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Abstract

In the study, a facile one-step method for synthesizing magnetic-TiO2-nanophotocatalysts

was developed. With the same composing ratio of 0.5 and 0.35 (Fe:Ti, mole:mole), we pre-

pared two types of magnetic-TiO2-nanocomposites as one-step synthesized FexOy-com-

posed TiO2 (FexOy/TiO2-0.5 and FexOy/TiO2-0.35) and two-step synthesized core-shell

FexOy@TiO2 (FexOy@TiO2-0.5 and FexOy@TiO2-0.35), and tested their performance

in rhodamine 6G (R6G) photodegradation. X-ray diffraction (XRD) analysis showed that

FexOy@TiO2-0.5 has the smallest crystallite size (16.8 nm), followed by FexOy@TiO2-0.5

(18.4 nm), FexOy/TiO2-0.35 (21.0 nm) and FexOy/TiO2-0.5 (19.0 nm), and X-ray photoelec-

tron spectroscopy (XPS) suggested the decreasing percentage of Fe3O4 from 52.1% to

36.7%-47.2% after Ti-deposition treatment. The saturated magnetisms followed the order:

FexOy@TiO2-0.5 > FexOy@TiO2-0.35 > FexOy/TiO2-0.5 > FexOy/TiO2-0.35. R6G photode-

gradation followed the first order kinetics and was slightly influenced by pH but significantly

affected by initial photocatalyst concentration. FexOy/TiO2-0.35 achieved the highest

removal efficiency for R6G (92.5%), followed by FexOy@TiO2-0.35 (88.97%), FexOy@TiO2-

0.5 (60.49%) and FexOy/TiO2-0.5 (48.06%). Additionally, all these magnetic-TiO2-nanocom-

posites had satisfied magnetic recoverability and exhibited laudable reusability after 5-times

reuse, even achieving higher R6G removal efficiencies from 97.30% to 98.47%. Our one-

step method took only 75 min for nanocomposite synthesis, 90 min less than conventional

two-step method, showing its feasibility as a practical method for magnetic-TiO2-nanocom-

posite synthesis in industrial application.

1. Introduction

Photocatalysis is one of most popular advanced oxidation processes (AOPs) in water treatment

owning to its promising features of environment-friendly, generally non-selectivity and less
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secondary pollution [1]. In photocatalysis process, photocatalyst is the crucial component pro-

ducing reactive oxygen species (ROS), e.g., OH radicals [2], during the reaction by stopping

recombination of photo excited electron hole pair on the surface of the photocatalysts [3].

Among them, titanium dioxide (TiO2) is recognized as one of the best photocatalysts for its

redox ability, high chemical and biological stability (particularly to photocorrosion), cost effec-

tiveness and minor toxicity [3,4,5].

Bare TiO2 photocatalysts have some inherent shortages. As working within a narrow ultra-

violet wavelength [6], TiO2 photocatalysts normally have a relatively low quantum efficiency

and the most applied approach is minimizing the particulate size of TiO2 to achieve a large spe-

cific surface area [7]. Accordingly, most TiO2 catalysts are used in nano-scale [8,9], challenging

the separation and recovery of these ultrafine particles after photocatalytic reaction. Consider-

ing their risks to the environment [10], recovering and reusing these TiO2 nano-photocatalysts

is of great urgency. To solve this problem, some approaches are developed to support TiO2

nano-particulates with different anchors, e.g., glass and ceramic [11]. Nevertheless, the photo-

activities of these fixed-bed systems suffer from the low ratio of mass transfer, comparing to

the suspension systems [4]. Recent studies therefore propose the introduction of iron elements

in TiO2 nano-photocatalysts as a promising method to achieve magnetic separation and har-

vesting [12]. Magnetic separation is more selective, efficient, and often much faster than cen-

trifugation or filtration [13,14]. The key in magnetic separation is to generate strong magnetic

forces on the target particles to overcome opposing forces, e.g. viscous drag, Brownian motion

and sedimentation. Particulate size influences the magnetic forces [15], and decreasing the

crystallite size from micrometers to nanometers significantly increases the magnetism by 100

to 1,000 times [16]. Thus, magnetic nanoparticulates (MNPs) have gained increasing atten-

tions recently [17,18,19,20].

Coupling TiO2 photocatalysts with MNPs provides a group of novel nanophotocatalysts

integrating the superior photodegradation performance of TiO2 and simple recovery by exter-

nal magnetic fields. It has the potential to overcome the troubles in recovering and harvesting

nanophotocatalysts after reuse. Generally, magnetic-TiO2-nanophotocatalysts are manufac-

tured by functionalizing the surface of MNPs with one thin layer of TiO2 photocatalysts.

Zhang et al. prepared magnetic-TiO2-nanophotocatalysts via wrapping TiO2 on montmoril-

lonite and Fe3O4, achieving satisfied photodegradation rates and reusability for methylene

blue [21]. Chen et al. synthesized three types of magnetic-TiO2-nanophotocatalysts, showing

that Fe2O3@TiO2 had the highest adsorption efficiency (99%, 10 min) and Fe/TiO2 achieved

the highest photodegradation efficiency (94%, 150 min) for methylene blue [22]. Magnetic-

TiO2-nanophotocatalysts with different silver composing ratios could degrade 83.9% of meth-

ylene blue within 6 hours and the degradation efficiency remained 79% after 5-cycle reuse

[23]. Although these magnetic-TiO2-nanophotocatalysts achieved satisfied photodegradation

efficiencies and magnetic recoveries, they all require a complicated multiple-step synthesis and

time-consuming pre-synthesis of MNPs or TiO2 precursor [5]. Alternatively, iron-composing

is also used in TiO2 nanophotocatalysts to modify the bandgap energy of TiO2 and obtain a

better photoactivity or extend the absorption spectrum [24,25]. The composing ratio of iron is

normally less than 1% (mass ratio) owing to the declined photoactivity by excessive compos-

ing, and their magnetic recovery performance is not satisfied [26,27,28,29].

To the best of our knowledge, no previous research has reported simple or one-step synthe-

sis processes to obtain iron-composed magnetic TiO2 nanophotocatalysts with high Fe atomic

percentage (>20%) via coprecipitation method. In this study, we developed a facile approach

to synthesize magnetic-TiO2-nanocomposites via one-step coprecipitation from iron and tita-

nium salts. The synthesized magnetic-TiO2-nanocomposites achieved comparable photocata-

lytic degradation performance of rhodamine 6G (R6G) and had good durability after recovery
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and reuse. The main advantages of this method are: 1) simplified synthesis procedure without

the need of pre-synthesizing MNPs or TiO2 precursor; 2) 55% less synthesis time comparing

to two-step method; 3) cost-saving for fewer reagents in synthesis process.

2. Materials methods

2.1 Magnetic TiO2 synthesis

All the chemicals used in this study were of analytical grade and purchased from Sigma

Aldrich (UK). One-step synthesis of TiO2-composing MNPs followed the previously reported

coprecipitation method with modifications [30,31]. Briefly, 2 mL FeCl3 (1.0 M) and 1 mL

FeCl2 (2.0 M) were gently mixed and added with 20 mL titanium isopropoxide (TTIP, 97%)

and isopropanol (IPA,�99.7%). The mixture was kept shaking, to avoid agglomeration, with

drop-by-drop addition of 45 mL NaOH (1.0 M) to control the crystallization rate, and contin-

uously homologized for 30 min by ultrasound (60 kHz, LNGF175, Langford Electronics Ltd.,

UK). The synthesized brown-dark nanoparticles were harvested by a permanent magnet and

rinsed with ultrapure water until the supernatant reached neutral pH (7.0). To investigate the

impacts of Fe-composing ratio, two TTIP-IPA mixtures (2.4:17.6 and 3.4:16.6, m:m) were used

to synthesize magnetic-TiO2-nanocomposites, named as FexOy/TiO2-0.5 (Fe:Ti = 0.5, mole:

mole) and FexOy/TiO2-0.35 (Fe:Ti = 0.35, mole:mole). Details see S1 Table.

In comparison, two TiO2-coating magnetic nanophotocatalysts (core-shell), FexOy@TiO2-

0.5 (Fe:Ti = 0.5, mole:mole) and FexOy@TiO2-0.35 (Fe:Ti = 0.35, mole:mole), were prepared

using the conventional two-step synthesis method. Firstly, MNPs synthesis followed the

reported protocol [32], except for Fe2+/Fe3+ ratio (1:1, mole:mole). The synthetized MNPs

were washed with ultrapure water several times until pH was 7.0, and resuspended in 25 mL

ultrapure water. Subsequently, 10 mL of MNPs suspensions were rinsed with 25 mL IPA three

times for dehydration. Then, 25 mL IPA and 0.2 mL HCl (2.0 M) were added, gently mixed at

60 rpm, followed by rapidly adding TTIP of different volume (0.95 mL for FexOy@TiO2-0.5

and 1.35 mL for FexOy@TiO2-0.35) and keep shaking with drop-by-drop addition of 45 mL1.0

M NaOH (at least 45 minutes). After ultrasonic treatment for 30 min, another 1 mL NaOH

(1.0 M) was added with an extra one-hour ultrasonic treatment.

All the synthesized magnetic-TiO2-nanocomposites were washed by ultrapure water until

neutral pH. They were finally separated by magnet bar and dried overnight in a 60˚C vacuum

oven. After ground into powder, the granules were crystallized in a muffle furnace at 500˚C for

4 hours.

2.2 Adsorption and photocatalysis experiment

Adsorption experiments were carried out in the dark to investigate R6G adsorption on mag-

netic-TiO2-nanocomposites. R6G was dissolved in ultrapure water to make series concentra-

tions from 1 to 25 mg/L. The synthesized magnetic-TiO2-nanocomposites were added and the

concentration was fixed as 0.4 g/L. The reaction system was kept continuous shaking (150

rpm) for 360 min and the water samples were collected at 1, 2, 3, 4, 5 and 6 hours. At each

time point, the magnetic-TiO2-nanocomposites were removed by external magnetic field and

the supernatant was collected for R6G analysis. To test the effects of pH on R6G adsorption,

R6G solution was adjusted to pH�3, 7 and 10 by adding HCl (1.0 M) or NaOH (1.0 M),

respectively.

R6G photodegradation was carried out in 6-well plates (Costar, UK), with a 20-watt UV

lamp (253 nm) as the irradiation source. Initial R6G concentration was 10 mg/L, and the con-

centration of magnetic-TiO2-nanocomposites was 0.4 g/L. During the 6-hour degradation

experiment, the mixture was kept shaking at 150 rpm, and 250 μL of samples were collected at,
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1, 2, 3, 4, 5 and 6 hours. After centrifugation at 10,000 rpm for 1 min, the supernatant was col-

lected for R6G analysis. To test the effect of light wavelength on the photocatalytic degradation

of R6G, 460-nm and 540-nm light was also used, following the same procedure described

above. For the effects of pH and nanocomposite concentration on photocatalytic efficiency,

the pH of the reaction system was adjusted to 3.0, 7.0 and 10.0 by adding HCl (1.0 M) or

NaOH (1.0 M), and the concentrations of magnetic-TiO2-nanocomposites were set as 0.2, 0.4

and 0.8 g/L. For each experiment, a blank control without UV light was set up and all the

adsorption and photodegradation experiments were carried out in triplicates.

To test the durability of the synthesized magnetic-TiO2-nanocomposites, they were recov-

ered by a magnetic bar after 4-hour photodegradation of R6G, washed by ultrapure water for

three times, dried at room temperature for 10 min, and finally added into fresh R6G for reuse,

following the same procedure as described above. All the magnetic-TiO2-nanocomposites

were recovered and reused at least five times.

2.3 Chemical analysis

Fe and Ti oxidation phases of the synthesized magnetic-TiO2-nanocomposites were analysed

by X-ray photoelectron spectroscopy (XPS) via an ESCALAB 250Xi (Thermo Fisher, UK),

using AlKα X-ray radiation (hv = 1486.6 eV, 1500 W) for excitation. X-ray diffraction (XRD)

analysis was performed on an X’ Pert PRO MPD diffractometer (PANalytical, Netherlands)

equipped with Cu-Kα radiation at 40 kV and 40 mA. Surface morphologies were analysed

using transmission electron microscopy (TEM, Tecnai G2 F20, USA). A vibrating sample mag-

netometer (VSM, Lake Shore 7410, USA) was used to measure the magnetism of the synthe-

sized magnetic-TiO2-nanocomposites. Energy dispersive spectroscopy (EDS) analysis was

conducted by a field emission scanning electron microscope (Quanta 450F, FEI, USA) with a

voltage of 30 V. The Brunauer-Emmett-Teller (BET) surface area was measured by N2 physi-

sorption on an Autosorb iQ-C (Quantachrome Instruments, USA). The concentrations of

MNPs and magnetic-TiO2-nanocomposites were determined by gravimetric method. R6G

concentration was determined by at 540 nm (excitation at 350 nm) by a multimode plate

reader (FLUOstar Omega, Germany).

2.4 Data analysis

All the data were presented in terms of mean ± standard deviation. The removal efficiency (%)

of R6G was calculated by the equation (C0-Ct)/C0, where C0 is the initial concentration of R6G

in the solution (mg/L) and Ct is the R6G concentration at time t (mg/L). Data of XPS and XRD

were analysed by XPSpeak41 and Jade 6.5, respectively. The analysis of variance (ANOVA)

was carried out via SPSS 20.0 for windows, and the significant level is p<0.05.

R6G degradation or removal efficiency was calculated as the ratio of residual R6G to initial

R6G in each treatment. The R6G degradation kinetics was calculated according to the first-

order reaction, ln(Ct/C0) = -kobst. Here, kobs is the photodegradation rate constant (h-1). Both

Langmuir and Freundlich isotherm models were used to assess the adsorption capacity of the

synthesized magnetic-TiO2-nanocomposites, as expressed in the following equations:

Q ¼ Qmax
KLC

1þ KLC
ð1Þ

Q ¼ KFC
1=n ð2Þ

Here, Q is the amount of R6G adsorbed on magnetic-TiO2-nanocomposites (mg/g), and C
is the equilibrium concentration of R6G in aqueous phase (mg/L). For Langmuir isotherm,
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Qmax is the theoretical maximum adsorption capacity (mg/g) and KL is the adsorption equilib-

rium constant. KF and n are the constants of Freundlich model.

To distinguish the different pathway of R6G loss by different magnetic-TiO2-nanocompo-

sites via adsorption, photolysis and photocatalysis, the changes of R6G concentrations in dif-

ferent treatments were calculated by Eqs (3) to (8).

Total0:2 ¼ PL0:2 þ AD0:2 þ PC0:2 ð3Þ

Total0:4 ¼ PL0:4 þ AD0:4 þ PC0:4 ð4Þ

Total0:8 ¼ PL0:8 þ AD0:8 þ PC0:8 ð5Þ

PAD ¼
AD0:2

Total0:2
þ

AD0:4

Total0:4
þ

AD0:8

Total0:8

� �

=3 ð6Þ

PRL ¼
PL0:2

Total0:2
þ

PL0:4

Total0:4
þ

PL0:8

Total0:8

� �

=3 ð7Þ

PRC ¼
PC0:2

Total0:2
þ

PC0:4

Total0:4
þ

PC0:8

Total0:8

� �

=3 ð8Þ

Here, “0.2”, “0.4” and “0.8” indicates different treatments with initial magnetic-TiO2-nano-

composites concentration of 0.2, 0.4 and 0.8 mg/L, respectively. AD is the R6G loss in treat-

ments with magnetic-TiO2-nanocomposites but no UV-irradiation. PL is the R6G loss in

treatments with UV-irradiation but no magnetic-TiO2-nanocomposites. Total is the R6G loss

in treatments with both magnetic-TiO2-nanocomposites and UV-irradiation. PC refers to the

contribution of photocatalysis to R6G loss as calculated in Eqs (3)–(5). PAD, PRL and PRC
refers to the average percentage of adsorption, photolysis and photocatalysis in R6G loss,

respectively.

3. Results and discussion

3.1 Characteristics of magnetic-TiO2-nanocomposites

After crystallization, all the four types of magnetic-TiO2-nanocomposites had a red-brown col-

our (S1 Fig). TEM images (S2 Fig) illustrated that all the magnetic-TiO2-nanocomposites had

a typical solid particle structure, irregular ball or rod. Their crystallite size ranged from 10–100

nm, fitting well with the critical size suggested for effective magnetic separation (~50 nm) [16].

The morphologies of these particles were similar to that of Fe(III)-composed TiO2 particles

synthesized by previous work [33]. It is worth mentioning that the one-step synthesis of

FexOy/TiO2 nanocomposites took only 75 min, 55% less than that of FexOy@TiO2 nanocom-

posites synthesized by conventional two-step method (165 min). EDS results (S3 Fig and S2

Table) showed different Fe/Ti ratios of synthesized magnetic-TiO2-nanocomposites, which

were 0.55 (FexOy/TiO2-0.5), 0.34 (FexOy/TiO2-0.35), 0.40 (FexOy@TiO2-0.5) and 0.36 (Fex-

Oy@TiO2-0.35), respectively, consistent with the theoretical data. The BET surface area of

FexOy/TiO2-0.5, FexOy/TiO2-0.35, FexOy@TiO2-0.5 and FexOy@TiO2-0.35 was 2.9, 7.2, 42.1

and 31.3 m2/g, showing significant higher surface areas of FexOy@TiO2 nanocomposites (two-

step synthesis) than FexOy/TiO2 nanocomposites (one-step synthesis).

Fig 1 shows the XRD patterns of MNPs and magnetic-TiO2-nanocomposites. MNPs had

sharp and intense peaks of magnetite (Joint Committee of Powder Diffraction Standard,
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JCPDS, card No. 75–1609), indicating its composition of an iron oxide Fe3O4. From Scherrer’s

formula [34], the average crystallite size of MNPs was 13.2 nm, calculated from the most

intense peak corresponding to (311). For magnetic-TiO2-nanocomposites, the peaks of TiO2

were also observed at 2θ = 25.30˚ (101), 33.45˚ (110), 48.04˚ (200) and 62.68˚ (204) (Anatase,

syn, card No. 89–4203), and at 2θ = 27.51˚ (110), 36.04˚ (101), 41.19˚ (111), 44.14˚ (210) and

54.23˚ (211) (Rutile, card No. 01–1292). It suggested the successful coupling of TiO2 and

MNPs, although there was some slight phase transformation presence in MNPs. The crystallite

size of these magnetic TiO2 was 19.0 nm (FexOy/TiO2-0.5), 21.0 nm (FexOy/TiO2-0.35), 18.4

nm (FexOy@TiO2-0.5) and 16.8 nm (FexOy@TiO2-0.35), all of which were larger than MNPs.

It is worth noting that all the magnetic-TiO2-nanocomposites had the signals of hematite (syn,

card No. 89–8103) at the peaks 2θ = 24.22˚ (012) 33.24˚ (104), 35.74˚ (110), 54.22˚ (116) and

62.63˚ (214), suggesting the altered valence state of iron by titanium.

Fig 1. XRD patterns of MNPs and magnetic-TiO2-nanocomposites. Characteristic peaks of magnetite, hematite, rutile TiO2 and anatase TiO2 are marked with

blue circle, green triangle, yellow triangle and red square, respectively.

https://doi.org/10.1371/journal.pone.0221221.g001
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The elemental composition of the synthesized MNPs and magnetic-TiO2-nanocomposites

was analysed by XPS (Fig 2A). All the materials had iron and oxygen as core elements, owing

to the main peaks of Fe 2p (710.3 to 710.7 eV) and O 1s (529.3 to 529.9 eV). One additional Ti

2p peak (457.8 to 457.9 eV) appeared in the XPS spectra of magnetic-TiO2-nanocomposites.

Fig 2B to 2F further show the Fe 2p bands in the binding energy region of 705–730 eV. MNPs

showed the strongest intensity, followed by FexOy@TiO2 nanocomposites. All the spectra of

magnetic-TiO2-nanocomposites could fit into two Fe 2p3/2 peaks (around 710 eV and 723 eV)

and two Fe 2p1/2 peaks (around 711 eV and 725 eV) [35,36], suggesting the presence of both

Fe3O4 and Fe2O3 [37]. Furthermore, the satellite peak at 719 eV is the main identity of Fe2O3

or FeO [38]. Accordingly, Fe3O4 accounted for 52.1% of the total iron oxides in MNPs,

decreasing to 36.7%-47.2% in magnetic-TiO2-nanocomposites. In addition, nanocomposites

with higher Ti-deposition ratio had relatively higher proportion of Fe2O3, further proving the

change of iron valence state by titanium.

The saturation magnetism (Ms) of FexOy/TiO2-0.5, FexOy/TiO2-0.35, FexOy@TiO2-0.5 and

FexOy@TiO2-0.35 was 2.06, 1.40, 8.45 and 5.56 emu/g, respectively, as illustrated in Fig 2G. The

coercivity (Hc) and remanence magnetization (Mr) of all the magnetic-TiO2-nanocomposites

were zero, indicating that the hysteresis loops were coincident completely and these nanocom-

posites dispersed well in the absence of external magnetic field. Generally, the saturation magne-

tisms of FexOy@TiO2 nanocomposites were higher than FexOy/TiO2 ones, explained by the

incomplete coordination of iron atoms in the FexOy/TiO2 nanocomposites [5]. Additionally, the

saturation magnetism increased with the Fe/Ti ratio, owing to the strong link between Ms and

the percentage of Fe3O4 [39]. The saturation magnetisms of our synthesized magnetic-TiO2-

nanocomposites fell in the range of previously studied magnetic nanophotocatalysts (0.54–42.2

emu/g, Table 1), indicating their comparable magnetic recovery or separation efficiency.

3.2 R6G adsorption isotherm

The adsorption of organic molecules on catalysts is an important process during photocatalysis

[46], which is related to the R6G photocatalytic degradation efficiency by magnetic-TiO2-

nanocomposites. Our results indicated that all the magnetic-TiO2-nanocomposites synthe-

sized exhibited a significant R6G adsorption (S4 Fig). R6G aqueous concentrations decreased

dramatically in the first 50 min and became stable in 1–2 hours. After 6-hour adsorption, Fex-

Oy@TiO2-0.5 had the highest R6G adsorption capacity (1.65–18.62 mg/mg), followed by Fex-

Oy@TiO2-0.35 (1.72–16.6 mg/mg), FexOy/TiO2-0.5 (1.67–12.49 mg/mg) and FexOy/TiO2-0.35

(1.75–8.61 mg/mg). Bare MNPs showed similar adsorption performance comparing to the

synthesized magnetic-TiO2-nanocomposites with no significant difference (data not shown,

p> 0.05), indicating that the presence of Fe3O4 and Fe2O3 contributed to R6G adsorption but

did not change the adsorption performance.

Fig 3 illustrates the satisfied fitness of the four magnetic-TiO2-nanocomposites with Lang-

muir and Freundlich isotherms, respectively. From the isotherm parameters (Table 2), Lang-

muir adsorption described the adsorption mechanisms better except for FexOy/TiO2-0.5

according to R2 of each nanocomposite. Accordingly, FexOy@TiO2 nanocomposites presented

a better adsorption performance than Fe/Ti ones. Previous studies [47,48,49] suggested that

the molecular adsorption on catalysts is involved in the surface complexation and ion

exchange between the catalyst surface and the adsorbates. The functional groups located on

the surface of TiO2 include TiOH2
+, TiOH and TiO−[50], which are more abundant than

those on the surface of iron oxides [51]. The adsorption of R6G on nanocomposites is there-

fore dependent on the proportion of TiO2 on the surface, which is higher in FexOy@TiO2

nanocomposites.
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In the present study, pH change from 3 to 10 did not significantly affect the R6G adsorption

on magnetic-TiO2-nanocomposites (S5 Fig, p>0.05). pH has been considered as one of the

most important operational parameters in many photocatalytic systems, significantly affecting

the photocatalytic efficiency via changing the structure and adsorption-desorption process of

adsorbates. As the point of zero charge (PZC) for TiO2 is 6.25 [5], the changes in surface

charge of TiO2 at various pH values are expressed in Eqs (9) and (10) [50]. At pH lower than

PZC, the increasing proportion of TiOH2
+ led to the positively charged TiO2 surface, whereas

the negatively charged TiO- occurs at pH>PZC. Meanwhile, R6G has a logarithmic acid disso-

ciation constant (pKa) of 6.13, similar as the PZC for TiO2. At pH>6.13, R6G is primarily in

molecular state as the free electron pair on the primary amine group transfer to the aromatic

rings and behave hydrophobic, but change to hydrophilic at lower pH when the protonation

of nitrogen carries on in the secondary amine group of the xanthene ring [52]. Accordingly,

the electrostatic force interactions between TiO2 surface and R6G were reported to be weak

repulsion or attraction in a broad range of pH [53], showing similar adsorption performance.

TiOHþHþ ! TiOHþ
2
ðpH < 6:25Þ ð9Þ

TiOHþOH� ! TiO� þH2O ðpH > 6:25Þ ð10Þ

3.3 Contribution of adsorption, photolysis and photocatalysis to R6G

degradation

Under all pH conditions, R6G exhibited limited removal without light (approximately 14.1%,

S6 Fig) which was significantly lower than those with 253-nm UV-irradiation (averagely

73.58%, p<0.01, Fig 4). In addition, the R6G degradation efficiency with 460-nm or 540-nm

irradiation (S7 Fig) was similar as that without light. It proved the significant contribution of

photocatalysis to R6G degradation comparing to adsorption, and UV irradiation wavelength is

a critical factor triggering R6G photodegradation with the aid of magnetic-TiO2-nanocompo-

sites. It is worth mentioning that there was neglectable R6G degradation in treatments with

bare MNPs (data not shown), proving that neither Fe3O4 nor Fe2O3 contributed to R6G

photocatalysis.

Fig 2. Characteristics of magnetic-TiO2-nanocomposites. (A) XPS spectra of the synthesized MNPs and magnetic-

TiO2-nanocomposites. Fe2p region spectra: MNPs (B), FexOy/TiO2-0.5 (C), FexOy/TiO2-0.35 (D), FexOy@TiO2-0.5 (E)

and FexOy@TiO2-0.35 (F). (G) Magnetization curve for magnetic-TiO2-nanocomposites.

https://doi.org/10.1371/journal.pone.0221221.g002

Table 1. Saturation magnetisms of reported magnetic nanophotocatalysts.

Nanophotocatalyst Ms (emu/g) Reference

Ce/TiO2/NiFe2O4/diatomite 6.8 [40]

NiFe2O4/diatomite 8.0 [40]

Fe3O4/ZnO/Ag3VO4/AgI 6.26 [41]

Fe3O4/TiO2 7.5–42.2 [42]

Fe3O4@SiO2/TiO2 10.0–20.2 [42]

Fe3O4@SiO2@Iodine/TiO2 0.54–11.56 [43]

Fe3O4@SiO2@TiO2 15.9 [44]

Fe3O4@SiO2@TiO2/Pd 7.5 [44]

Fe2O3-TiO2 0.55–2.14 [45]

FexOy/TiO2 1.40–2.06 This work

Fe3xOy@TiO2 5.56–8.45 This work

https://doi.org/10.1371/journal.pone.0221221.t001
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However, the loss of R6G might be explained by either adsorption, photolysis or photocata-

lysis as previously reported [46], which needs to be distinguished to evaluate the actual R6G

photocatalysis performance.

Fig 3. Langmuir (dotted line) and Freundlich (solid line) adsorption isotherms of R6G on the synthesized magnetic-TiO2-nanocomposites. (A) FexOy/TiO2-0.5,

(B) FexOy/TiO2-0.35, (C) FexOy@TiO2-0.5, (D) FexOy@TiO2-0.35. Dots represent experimental data. Experimental conditions: magnetic-TiO2-nanocomposites

concentration, 0.4 g/L; initial R6G concentration from 1 to 25 g/L; pH, 7.0.

https://doi.org/10.1371/journal.pone.0221221.g003

Table 2. Parameters of Qmax and KL in Langmuir isotherm and KF and 1/n in Freundlich isotherm.

Isotherm Langmuir Freundlich

Parameters Qmax
(mg/g)

KL R2 KF
(mg/g)

1/n R2

FexOy/TiO2-0.5 10.21 0.5883 0.9863 2.92 0.4831 0.9958

FexOy/TiO2-0.35 8.09 0.9237 0.9943 3.10 0.3532 0.9036

FexOy@TiO2-0.5 25.51 0.2030 0.9997 3.96 0.6204 0.9459

FexOy@TiO2-0.35 15.29 0.3893 0.9862 3.41 0.5900 0.9816

https://doi.org/10.1371/journal.pone.0221221.t002
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S8 Fig summarizes the percentage of R6G loss during degradation, attributing to adsorp-

tion, photolysis and photocatalysis, respectively. Their contribution obviously varied across

magnetic-TiO2-nanocomposite types and concentrations. For instance, photolysis accounted

for averagely 45.5% of the total R6G loss by FexOy/TiO2-0.5, followed by adsorption (averagely

34.0%) and photocatalysis (averagely 20.5%). In contrast, photocatalysis had a higher contribu-

tion to R6G loss by FexOy@TiO2-0.5 (averagely 31.3%). With the increasing TiO2 proportion,

the contribution of photocatalysis significantly increased to 58.3% for FexOy/TiO2-0.35 and

63.1% for FexOy@TiO2-0.35, which were close to Chen’s report (56.7%-67.1%) [23]. These

results indicated that the photocatalytic performance of the synthesised magnetic-TiO2-nano-

composites increased with the Ti/Fe ratio. Since the photocatalytic active sites are mainly

located on TiO2 instead of iron oxides [43], higher percentage of TiO2 in magnetic-TiO2-

nanocomposites increases the photocatalysis capability. Iron- composing benefits the photoca-

talytic performance of TiO2 because transition metal ions can act as shallow charge traps in the

crystal structure, inhibiting the recombination of electron-hole pairs and prolonging their life-

time [54]. Although the impacts of transition metals on TiO2 catalytic performance strongly

depend on the composing ratio and are reported to peak at low level, all the previous studies

focused on the low Fe-composing ratio, normally less than 10 at.% [33,55]. Our synthesized

magnetic-TiO2-nanocomposites had the high Fe:Ti ratio (Fe-atomic percentage ranging from

25.4–35.5%). For the first time, our results suggested magnetic-TiO2-nanocomposites with

high Fe-composing ratio still have satisfied photocatalysis capability.

3.4 Photocatalytic performance of magnetic-TiO2-nanocomposites

R6G degradation curves in different treatments with the synthesized magnetic-TiO2-nano-

composites are illustrated in Fig 4. In blank controls (no magnetic-TiO2-nanocomposites),

R6G concentration decreased only 25.6%, 25.2% and 26.9% under acidic (pH�3), neutral

(pH�7) and basic (pH�10) conditions after 6-hour experiment. In contrast, treatments with

magnetic-TiO2-nanocomposites achieved much higher removal efficiency, averagely 73.6%

(pH�3), 77.6% (pH�7) and 69.5% (pH�10), respectively. Especially, Fe/TiO2-0.35 was the

most efficient one (removal efficiency 85.9%), followed by Fe@TiO2-0.35 (78.0%), Fe@TiO2-

0.5 (72.1%) and Fe/TiO2-0.5 (58.3%).

Fig 4. Impacts of pH on R6G photocatalysis performance. (A) pH = 3, (B) pH = 7, (C) pH = 10. Dotted lines represent the change of R6G concentration under UV-

irradiation without magnetic-TiO2-nanocomposites, and solid lines represent R6G photodegradation dynamics under UV-irradiation with magnetic-TiO2-

nanocomposites. Experimental conditions: UV-irradiation, 253 nm (20 W); magnetic-TiO2-nanocomposites concentration, 0.4 g/L; initial R6G concentration, 10 mg/L.

Different small letters after each line indicate significant difference (Duncan’s test, p< 0.05) among treatments (n = 3).

https://doi.org/10.1371/journal.pone.0221221.g004
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Our results showed slightly higher R6G photodegradation efficiencies under neutral pH

conditions than acidic and basic treatments. It might be explained by the higher R6G adsorp-

tion on magnetic-TiO2-nanocomposites as mentioned above. As adsorption is a key step for

photocatalysis [46], more R6G absorbed on magnetic-TiO2-nanocomposites under neutral pH

therefore contribute to higher R6G removal. A similar result was also reported that the highest

efficiency was obtained at the neutral condition (pH = 7.4) during the phenol photodegrada-

tion process with TiO2 as photocatalyst [50].

The impacts of magnetic-TiO2-nanophotocatalyst concentration on R6G photocatalysis

were investigated under neutral pH condition (pH�7), as shown in S9 Fig. For single kind of

nanophotocatalyst, the initial concentration influence to R6G degradation significantly. For

instance, the R6G removal efficiency in FexOy/TiO2-0.5 treatment was 31.86% (0.2 g/L),

48.06% (0.4 g/L) and 39.09% (0.8g/L), respectively (p<0.05). It ranged from 74.63% to 92.50%

for FexOy/TiO2-0.35 (p<0.05 except for 0.4 g/L vs. 0.8 g/L, p = 0.084), 40.72% to 60.49% for

FexOy@TiO2-0.5 (p<0.05 except for 0.2 g/L vs. 0.4 g/L, p = 0.988) and 72.22% to 88.97% for

FexOy@TiO2-0.35 (p<0.05). There was no significant difference in R6G removal efficiency

between Fe/TiO2 and FexOy@TiO2 nanophotocatalysts (p = 0.329), hinting similar photocata-

lytic efficiency of magnetic-TiO2-nanocomposites synthesized by one-step and two-step

methods.

3.5 R6G photodegradation kinetics

The photocatalysis kinetics of R6G by different magnetic-TiO2-nanocomposites are illustrated

in Fig 5. R6G degradation followed the first-order kinetics (correlation coefficient above 0.9),

consistent with previous study [52]. For two-step synthesized magnetic-TiO2-nanocomposites,

R6G photodegradation rate constant (kobs) ranged from 0.0816 to 0.1351 h-1 for FexOy@TiO2-

0.5, increasing to 0.1954–0.3454 h-1 for nanophotocatalysts with higher Ti proportion (Fex-

Oy@TiO2-0.35). They were similar with the degradation rate constant of one-step synthesized

magnetic-TiO2-nanophotocatalysts with no significant difference (p = 0.329), 0.0643–0.0939

h-1 for FexOy/TiO2-0.5 and 0.2225–0.4723 h-1 for FexOy/TiO2-0.35.

Among them, FexOy@TiO2-0.35 and FexOy/TiO2-0.35 nanocomposites showed higher

photocatalytic activities than previously reported methylene blue degradation by magnetic-

nanophotocatalyst Ni-Cu-Zn ferrite@SiO2@TiO2@Ag [23] (kobs from 0.1326 to 0.2544 h-1). It

is worth noting that the dosage of magnetic-TiO2-nanocomposites did not significantly change

the kobs, possibly attributing to the decrease of surface active sites as nanophotocatalysts aggre-

gate at elevated concentration, or the declined light utilization efficiency caused by the increas-

ing opacity level and scattering of light at high nanocomposite concentration [56].

3.6 Reusability of magnetic-TiO2-nanophotocatalysts for R6G

photodegradation

Reusability is a critical factor for evaluating the practical feasibility of nanophotocatalysts in

industrial applications. After recycling the synthesized magnetic-TiO2-nanocomposites and

reusing them for R6G photocatalytic degradation five times, our results proved their satisfac-

tory stability in photocatalysis, as illustrated in Fig 6. The photocatalytic activities of all the

magnetic-TiO2-nanocomposites remained unchanged or even increased in all the cycles. After

5 cycles, the R6G removal efficiency was up to 97.30% to 98.47%, and there was no significant

difference between the four magnetic-TiO2-nanocomposites. Additionally, R6G degradation

still followed the first-order kinetics and the photodegradation rate constant kobs was 0.1434–

1.088 h-1 (FexOy/TiO2-0.5), 0.2380–1.1486 h-1 (FexOy/TiO2-0.35), 0.2554–0.9177 h-1 (FexOy@-

TiO2-0.5) and 0.3285–1.1411 h-1 (FexOy@TiO2-0.35), respectively. The increasing instead of
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decreasing kobs during reuse was also reported by some previous studied and might be

explained by the activation of photocatalytic active sites [57,58,59].

Numerous studies have attempted to synthesize and reuse different types of magnetic nano-

photocatalysts in removing dyes, as listed in Table 3. For industrial application, both photoca-

talytic capability and recovery ratio are important to achieve cost-effectiveness. Nevertheless,

none of the studies mentioned above have provided data support. Here, we evaluated the

recovery ratio for all the synthesized magnetic-TiO2-nanocomposites, which were acceptable

after 5-time reuse and achieved 68.83% for FexOy/TiO2-0.5, 65.38% for FexOy/TiO2-0.35,

80.32% for FexOy@TiO2-0.5 and 77.84% for FexOy@TiO2-0.35. Our result indicated long life-

cycles of these synthesized magnetic-TiO2-nanocomposites, and the recovery ratio might be

further improved by increasing Ms to enhance magnetic separation efficiency and prolong

their life-time.

Of all the concerns to apply nanophotocatalysts for industrial applications, including the

extension of excitation wavelength, viability of magnetic separation, photocatalytic activity

and cost-effectiveness in nanocomposite synthesis, our study attempted to reduce the synthesis

Fig 5. Impacts of initial magnetic-TiO2-nanocomposite concentration on R6G photodegradation kinetics. (A) FexOy/TiO2-0.5, (B) FexOy/TiO2-0.35, (C)

FexOy@TiO2-0.5 and (D) FexOy@TiO2-0.35. Experimental conditions: UV-irradiation, 253 nm (20 W); initial R6G concentration, 10 mg/L; initial magnetic-TiO2-

nanocomposites concentration, 0.2 mg/L, 0.4 mg/L and 0.8 mg/L, respectively; pH, 7.0.

https://doi.org/10.1371/journal.pone.0221221.g005
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Fig 6. R6G degradation performance after reusing magnetic-TiO2-nanocomposites 5 times. Dotted lines represent R6G concentration dynamics in blank treatment

without magnetic-TiO2-nanocomposites and solid lines represent R6G photodegradation dynamics under UV-irradiation with magnetic-TiO2-nanocomposites.

Experimental conditions: UV-irradiation, 253 nm (20 W); initial magnetic TiO2 nanocomposites concentration, 0.4 g/L; initial R6G concentration, 10 mg/L; pH, 7.0.

https://doi.org/10.1371/journal.pone.0221221.g006

Table 3. Photocatalytic performance of magnetic photocatalysts after reuse.

Catalyst or reaction system Pollutants Irradiation Removal efficiency Reuse Reaction Time Reference

Fresh Final

Ni-Cu-Zn Ferrite@SiO2@TiO2@Ag Methylene blue Simulated sunlight 87.8% 46.2% 5 6 h [23]

TiO2-FeZ and H2O2 Diclofenac Simulated sunlight ac. 89% ac. 77% 5 60 min [62]

Ce/TiO2/NiFe2O4/diatomite Oxytetracycline Visible light 98.0% 96.1% 6 4 h [40]

Fe3O4@SiO2@TiO2/Pd-Ag Rhodamine B UV irradiation 96.1% 84.0% 6 40 min [44]

Fe3O4@SiO2@TiO2/Pd Rhodamine B UV irradiation 84.0% 77.0% 5 40 min [44]

Fe3O4@C@CdS Rhodamine B Visible light ac. 95% ac. 86% 6 50 min [63]

Fe3O4@TiO2 Rhodamine B UV irradiation ac. 80% ac. 74% 6 - [64]

TiO2/montmorillonite/Fe3O4 Methylene blue UV irradiation 94.0% 90.0% 6 80 min [21]

γ-Fe2O3@SiO2@TiO2-Ag Methyl orange UV irradiation 84.5% 82.0% 18 60 min [65]

ZnFe2O4/SrFe12O19 Methylene blue UV-vis. irradiation 96.6% 70.6% 5 60 min [66]

Carbon-nanotubes/Fe3O4-ZnO Methyl orange UV irradiation ac. 100% ac. 90% 2 45 min [67]

Fe3O4@C@Cu2O Rhodamine B Visible light ac. 100% ac. 95% 6 - [68]

Barium-ferrite/SiO2/TiO2 Procion red UV irradiation ac. 60% ac. 62% 3 80 min [69]

Heat-treated-BF/SiO2/TiO2 Procion red UV irradiation ac. 80% ac. 80% 3 80 min [69]

Ag-TiO2/SiO2/Fe3O4 Orange II UV irradiation ac. 90% ac. 80% 3 20 min [70]

FexOy/TiO2-0.5 R6G UV irradiation 45.0% 98.4% 5 6 h This work

FexOy/TiO2-0.35 R6G UV irradiation 61.6% 98.5% 5 6 h This work

FexOy@TiO2-0.5 R6G UV irradiation 67.4% 97.3% 5 6 h This work

FexOy@TiO2-0.35 R6G UV irradiation 75.9% 98.3% 5 6 h This work

https://doi.org/10.1371/journal.pone.0221221.t003
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time and chemical consumption by one-step facile synthesis. More studies can be introduced

from this basis to target other objectives. For instance, iron-composing was reported to extend

the excitation wavelength of TiO2 nanophotocatalysts [60] or improve their photocatalytic effi-

ciency [61], and the magnetism of iron-composing TiO2 nanophotocatalysts can be altered by

synthesis modification. Accordingly, our one-step facile synthesis of magnetic-TiO2-nanopho-

tocatalysts with high iron-composing ratio provides opportunities for synthesizing similar

magnetic-TiO2-nanocomposites with new features for further industrial applications.

4. Conclusion

In the present study, magnetic-TiO2-nanocomposites with high iron-composing g ratio were

prepared by a one-step coprecipitation method without any pre-synthesized precursor. Com-

paring to conventional two-step synthesized TiO2-coating magnetic-nanocomposites with

MNPs as precursor, we successfully decreased the synthesis time from 165 minutes to 75 min-

utes. Our results also proved that one-step synthesised magnetic-TiO2-nanocomposites had

satisfied R6G adsorption capability, photodegradation efficiency and photodegradation rate

constant. The photocatalytic performance was dependent on Fe/Ti atomic ratio, and FexOy/

TiO2-0.35 was the most feasible nanophotocatalysts for industrial application. With facile syn-

thesis process, comparable photocatalytic capability, acceptable viability of magnetic separa-

tion and satisfactory reusability, this synthesis method provides an alternative approach to

prepare magnetic-TiO2-nanophotocatalysts feasible for industrial practices.
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