to the esophagus ever entering the stomach. The endoscope was 
then re-inserted and the remaining portion of the surveillance endoscopy was completed.

Tissue swabs.  A tissue swab was taken from its sterile packaging and applied to (1) the uvula and (2) the 
endoscope. The swab of the uvula was obtained at the uvula only, taking precautions to avoid contact with the 
tongue or the palate. The swab of the endoscope was taken after the endoscope was passed through the orophar-
ynx to the distal esophagus but before tissue biopsies were performed and before the endoscope entered the 
stomach, to prevent the endoscope from being exposed to the acidic environment of the stomach.

RNA extraction.  The samples and swabs were immediately placed into a sterile lysing tube, treated with 
a lysis buffer and homogenized using a bead mill homogenizer. RNA extraction was performed using RNeasy 
Mini Kits (Qiagen, Hilden, Germany). The concentration and purity of the RNA was assessed using ultraviolet 
spectroscopy and gel electrophoresis.

Microflora array.  All biopsies and swabs were evaluated using a quantitative polymerase chain reaction 
(qPCR) panel (Nasal Microbiome Array, Fig. 1) targeting 34 individual bacterial genera from the upper res-
piratory tract originally identified using next generation 16 s meta-genomic sequencing. All qPCR targets were 
confirmed via conventional Sanger sequencing and melt temperature matched to historic controls. Universal 16 s 
was used as a load for gross bacteria level and hGAPDH was used to determine overall sample integrity.

Sequencing.  Sample sequencing was carried out using a fusion-PCR method. Briefly, fusion-primers were 
designed in accordance with the manufacturer’s guidelines (Ion Amplification Library Preparation – Fusion 
Method, Life Technologies, Carlsbad, CA) using Ion Xpress Barcodes linked to 16 s gene primer pairs targeting 
hyper-variable regions 1–813. Each 25 µl PCR was carried out using: 12.5 µl iQ supermix™ (Bio-Rad, Hercules, 
CA), 1 µl of both forward and reverse (5 µM) primers, 9.5 µl nuclease-free water and 1 µl of DNA template. DNA 
from each patient from each sample (uvula swab, endoscope swab, proximal esophagus, mid-esophagus, distal 
esophagus, Barrett’s esophagus) were used as a template for creation of subsequent fusion 16 s libraries. PCR was 
completed in a c1000 thermocycler (Bio-Rad) using the following parameters: Cycle 1), 95 C, 3 minutes, Cycle 
2), Step 1–95 C, 45 seconds; Step 2—Primer-specific annealing temps., 45 seconds; Step 3–72 C 2:00, repeat 39x; 
Step 4–72 C for 7:00. PCR products were purified using Qiagen Qiaquick spin-columns and quantified using a 
spectrophotometer (Bio-Rad). PCR products were then diluted, mixed in equal proportion and sequenced on 
an Ion Torrent GeneStudio S5 System using Ion 520 sequencing kits together with 520 size chips following the 
manufacturer’s instructions (Life Technologies).

Bioinformatics for Ion Torrent.  After generation, sequencing reads were filtered for quality and binned 
according to Ion Xpress barcode using Ion Torrent Suite software version 5.10.0. Sequencing reads in FASTQ 

Figure 1.  List of bacterial genera in Nasal Microbiome Array.
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format were further processed using web-based Galaxy software14. First, raw FASTQ files were normalized using 
the FASTQ groomer tool function. Next, each barcoded read was trimmed to remove the primer sequence and 
subsequently filtered to the expected size of the 16 s gene target. After this level of processing, the sequence reads 
were concurrently compared to the SILVA 16 s database using bowtie 2 software15,16. This yielded a call to genera 
level as well as the number of times each sequence matched the database (hit-rate). Where multiple calls to the 
same genera were made the number of hits were added accordingly. These numbers were then converted to per-
centage of total to give an overall ratio of the sequenced BES sample.

Statistical analysis.  Bacterial abundance (normalized per levels of 16S universal) was modeled by mixed 
analysis of variance with relation to the location and bacterium. Abundance levels were then normalized by divid-
ing the raw abundance by the corresponding 16S universal abundance. This result was log (base-2) transformed 
to an improved approximation of normality prior to analysis. Differences among locations by bacterium were 
assessed by Tukey-adjusted contrasts. The bacterial levels of the uvula and endoscope were compared to each 
point along the esophagus and a pooled level of all points of the esophagus, including the Barrett’s tissue.

Relative proportions of bacteria at each location were calculated by determining the relative proportions of 
each bacterium in each patient, and then averaging the relative proportions of all patients afterward. Statistical 
analyses were performed using R statistical software (R Core Team, 2018, version 3.5.1). In all statistical tests, 
α = 0.05.

Results
Microbial composition.  The relative proportions of microflora of the swabs and mucosal biopsies are 
shown in Fig. 2. There were wide differences in the microflora composition when comparing the uvula to each 
point of the esophagus and when comparing the endoscope swab to each point of the esophagus. Fusobacterium, 
Prevotella, and Dialister had the highest relative proportions in the uvula and on the endoscope, but were found 
in decreased proportions in the esophagus (Fig. 3). Anaerococcus, Streptococcus and Alloicoccus had the highest 
relative proportions in the esophagus, but were detected in lesser quantities in the uvula and on the endoscope 
(Fig. 4). There were only subtle differences in the microflora composition of the Barrett’s esophagus samples 
compared to the distal esophagus.

Swabs vs esophageal biopsies.  A hierarchical cluster analysis of the bacterial levels detected is shown 
in Fig. 5. The samples from the uvula and endoscope swabs clustered closely together, and were both relatively 
distinct from all of the mucosal biopsies along the esophagus.

Uvula/endoscope vs. esophagus.  We next examined the abundance levels of all detected bacteria. 
Figure 6 shows the normalized levels of all 17 identified bacteria. There were no statistically significant differences 
in any of these bacteria when comparing the uvula swab to the endoscope swab. There were 9 bacteria, however, 
which had statistically different levels in the esophagus compared to either the uvula or endoscope swab.

Discussion
We undertook this simple but useful study to provide an evidence-based investigation of the best method to 
obtain esophageal specimens for microbiome analysis. Prior studies have demonstrated that the oral flora has a 
distinct microflora composition compared to the rest of the gastrointestinal tract. And although it has been previ-
ously shown that inflammation and metaplastic changes of the distal esophagus can be associated with alterations 

Figure 2.  Relative abundance of microflora in uvula, endoscope and esophageal biopsies.
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Figure 3.  Relative proportion of Fusobacterium, Dialister, Prevotella and Haemophilus detected at uvula, 
endoscope and along esophagus.

Figure 4.  Relative proportion of Anaerococcus, Streptococcus and Alloicocccus detected at uvula, endoscope and 
along esophagus.

Figure 5.  Cluster analysis of bacterial levels at uvula, endoscope and esophageal biopsies.
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in the microbiome compared to the rest of the esophagus17, most studies have failed to examine the best methods 
to sample the microbiome along different aspects of the esophagus. As such, there have been numerous methods 
used to obtain samples to study the microbiome of the gastrointestinal tract. Some studies have used fecal samples 
to analyze the microbiome in diabetic patients18. Other studies have argued that the differences in the microbi-
ome in the proximal and distal gastrointestinal tract are minimal compared to the differences between patients8. 
Multiple other techniques have been attempted to sample the gastrointestinal tract, ranging from fluid sampling 
to intraluminal brushing19,20. Given this lack of consensus and the wide variety of sampling techniques/locations 
used in previous literature, our goal was to determine how well the uvula and endoscope mimicked the proximal, 
mid and distal esophagus.

We decided to perform this study in patients with Barrett’s esophagus for several reasons. Firstly, as Barrett’s 
esophagus is a risk factor for esophageal cancer, it is likely that future analyses of the association of the microbi-
ome and esophageal disease will utilize at least some patients with Barrett’s esophagus. Secondly, the patients with 
Barrett’s esophagus were going to have endoscopy with mucosal biopsy anyway for surveillance of their disease, so 
the additive risk from this study was extremely low. Thirdly, the amount of literature on the microbiome expres-
sion patterns in patients with Barrett’s esophagus is limited and we felt that there would be utility and interest in 
further elucidating the microflora in this patient population.

To date this type of study, investigating the similarity of uvula and endoscope swabs to the intraluminal 
environment along the esophagus, has not been performed. We felt that this study was important to determine 
if we could demonstrate that this type of microflora analysis could be performed while minimizing the risk of 
mucosal biopsy to the patient. From a clinical perspective, mucosal biopsy along the esophagus can occasionally 
be associated with bleeding and very rarely with perforation of the esophagus21,22. Furthermore, patients with 
Barrett’s esophagus have historically required up to 20 different biopsies in one setting according to the Seattle 
protocol23. The cumulative risk of this number of biopsies is not trivial. As such, many endoscopists may be 
hesitant to place a patient at increased risk by taking even more biopsies for research purposes. Our goal was to 
see if a swab of a part of the oropharynx, or the endoscope itself, could eliminate the need for a mucosal biopsy. 
Although we hypothesized that the uvula swab would not match the relatively acidic environment of the distal 
esophagus, we were unsure how similar it would be to the proximal esophagus. And we did feel that the endo-
scope itself may potentially have a similar microflora makeup compared to part or all of the esophagus. And we 
expected that the absolute abundance of the microflora could differ simply based on whether the sample was a 
swab or a mucosal biopsy. For this reason we included the relative abundances of each organism as well as the 
absolute abundances.

Previous studies analyzing the microbiome using only swabs or esophageal washes were unable to obtain a 
large enough concentration of bacteria for analysis24. Our study did show, however, that a simple swab of the uvula 
or even the endoscope itself would still have high enough levels of bacteria to perform analyses. One potential 
difference in our study was that we harvested the RNA immediately after collection, vs. freezing the specimen and 
then later performing the harvest. We recommend immediate harvest to obtain the highest yield of microflora.

Our study revealed that there is significant heterogeneity of the microflora at different aspects of the esoph-
agus. It also showed that both the uvula and endoscope have very dissimilar relative microflora compositions 
compared to all aspects of the esophagus. This information is useful as investigators continue to explore the 
microbiome in the gastrointestinal tract. There is certainly an increased risk, albeit minimal, with taking addi-
tional biopsies for research purposes in a patient who may already be undergoing 16 to 20 biopsies. But it appears 

Figure 6.  Normalized abundances of each bacterium in the uvula swab, endoscope swab or a pooled level of all 
esophageal points. A broad gray background indicates the bacteria which had statistically significant differences 
(p < 0.05) in levels between the uvula/endoscope and pooled esophagus.
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that the uvula and endoscope swabs are not able to match the mucosal biopsies, likely due to the vast differences 
seen in different parts of the esophagus. Changes in pH, motility, intraluminal pressure and other factors are likely 
to account for these differences.

We were interested in the microflora found within the Barrett’s esophagus compared to the distal esophagus. 
The differences were only very subtle. This similarity is perhaps expected, as the Barrett’s esophagus is directly 
adjacent to normal distal esophageal mucosa. It is likely that microflora composition, along with other intralumi-
nal factors such as acidity, account for a particular focus of Barrett’s esophagus within the lumen.

We chose to focus on patients with Barrett’s esophagus because these patients were scheduled to receive a 
surveillance endoscopy for clinical purposes anyway. We wanted to minimize the risk to patients and not subject 
a patient to an endoscopy solely for research purposes. Though there may be some bias associated with all patients 
having Barrett’s esophagus, we feel that our primary research question was not significantly affected by using 
this cohort. Future studies will be enhanced, however, by adding patients who do not have Barrett’s esophagus. 
Including these patients into our study would help to see whether there were any particularly striking differences 
in patients with and without Barrett’s esophagus.

Our study had some limitations. Overall it was a small group of patients, but we were able to show significant 
differences both in the levels and relative proportion of the most prevalent organisms detected. We also had a 
relatively limited panel consisting of 34 bacteria. But many of the most prevalent organisms identified in previous 
literature, such as Streptococcus, Prevotella, Fusobacterium and Veillonella, were on the panel. Although we feel 
that the panel we used was appropriate for our research question, future studies will likely benefit from use of a 
broader panel of organisms.

In conclusion, mucosal biopsies should remain the gold standard for microflora analysis in the esophagus. 
Though less invasive, uvula and esophageal swabs do not provide a good replacement for the mucosal biopsies. 
And there is heterogeneity in the microflora composition in various aspects of the esophagus. In the future, there 
will be ever-increasing investigation into the role of microflora in esophageal disease. Obtaining an accurate rep-
resentation of the bacterial composition will be critical in advancing our knowledge base in this field.

Data Availability
The dataset generated from this study is available upon request.
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