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Images generated by a microscope are never a perfect representation of the biological specimen. Microscopes and specimen
preparation methods are prone to error and can impart images with unintended attributes that might be misconstrued as
belonging to the biological specimen. In addition, our brains are wired to quickly interpret what we see, and with an
unconscious bias toward that which makes the most sense to us based on our current understanding. Unaddressed errors in
microscopy images combined with the bias we bring to visual interpretation of images can lead to false conclusions and
irreproducible imaging data. Here we review important aspects of designing a rigorous light microscopy experiment:
validation of methods used to prepare samples and of imaging system performance, identification and correction of errors,
and strategies for avoiding bias in the acquisition and analysis of images.

Introduction
Modern light microscopes are being pushed past their theoret-
ical limits and are now routinely used not just for qualitative
viewing but tomake quantitativemeasurements of fluorescently
labeled biological specimens. While microscopy is an incredibly
powerful and enabling technology, it is important to keep in
mind that when we look at microscopy images we are not
looking at the specimen. Typically, in cell biology, the biological
sample is first manipulated to introduce fluorophores, usually
conjugated to a molecule of interest (Allan, 2000; Goldman et al.,
2010). A microscope generates a magnified optical image of the
spatial distribution of the fluorophores in the specimen (Inoué
and Spring, 1997; Murphy and Davidson, 2012). The optical
image is recorded by an electronic detector (e.g., a camera) to
create a digital image consisting of a grid of pixels with assigned
intensity values (Wolf et al., 2013; Stuurman and Vale, 2016). As
a fluorescence microscopy image is therefore a digital repre-
sentation of an optical image of the distribution of fluorophore
that was introduced into the specimen, we must consider
sources of error in the process and if the image accurately
represents the biological phenomena being studied.

For quantitative microscopy, it is critical to validate that a
method is capable of detecting the target and providing an ac-
curate measurement. Imaging systems are complex and prone to
systematic error that rarely presents in a way that is easily

identified during routine use (Fig. 1, A and B; Hibbs et al., 2006;
North, 2006; Zucker, 2006; Joglekar et al., 2008; Waters, 2009;
Wolf et al., 2013). Therefore, researchers must consider the
types of error that might affect interpretation of imaging data,
use known samples and control experiments to validatemethods
and identify errors, and test approaches for error correction.
Microscopes marketed or perceived as state-of-the-art or easy to
use are still prone to error; there does not exist a microscope,
commercial or home-built, that generates images free from all
sources of error or that works for every quantitative application.
While developments in techniques such as super-resolution and
light-sheet microscopy can overcome some previous limitations,
they also introduce additional sources of error and require rig-
orous validation (Hibbs et al., 2006; North, 2006; Joglekar et al.,
2008;Waters, 2009;Wolf et al., 2013; Lambert andWaters, 2017).

Microscopy experiments are further complicated by bias
inherent to visual assessment of images (Lee et al., 2018). We are
all subject to bias in our perception of the meaning of images,
patterns within images, and interpretation of data in general
(Nickerson, 1998; Russ, 2004; Lazic, 2016). Due to the inherent
unconscious nature of bias, we cannot reliably choose to avoid
innate biases. Experiments should therefore be designed to
minimize the impact of bias, which can accumulate through
every step of an experiment that involves visual inspection and
decision-making, from image acquisition to analysis.
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Accuracy of imaging data and reproducibility of an experi-
ment are related but distinct (Lazic, 2016). We define accurate
imaging data to mean that the image and resulting conclusions
correctly represent the specimen and reproducibility as the
ability to repeatedly generate the same results using the same
materials and methods. An experiment may generate accurate
data that cannot be reproduced due to, for example, inadequate
validation or methods reporting. Conversely, an experiment
may be reproducible but inaccurate if systematic error in the
method goes uncorrected. Additionally, sources of error vary
between microscopes (Murray et al., 2007; Murray, 2013; Wolf
et al., 2013), further contributing to irreproducibility if ignored.

Our goal in this review is to encourage skepticism of the
accuracy of microscopy images and appreciation of the effects of
bias on microscopy data. Rather than attempt to address the
many different types of microscopy experiments used in cell
biology research, we provide guidelines that apply to most mi-
croscopy experiments and give examples of how they might be
implemented. We also provide select educational resources to
serve as starting points for those seeking to learn more about
specific microscopy techniques (Table 1). We discuss some
common sources of systematic error in microscopy images,
demonstrate how errors can lead to erroneous conclusions, and
reviewmethods of identifying and correcting errors. We discuss
steps in microscopy experiments that are subject to bias and the
importance of blinding and automation in reducing bias in im-
age acquisition and analysis. This review is focused on issues
andmisconceptions we commonly encounter when advising and
training postdoctoral fellows and graduate students in our mi-
croscopy core facility and courses, so principal investigators
should take note that the topics presented here represent areas
where trainees may need guidance and education.

Validation and error correction
Validation of methods using known samples and controls dem-
onstrates that a tool or technique can be used to accurately

detect, identify, and measure the intended target. Robust and
reproducible microscopy experiments require validation of the
imaging protocol, the specific technique used to fluorescently
label the sample, and the type of imaging system used to mea-
sure the intensity and spatial distribution of fluorescence
(Zucker, 2006; Murray et al., 2007; Joglekar et al., 2008; Wolf
et al., 2013). Validationmay reveal that a given approach will not
work for the intended purpose and an alternative is needed; or,
validation may demonstrate that image corrections or a change
of optics are needed to correct systematic errors.

Labeling method and sample prep
It cannot be assumed that an antibody, organic dye, or fluor-
escent protein (FP) will perform as an inert, specific label. All
methods of labeling biological specimens with fluorophores
have the potential for nonspecificity and for perturbation of the
localization or function of the labeled component or associated
structures, binding partners, etc. (Couchman, 2009; Burry,
2011; Bosch et al., 2014; Ganini et al., 2017). Immunofluores-
cence and FP conjugates have become so ubiquitous in cell bi-
ology that validation of binding specificity and that the biology
is not affected by the label are frequently omitted (Freedman
et al., 2016). In our experience, these issues are often more
problematic than realized, and there are many published ex-
amples of commonly used probes introducing artifacts under
specific experimental conditions (Allison and Sattenstall, 2007;
Couchman, 2009; Costantini et al., 2012; Landgraf et al., 2012;
Schnell et al., 2012; Bosch et al., 2014; Norris et al., 2015; Ganini
et al., 2017).

Autofluorescence. Many endogenous biological components
are fluorescent (e.g., Aubin, 1979; Koziol et al., 2006). Unlabeled
controls (samples with no added fluorophore, but otherwise
treated identically) are required to validate that fluorescence is
specific to the intended target and that autofluorescence is not
misinterpreted as the fluorescent label (for a famous example,
see De Los Angeles et al., 2015).

Figure 1. Image errors can lead to incorrect results. (A)
Bleed-through causes a false-positive colocalization result.
Green and red beads were mixed and mounted together.
There are no beads in these samples/images that are labeled
with both green and red dye. With this filter and sample
combination, there is significant bleed-through from the
green beads into the red channel (see green circles). Pear-
son’s R for colocalization is 0.67. Since no pixel that contains
green fluorophore also contains red fluorophore, there
should be no correlation. (B) Channel misregistration causes
a false-negative colocalization result. Tetraspeck beads are
labeled with four dyes, including dyes imaged in the green
and red channels here. Because each bead is labeled with
both dyes, there should be complete colocalization between
channels, with an expected Pearson’s R of 1. However, the
imaging system has introduced significant misregistration
between the channels, leading to a Pearson’s R of 0.66. (C)
Nonspecific dye binding leads to a false-positive result. A
significant level of nonspecific binding of SNAP dye to cells
containing no SNAP tag (WT + SNAP dye) looks qualitatively
similar to both cells containing a SNAP tag fused to the POI
and immunofluorescence against POI. White dotted lines
indicate cell outlines.
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Antibodies. There are currently no standardized require-
ments for validation of specificity of commercial antibodies
(Couchman, 2009; Uhlen et al., 2016). Antibody behavior varies
in different contexts; an antibody that binds to denatured pro-
teins on a Western blot may not bind to chemically fixed pro-
teins in a biological sample (Willingham, 1999). Even if specificity
has been validated by a company or another laboratory, antibody
validation should be repeated in each specimen type. Despite its
importance, antibody validation is not the norm (Freedman et al.,
2016). For well-characterized targets, validation may be as simple
as comparison to previous descriptions. When characterizing

localization of a novel epitope, the bar should be much higher.
Multiple antibodies against an epitope can be compared for a
similar localization pattern. Localization can also be compared
with an FP conjugate (Schnell et al., 2012; Stadler et al., 2013).
Gene-of-interest knockout and protein expression knock-
down provide excellent specificity controls (Willingham,
1999; Burry, 2011).

Secondary antibody specificity must be validated with
“secondary-only” controls, in which primary antibody is left out
of the labeling protocol (Hibbs et al., 2006; Burry, 2011; Manning
et al., 2012). Nonspecific secondary antibody binding may

Table 1. Select educational resources

Topic Resources

Microscopy texts • Book: Video Microscopy, Inoué and Spring, 1997

• Book: Handbook of Biological Confocal Microscopy, Pawley, 2006b

• Book: Fundamentals of Light Microscopy and Electronic Imaging, Murphy and Davidson, 2012

Microscopy courses • A comprehensive listing of microscopy courses can be found at https://www.microlist.org

• iBiology Microscopy Series (https://www.ibiology.org/online-biology-courses/microscopy-series/;
a free online microscopy course)

• Microcourses YouTube channel: Short educational videos on microscopy

• Course: Quantitative Imaging: From Acquisition to Analysis, Cold Spring Harbor Laboratory, NY

• Courses and workshops offered by the European Molecular Biology Organization in Europe

• Courses and workshops offered by the Royal Microscopical Society in the United Kingdom

• Course: Bangalore Microscopy Course, National Centre For Biological Sciences, Bangalore, India

Quantitative microscopy • Review: Waters, 2009. An introduction to sources of error in microscopy

• Review: Wolf et al., 2013. Protocols for error detection and correction

• Book: Quantitative Imaging in Cell Biology, Waters and Wittmann, 2014

Live-cell imaging • Review: Ettinger and Wittmann, 2014. A practical introduction to fluorescence live cell imaging

• Review: Magidson and Khodjakov, 2013. Strategies for reducing photodamage

• Book: Live Cell Imaging: A Laboratory Manual, Goldman et al., 2010

Colocalization • Review: Bolte and Cordelières, 2006. Validation and error correction in colocalization image
acquisition and analysis

Ratiometric imaging, including Förster Resonance
Energy Transfer (FRET)

• Reviews: Hodgson et al., 2010; O’Connor and Silver, 2013; Spiering et al., 2013; Grillo-Hill et al.,
2014. Validation and error correction in image acquisition and analysis of ratiometric probes

Fluorescence Recovery After Photobleaching (FRAP) • Reviews: Phair et al., 2003; Bancaud et al., 2010. Protocols for acquisition, correction, and analysis
of FRAP data

Single-molecule imaging • Book: Single-Molecule Techniques: A Laboratory Manual, Selvin and Ha, 2008

Specimen preparation • Book: Protein Localization by Fluorescence Microscopy: A Practical Approach, Allan, 2000

• Review: Shaner, 2014. Protocol for testing FPs in mammalian cells

• Review: Rodriguez et al., 2017. Summary of recent developments and new directions in the FP field

• Website: http://fpbase.org. For choosing and comparing FPs

Image analysis • Review: Eliceiri et al., 2012. A general review of steps in image analysis; also includes options for
free and open-source image analysis software

• Website: https://image.sc. An online forum for questions and discussions on image analysis and
open source software

• eBook: Analyzing Fluorescence Microscopy Images With ImageJ, Bankhead, 2016

Experimental design • Book: Experimental Design for Laboratory Biologists: Maximizing Information and Improving
Reproducibility, Lazic, 2016

• Book: Experimental Design for Biologists, Glass, 2014
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appear as bright puncta or diffuse fluorescence and can localize
to particular compartments or structures that can be mis-
construed as biological findings. Secondary antibodies may
exhibit nonspecific binding in some cell types but not others,
and therefore must be controlled for in every cell type used.
Secondary antibodies generated in the same species as the
specimen (e.g., using an anti-mouse secondary antibody in a
mouse tissue) are highly likely to exhibit nonspecific binding
and require specialized techniques (Goodpaster and Randolph-
Habecker, 2014). Nonspecific secondary antibody binding is
almost always nonuniform, and therefore cannot be accurately
“subtracted” computationally. Instead, if detected in secondary-
only controls, nonspecific binding should be reduced by using
different secondary antibodies or adjusting secondary antibody
incubation conditions (concentration, duration, or tempera-
ture), blocking (type, temperature, or duration), and/or the
number and length of washes (Allan, 2000).

FPs. In some cases, FPs have been shown to significantly
perturb biological systems (Allison and Sattenstall, 2007;
Landgraf et al., 2012; Swulius and Jensen, 2012; Han et al., 2015;
Norris et al., 2015; Ganini et al., 2017; Sabuquillo et al., 2017).
Fusing an FP to a protein-of-interest (POI) may alter or inhibit
function of the POI or its ability to interact with binding part-
ners (Shaner et al., 2005; Snapp, 2009). Expressing an FP-
conjugated POI in addition to an endogenous POI may affect
biological processes due to higher POI levels. In addition, FP
conjugates must compete with endogenous protein for binding
sites, etc., which can affect localization and behavior of FP
conjugates or endogenous proteins (Han et al., 2015). FPs de-
scribed as monomeric (often denoted with “m”) may retain af-
finity, especially if fused to a POI with the ability to oligomerize
(Snapp, 2009; Landgraf et al., 2012). FP maturation and the
fluorescence reaction both generate reactive oxygen species that
can damage biological material (Remington, 2006; Ganini et al.,
2017). Despite these potential problems, FPs are often used
without adverse effects, but validation of FP conjugates is ab-
solutely required.

The careful selection of an appropriate FP is essential (Snapp,
2009). Online resources like the Fluorescent Protein Database
(http://fpbase.org) can be used with the primary literature to
choose multiple FPs with specifications that match your appli-
cation (Lambert, 2019). FPs exhibit environmental sensitivities
and therefore must be tested in your experimental system
(Shaner et al., 2005; Snapp, 2009; Ettinger and Wittmann, 2014;
Costantini et al., 2015; Heppert et al., 2016). Comparing multiple
options increases chances of identifying FPs that performwell in
important parameters for your experiments (e.g., brightness,
maturation time, Förster resonance energy transfer efficiency,
etc.) and of detecting FP-related artifacts. Ideally, experiments
should be performed to completion with multiple FPs, since FP-
related artifacts may present at any step in an experimental
protocol. Testing FPs before generating CRISPR or mouse lines,
or other reagents that require significant time and resources, is
particularly advisable.

Self-labeling proteins (HALO, SNAP, and CLIP). These tags can
be a useful hybrid approach, combining the specificity of ge-
netically encoded fusion proteins with the brightness and

photostability of organic dyes (Keppler et al., 2003; Los et al.,
2008). However, all tags and ligands must be validated in your
experimental system. Some SNAP ligands, for example, have
been shown to exhibit significant nonspecific binding (Bosch
et al., 2014). Similar to secondary antibodies, a control with a
SNAP ligand in cells lacking any SNAP-tagged POI must be in-
cluded to ensure the specificity of signal (Fig. 1 C).

Fixed versus live. Fixation and extraction/permeabilization
artifacts can alter biological structures and localization patterns
(Melan and Sluder, 1992; Halpern et al., 2015; Whelan and Bell,
2015). There is no one immunocytochemistry protocol that
works well for every specimen and probe. Duration and con-
centration of multiple fixatives and extraction/permeabilization
reagents should be tested for each primary antibody and cell
type (Allan, 2000). Fixation can decrease or even eliminate
fluorescence of FPs, so protocols should be validated by com-
paring intensity of FPs in live and fixed cells (Johnson and
Straight, 2013). Comparing FP localization before and after fix-
ation may also help identify fixation artifacts. When imaging
live samples, phototoxicity can alter biological processes (Icha
et al., 2017; Laissue et al., 2017). Live cell imaging controls with
no fluorescence illumination should be performed to validate
that the image acquisition protocol does not cause detectable
cell damage (Magidson and Khodjakov, 2013; Ettinger and
Wittmann, 2014).

Imaging system validation
Once an “expected” biological structure becomes visible in the
acquired image, it is common to assume that there is no need for
further validation. However, accuracy of microscopy images
cannot be assumed and must be validated. Routine imaging
systemmaintenance and performance testing are recommended
(Petrak and Waters, 2014), but even well-maintained imaging
systems introduce errors into images, which may have profound
effects on data interpretation (Fig. 1, A and B). To validate an
imaging system, use known samples designed to reveal sys-
tematic (i.e., repeatable) errors and then correct the errors in
images of biological samples. Validating that the imaging system
can detect the target may also be necessary.

Imaging system validation generally consists of the following:
(1) collecting images of known samples (Table 2); (2) identifying
systematic errors present in images of known samples (Fig. 2);
(3) correcting for errors, either computationally or by adjusting
specimens, optics, or acquisition parameters (Figs. 2 and 3); and
(4) testing correction methods (Figs. 2, 3, and 4). There is no one
known sample or correction method that will reveal and correct
all possible errors. Instead, researchers should assess whether a
particular error may affect interpretation of their experimental
results, and test error correctionmethods. It is critical to validate
correction methods; performing inaccurate corrections can
make matters even worse (Fig. 4). Errors vary from one mi-
croscope to the next, andwhen different optics orfilters are used
in the same microscope. Neglecting to correct systematic errors
in images can therefore result in inaccurate and irreproducible
data (Fig. 1, A and B). Common sources of error in microscopy
images are discussed thoroughly elsewhere (Stelzer, 1998; Hibbs
et al., 2006; North, 2006; Zucker, 2006; Waters, 2009; Wolf
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et al., 2013). Here, we discuss examples of validation of detec-
tion, illumination, and optics important to consider in many
experiments.

Detection. Microscopes vary widely in efficiency of photon
detection (Swedlow et al., 2002; Pawley, 2006a; Murray et al.,
2007). Any given imaging system requires a minimum level of
fluorescence intensity in order for the fluorescence to be de-
tectable, and lack of detection may be misinterpreted as absence
of fluorophore. Detection of autofluorescence in unlabeled con-
trols can be used to establish optics and acquisition parameters
capable of detecting low fluorescence levels and to validate re-
sults in which no fluorophore is detected.

The detection limit is in part determined by the measure-
ment error of the detector, often referred to as detector noise
(e.g., read noise; Lambert and Waters, 2014). Noise causes fluc-
tuations in intensity both above and below the ground truth value,
meaning that it cannot be subtracted from an image. The mag-
nitude of these fluctuations limits both the minimum intensity
and the smallest change in intensity that can be detected. Detector
noise properties vary between detector types (e.g., charge-coupled
device cameras, sCMOS cameras, and photo-multiplier tubes;
Lambert and Waters, 2014; Stuurman and Vale, 2016). Most de-
tectors also add a constant “offset” to the intensity values in the
image to prevent data clipping at low intensities. The offset
can be measured by acquiring an image with no light directed
to the detector and must be subtracted from all intensity
measurements.

Nonuniform illumination. Fluorescence intensity depends on
illumination intensity as well as the fluorophore distribution
and inherent brightness, and no microscope has perfectly uni-
form illumination across the field of view. We therefore cannot
assume that differences in fluorescence intensity across images
are due to changes in fluorophore without measuring the illu-
mination distribution. The effect of nonuniform illumination
may not be obvious by qualitative assessment but can result in
inaccurate quantitative measurements of intensity (Fig. 2 A) and
make accurate image segmentation (e.g., thresholding) difficult.

To reveal the illumination pattern, uniformly fluorescent
samples are used to generate images in which intensity varia-
tions across the field of view are due to illumination variation,
not variation in fluorophore concentration (Fig. 2 A and Table 2;
Model, 2006; Zucker, 2006; Wolf et al., 2013). Model and
Burkhardt (2001) introduced a clever, inexpensive, and easily
prepared sample for measuring illumination uniformity that we
find performs more consistently and accurately for quantitative
applications than other commonly used samples (e.g., dye-
infused plastic slides). Images of uniform samples are referred
to as “flatfield images” (If) and are used to correct images of
biological specimens (Ib) computationally (Fig. 2 A;Model, 2006)
or to identify image subregions with minimal illumination
variation, to which acquisition or analysis can be restricted.
Computational corrections of Ib are performed using image
arithmetic. Image intensity is a product of illumination intensity
and fluorophore concentration, so dividing Ib by If on a pixel-by-
pixel basis reveals fluorophore intensity distribution (Bolte and
Cordelières, 2006; Model, 2006; Hodgson et al., 2010; Spiering
et al., 2013). The flatfield image must be validated; correction
with an inaccurate flatfield image can increase error in the
corrected image (Fig. 4 C).

Channel (mis)registration. Images of different wavelengths
(e.g., fluorescence channels) collected from the same sample will
not align perfectly in XY or Z, due to differences between fluo-
rescence filters (Waters, 2009) and/or chromatic aberration in
lenses (Keller, 2006; Ross et al., 2014). Multicamera and image-
splitting systems can introduce additional XY and Z shifts.
Channel misregistration due to the imaging system will be re-
peatable in images acquired with a given set of optics (e.g.,
combination of filter sets and objective lens) but will vary when
optics are changed. A known sample can be used to measure and
correct channel misregistration (Fig. 2 B and Table 2; Hodgson
et al., 2010; Wolf et al., 2013). For a given imaging system, the
extent of the shift may be negligible for some experiments;
channel misregistration much smaller than distances being
measured may not affect results. When measuring colocalization

Table 2. Useful known samples for imaging system validation

Sample Error References for correction protocols

(a) Fluorescent microspheres (beads) that are below the
diffraction resolution limit of the imaging system

Optical aberrations Hiraoka et al., 1990; Goodwin, 2013

(b and c) Multi-wavelength beads below the diffraction
resolution limit of the imaging system

Channel registration Hibbs et al., 2006; Spiering et al., 2013;
Wolf et al., 2013

(d) Stage micrometer In magnification/pixel
size

Wolf et al., 2013

Flatfield slide Nonuniform
illumination

Model, 2006

Single-labeled biological sample Bleed-through Spiering et al., 2013

Bolte and Cordelières, 2006

Stable biological sample Photobleaching Bancaud et al., 2010

Unlabeled biological sample Autofluorescence Hibbs et al., 2006

We used (a) Molecular Probes FluoSpheres; (b) for high-resolution imaging, Invitrogen TetraSpeck Microspheres, 0.1 µm; (c) for low-resolution imaging,
Invitrogen FocalCheck Beads, 6 µm or 15 µm; and (d) MicroScope World, 25 mm KR812.
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Figure 2. Measurement and computational correction of image errors. Known samples are used to measure systematic errors in microscopy images.
From the measurement, a correction can be generated, tested, and applied to experimental images. Correction procedures are summarized here and some
steps (e.g., background subtraction) have been omitted. Please refer to the main text for references that cover these corrections in more detail. (A) Illumination
nonuniformity. Concentrated dye is mounted between a coverslip and a slide and sealed. This dye, if sufficiently concentrated, acts as a thin, uniformly
fluorescent sample (see Model and Burkhardt, 2001; Model, 2006). This “flat-field image” can be used to determine a region with minimal illumination variation
(green box) or can be used to correct experimental images. The correction is tested by applying to a biological sample of roughly uniform intensity across the
field of view, here a kidney section labeled with AlexaFluor568 phalloidin. Line scans below each image show intensity along the indicated white dotted line.
(B) Channel registration. Tetraspeck beads are infused with four fluorescent dyes, including the green and red dyes imaged here (pseudo-colored green and
magenta, respectively). Because the images of the beads in each channel should overlay perfectly, they can be used to generate a transformation matrix that
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between objects below the resolution limit, however, even very
small shifts may result in inaccurate data (Fig. 1 B).

Channel registration is measured using samples in which the
distribution of fluorophore in each channel is known to be
identical, such as beads infused with multiple fluorescent dyes
(Fig. 2 B and Table 2). Lateral channel registration can be cor-
rected computationally (Fig. 2 B; Hodgson et al., 2010;Wolf et al.,
2013). Axial (Z) channel misregistration can be corrected for
computationally when a 3D z-series of images is collected or can
be compensated for by using a motorized focus motor to move
the distance of the measured shift between acquisition of
channels.

Bleed-through. While it is commonly appreciated that signals
from one fluorophore may bleed through filters designed to
image another fluorophore, the extent to which this may occur
even for commonly used fluorophores is underappreciated
(Bolte and Cordelières, 2006; Hodgson et al., 2010; Spiering
et al., 2013). Testing and correcting for bleed-through are es-
pecially important for colocalization experiments, where it can
lead to false positives (Fig. 1 A). Bleed-through is measured using
“single-labeled controls”: samples labeled with only one fluo-
rophore (Fig. 2 C). To identify bleed-through, single-labeled
controls should be imaged with each fluorescence channel
used for the multi-labeled samples, and with the same acquisi-
tion settings used for the multi-labeled samples.

Bleed-through is defined as the percentage of fluorophore A
signal collected with a fluorophore B filter set. Therefore, the
intensity of bleed-through depends on the intensity of fluo-
rophore A (Fig. 3, A and C). Since the intensity of fluorophore A
may vary between cells or structures, the detection and intensity
of bleed-through can vary throughout the field of view as well.

With a single-labeled control sample, the percentage of flu-
orophore A bleed-through can be estimated as the slope of a
linear regression through a plot of intensity of fluorophore B as a
function of intensity of fluorophore A (e.g., using Coloc2 in Fiji;
Schindelin et al., 2012; see Fig. 2 C for an example plot). This
measured bleed-through coefficient must be validated by per-
forming a correction on a different single-labeled control image.
If the coefficient is inaccurate, bleed-through correction may
introduce error into the corrected image (Fig. 4 D).

Bleed-through can be corrected for computationally on a
pixel-by-pixel basis (Figs. 2 C and 3 B). If a single-labeled control
reveals that 10% of the fluorophore A signal bleeds through a
fluorophore B filter set, then 10% of the intensity measured in
the fluorophore A image can be subtracted from the fluorophore
B signal (Fig. 2 C). But if bleed-through is significant, switching

to fluorophores with farther spectral separation or using more
spectrally restrictive filter sets may result in more accurate data
(Fig. 3 D).

Photobleaching. Fluorescent samples photobleach when il-
luminated. The photobleaching rate varies between different
fluorophores and with the local environment of the fluorophore,
turnover rate, and intensity of illumination (Diaspro et al.,
2006). In quantitative microscopy experiments, acquisition pa-
rameters should be carefully adjusted to minimize illumination
and therefore photobleaching. Even when photobleaching has
been minimized, measuring and correcting for changes in in-
tensity due to photobleaching may be required when making
quantitative intensity measurements over time. In addition to
photobleaching during acquisition, photobleaching can occur
prior to acquiring images, when focusing or selecting a field of
view, and may result in fluorescence intensity measurements
that do not accurately report the amount of labeled component.
To minimize this error, use transmitted light or acquire single
fluorescence images when focusing and selecting fields of view.

A photobleaching control sample that contains fluorophore at
steady-state can be used to measure and correct for photo-
bleaching that occurs during a time-lapse experiment. The flu-
orophore intensity in this control must be constant so that any
changes in intensity that occur during acquisition can be as-
sumed to be due to photobleaching. Intensity values in the
control are measured over time, and the resulting photo-
bleaching curve fit to a single or double exponential (Vicente
et al., 2007), which can then be used for correction (Fig. 2 D).
The photobleaching control must be as similar as possible to the
experimental sample (i.e., the same FP-POI conjugate expressed
in the same cell type but treated with a drug that induces steady-
state) and identical acquisition conditions must be used for
imaging the control and experimental samples. An ideal exper-
imental set-up is to use a multi-well plate and a motorized stage
for image acquisition, so images of the photobleaching control
and experimental sample can be collected during the same time
lapse. Alternatively, a region within an image that should not
change in intensity over the course of the experiment can be
used as a photobleaching control. This type of correction can be
performed with the ImageJ Bleach Correction plugin with the
Exponential Fit option selected (Miura and Rietdorf, 2014). In
FRAP experiments, intensity normalization using a region of
interest outside the bleached region can be used for photo-
bleaching correction (Phair et al., 2003; Bancaud et al., 2010).

Many variables affect photobleaching rate, including the local
environment of the fluorophore, turnover rate, position within

describes the transformation needed to align the images. This matrix is then tested by using it to correct a different image of Tetraspeck beads. Once tested,
the matrix can be used to register channels of experimental images. (C) Bleed-through. Samples labeled with a single fluorophore are used to measure bleed-
through by imaging all channels with the same settings used for acquisition in the experiment. Here, 2.5-µm beads labeled with a dye corresponding to channel
1 are used. The intensity of bleed-through into channel 2 is plotted as a function of intensity of channel 1, and a linear regression of this plot is used to generate
a bleed-through coefficient. This coefficient is then tested by applying to a different single-labeled control image and verifying that bleed-through into channel
2 is reduced. Once tested, the bleed-through coefficient can be used to correct for bleed-through in experimental images (provided channels are properly
registered, as described above). (D) Photobleaching. Samples with steady-state fluorescence are used to generate a photobleaching curve under the planned
experimental conditions. This curve is fit to an exponential function, which is then tested by correcting a different set of images of the steady-state sample.
Once tested, the correction can be applied to experimental images under similar conditions; that is, if the correction is to be used across multiple days or
sessions, it should be validated on images collected on multiple days. FRET, Förster resonance energy transfer.
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the field of view, and day-to-day variability in illumination in-
tensity (Diaspro et al., 2006), making accurate and precise cor-
rection for measurement of photobleaching challenging and
validation of correction methods critical. The correction can be
validated by applying to a separate time lapse of the steady-state
fluorescent sample (Fig. 2 D) but should also be validated by
correcting samples with well-characterized or known intensity
changes. Photobleaching correction using an inaccurate photo-
bleaching curve will introduce error into intensity measure-
ments (Fig. 4 E). When performing a photobleaching correction,
consider how an inaccurate estimate of photobleaching might
alter the results. For example, photobleaching correction of a

dataset intended to measure the degradation rate of a fluo-
rescently labeled POI must be more accurate and precise than
photobleaching correction intended only to improve the quality
of automated segmentation over the course of a time-lapse.

Measurement validation. In addition to identification of and
correction for error, quantitativemicroscopy requires validation
that the labeling method and imaging system can be used to
make measurements with the accuracy and precision required
to test the experimental hypothesis. Measurement validation is
usually performed using known samples, manipulation of the
biological system (e.g., drug treatments, mutants), and/or posi-
tive and negative controls. See Fig. 5 and Dorn et al. (2005),
Joglekar et al. (2008), and Wu and Pollard (2005) for examples
of measurement validation.

Bias, blinding, and randomization
Experimenter bias
Humans are prone to many types of unconscious bias, and sci-
entists are no exception (Nickerson, 1998; Ioannidis, 2014;
Holman et al., 2015; Nuzzo, 2015; Lazic, 2016; Munafò et al.,
2017). Any subjective decision made in an experiment is an
opportunity for bias. Bias is an even larger problem in experi-
ments that generate images; although we trust our eyes to give
us accurate information about the world around us, human vi-
sual perception is biased toward detection of certain types of
features and is not quantitative (Russ, 2004). Qualitative visual
assessment of images is subjective and therefore prone to many
types of bias, both perceptual and cognitive (Table 3). In par-
ticular, conclusions can be influenced by apophenia (the ten-
dency to see patterns in randomness) and confirmation bias (the
increased likelihood of seeing a result that fits our current un-
derstanding than one that does not; Lazic, 2016; Munafò et al.,
2017). Fig. 6 presents an example of images that could easily be
misinterpreted due to confirmation bias. Fortunately, bias can
be avoided through good experimental design. We present two
key methods that are useful in microscopy experiments: blind-
ing and automation.

When thinking about how best to avoid bias in an experi-
ment, it is important to consider whether the experiment is
intended for hypothesis generation (“learning”) or hypothesis
testing (“confirming”). The two types of experiments have dif-
ferent design requirements, particularly regarding methods to
avoid bias (Sheiner, 1997; Lazic, 2016). Hypothesis-generating
experiments are about discovery and exploration, and do not
necessarily require formal methods to avoid bias, but once a
hypothesis is generated it must be tested with an experiment
that does include these methods. The same data cannot be used
to both generate and support a hypothesis (Kerr, 1998; Lazic,
2016). Humans often detect patterns even in truly random
data (Lazic, 2016), leading to hypotheses that may be supported
by the original dataset but will not hold up when tested inde-
pendently. When tested with an independent experiment, true
phenomena should continue to occur while overinterpreted
patterns will not. Of course, hypotheses may arise from any
dataset, including a hypothesis-testing experiment; this is ac-
ceptable as long as they are presented clearly as post hoc hy-
potheses and are subsequently tested independently (Kerr,

Figure 3. Image errors can be corrected in multiple ways. (A) Without
correction, there is significant bleed-through from channel 1 into channel
2 (dimmer spots in channel 2 image). (B) Bleed-through can be corrected
computationally (Fig. 2 C), but the correction can lead to artifacts that skew
intensity measurements (see contrast-enhanced inset). Bleed-through can
also be reduced by adjusting the specimen (C) or adjusting optics (D) in the
microscope. Whether or not bleed-through is a problem for a particular ex-
periment depends on the relative intensity of the fluorophores. In A, the
beads in channel 1 are >300× brighter than the beads in channel 2; in C, beads
of similar intensity are used, and bleed-through is no longer detectable. In D,
a spectrally shifted filter set (E) is used to reduce bleed-through. At a glance,
neither of these filter sets appears to have significant overlap with the ex-
citation spectrum of the dye, but the small amount of overlap is exacerbated
by the large difference in intensity between the channels.
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1998). In hypothesis-testing microscopy experiments, every ef-
fort must be made to avoid bias through one or more of the
methods discussed below.

Strategies to reduce bias
Blinding. Blinding refers to methods that hide the identity of

the sample or image from researchers and is a required standard
in some fields (MacCoun and Perlmutter, 2015). Despite evi-
dence that blinding reduces the effect of bias (Holman et al.,
2015), blinding is rarely reported in microscopy experiments
in cell biology.

A common justification to not blind microscopy experiments
is that the difference between images from different conditions
is obvious, so even relabeled samples will be easy to tell apart.
However, the nature of bias suggests that once labels are

removed the difference between conditions may be less obvious.
Additional treatments or controls can also be added to datasets to
increase variety and make differences between conditions less
obvious. Another argument is that blinding may hamper dis-
covery of new phenomena (MacCoun and Perlmutter, 2015).
The distinction between hypothesis-generating and hypothesis-
testing experiments is important here: the goal of a hypothesis-
testing experiment is not discovery. Other interesting phenomena
may become apparent before blinding or after results are unblinded,
resulting in the generation of new hypotheses that can then be in-
dependently tested.

Blinding during image analysis can be addressed multiple
ways. It may be as simple as renaming files. Researchers should
avoid using experimental images for manual selection of re-
gions/pixels for analysis (i.e., segmentation). Instead, use a

Figure 4. Image corrections must be tested carefully. (A–C) Flatfield correction. (B)When the flatfield image truly represents the illumination distribution,
the uniformity of the test image (kidney section labeled with AlexaFluor568WGA) is improved (see line scans below images, measured at the location indicated
by the dotted white line in A). (C) When the correction is performed with a flatfield image that does not represent the illumination distribution, or has been
normalized incorrectly, the test image is less uniform after correction. Correcting with an inaccurate flatfield image can add error to quantitative intensity
measurements. If the flatfield image does not perform well in tests, a better solution is to define a subregion with less variable intensity (see Fig. 2 A). (D)
Bleed-through correction. If the estimated bleed-through coefficient is inaccurate, bleed-through correction can lead to artifacts in the image that will add error
to quantitative intensity measurements. Because these images contain no overlap between channels (mixed beads as in previous bleed-through figures,
channel 2 shown), incorrect bleed-through coefficients show obvious artifacts; artifacts will be less obvious in experimental images with some overlap in signal.
The bleed-through coefficient should be tested on single-labeled sample images before applying to experimental images. (E) Photobleaching correction. The
sample in this example is fixed, meaning variation in intensity is due only to photobleaching and detector noise. If the rate of photobleaching is correctly
measured, the corrected intensity values remain constant over time. If the rate of photobleaching is over- or underestimated, the corrected intensity values are
no longer constant. Inaccurate corrections are obvious when applied to a steady-state sample, but over- or undercorrection may be impossible to detect when
applied to a signal that varies over time. Scale bars: (A) 100 μm, (D) 5 μm.
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fluorescence channel or transmitted light image from which
content of the experimental image cannot be deduced. For ex-
ample, if an experiment involves measuring changes in locali-
zation of a fluorescently labeled POI to an organelle, organelles
should be directly labeled with a fluorescent marker that can be
used to segment organelles without looking at the channel
containing the POI.

Automation. Another approach to reducing bias is automa-
tion of steps in the acquisition or analysis workflow that could
be subject to bias (Lee et al., 2018). Automation reduces bias
because it requires researchers to define selection parameters
before acquisition or analysis, which are then applied equally to
all samples/images.

When acquiring images, researchers often search samples
and manually select fields of views to acquire. This can be
helpful in reducing acquisition time and data size in some
cases—for example, when identifying and restricting acquisi-
tion to particular cell types in tissue sections. However, in many
cases, visually choosing fields of view to image (and not to im-
age) during acquisition can introduce bias that, if suspected
later, cannot be recovered from without repeating experiments.
We therefore recommend using microscope automation to ac-
quire images. Microscope acquisition software packages offer
tools to randomly select fields of view or to tile an entire cov-
erslip or well. When using a microscope that lacks the necessary
motorized components, bias can be reduced by following a strict
predetermined selection protocol, just as the computer would in
an automated experiment. For example, choose fields of view
independently of image content by first aligning the objective
lens roughly to the center of the coverslip, then moving a set

number of fields of view before acquisition of each subsequent
image. This method works only if the protocol is strictly fol-
lowed for each experimental condition and repetition; blinding
by relabeling and randomizing samples/conditions will aid in
ensuring consistency. Criteria to skip a field of view or discard
data should be chosen and validated prior to acquiring the
dataset.

Manual selection of image features to include in analysis can
also introduce bias. Instead of qualitatively choosing features
from each image to include in analysis, researchers should de-
fine selection criteria that can be reported in methods sections.
As with acquisition, selection may be automated or performed
manually according to strict criteria. This may be as simple, for
example, as including only those pixels with intensity values
two standard deviations above background. More often, how-
ever, defining sufficient criteria for automated selection of im-
age features is challenging. Machine learning approaches can be
very useful for generating selection criteria and are available in
free and open-source packages (Caicedo et al., 2017; Kan, 2017;
http://ilastik.org/ [Sommer et al., 2011]; https://imagej.net/
Trainable_Weka_Segmentation [Arganda-Carreras et al.,
2017]). When determining the parameters that will be used for
an automated analysis routine, you should not use the exact
datasets that you ultimately want to analyze. Regardless of the
method used to generate selection criteria, the criteria should be
validated. Examples of methods of validating image analysis
selection criteria include use of known datasets or comparing
the results of multiple researchers tasked with applying selec-
tion criteria to the same set of images or of manual versus au-
tomated selection of features. Neither the image analysis
software nor researchers will select features with 100% accur-
acy, but automation both reduces bias and allows analysis of
larger datasets useful for generating meaningful statistics.

Using automated acquisition or analysis tools to avoid bias
does not preclude visual inspection of the data for quality con-
trol. Regular checks are necessary to ensure that automated
processes are performing as expected, and in most cases require
a researcher to interact with the images or data. For example,
visual inspection of automated segmentation results is useful to
make sure the pipeline works for all the data, not just the data
used to design and test the pipeline. However, to avoid bias,
quality-control check methods and criteria for adjusting pa-
rameters or discarding data should be planned before analysis.

Automation of image acquisition and analysis also aids re-
searchers in reproducing experiments. Clearly defined auto-
mated selection procedures can be implemented as new
researchers join a laboratory and can be clearly reported in a
publication’s methods section; the same cannot be said of sub-
jective, unvalidated manual choice of features by a single
researcher.

Methods reporting
For microscopy experiments to be reproducible, microscope
hardware and software configurations must be reported accu-
rately and completely. Some journals provide detailed lists of
information to include (the Journal of Cell Biology included), but
many lack specific instructions. In our reading of the literature,

Figure 5. Measurement validation example: using a fluorescent bio-
sensor to measure subcellular pH. To validate measurements, known
samples (green) are required. These knowns can be used to characterize the
dynamic range, linearity, and repeatability of measurements (magenta) and
sources of error in the measurements (blue). For more information about pH
measurements, see Grillo-Hill et al. (2014) and O’Connor and Silver (2013).
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few publications include sufficient information to replicate mi-
croscopy experiments. For a checklist of items to include in a
microscopy methods section, refer to Lee et al. (2018).

During acquisition and analysis, keep a detailed record of
all protocols, hardware configuration, and software versions
and settings used. Some acquisition information is recorded in
image metadata, but beware: metadata may be inaccurate if the

configuration of the microscope was altered without changing
the software. Whenever possible, use image management tools
that combine image storage and annotation in the same place
(Allan et al., 2012). Minimally, make a data management plan
before you start a project so you can easily track down raw data,
acquisition settings, image processing steps, etc., when putting
together a publication (Lee et al., 2018). Reproducibility of

Table 3. Bias in imaging experiments

Type of bias Examples in imaging experiments Strategies

Selection bias • Scanning samples for fields of view that “look good” or
“worked” based on subjective or undefined criteria (also
confirmation bias)

• Use microscope automation to select fields of view or scan
the entire well

• Choosing to image only the brightest cells/samples (e.g.,
highest expression level)

• Include all data in analysis, or determine criteria to discard a
dataset before collecting data

• Only including data from experiments that “worked” in
analysis or publication

Confirmation bias • Adjustments to the analysis strategy based on the
direction the results are heading

• Validate the analysis strategy using known samples/controls
ahead of time

• Choosing analysis parameters that yield the desired or
expected results, rather than choosing through
validation with known samples

• Perform analysis blind

• P-hacking (Head et al., 2015)

• Choosing cells or parts of a sample that “make sense”
based on the anticipated outcome

Observer bias/
experimenter effects

• Spending more time focusing by eye (and therefore
photobleaching) on one condition than the others

• Perform acquisition and analysis blind

•Making subjective conclusions based on visual inspection
of the image rather than making quantitative
measurements

• Make conclusions based on quantitative measurements
rather than qualitative visual impressions (measure length/
width/aspect ratio, count, measure intensity, etc.)

Asymmetric attention bias/
disconfirmation bias

• Performing image corrections only when result seems
wrong or is not as expected

• Consider sources of error, validate, and apply corrections
equally to all conditions and experiments

See Lazic (2016), Nuzzo (2015), Nickerson (1998), and Munafò et al. (2017) for more about bias and additional references.

Figure 6. Visual inspection of images is prone to confirmation bias. (A and B) In this example, cells labeled with a fluorescent nuclear marker exist in two
populations, one with very bright nuclear labeling and the other with much dimmer labeling. If the image is autoscaled (A), the dimmer population is invisible,
but brightness and contrast adjustments show that there is also a population of cells with lower intensity labeling (B). Making conclusions based on images
displayed using autoscale (the most common default display in image acquisition programs), rather than measuring image intensity values, could lead to
inaccurate conclusions. A researcher who is convinced by the image display because it represents the expected result, and therefore makes the decision not to
complete a full quantitative analysis, is subject to confirmation bias. Scale bar: 50 μm. (C)Measured intensity of the nuclei in the images. Each dot represents
the mean intensity of one nucleus.
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microscopy experiments will almost certainly be enhanced
through free and open sharing of detailed imaging protocols
(through platforms such as https://bio-protocol.org and https://
www.protocols.io) and primary data (through the Image Data
Resource [Williams et al., 2017] and open data formats [Linkert
et al., 2010]).

Even microscopy methods sections that include detailed in-
formation about acquisition and analysis often neglect to de-
scribe method validation. We encourage researchers to report
any validation steps they have taken in the development of
quantitative microscopy assays. It is a common misconception
that images can be taken at face value, and this is exacerbated by
lack of reporting of validation steps. Quantitative microscopy
papers often read as simple experiments, because the complex
validation steps are not described (or perhaps were not per-
formed). This not only reinforces misconceptions that micros-
copy is simple and “seeing is believing,” it makes it impossible to
assess quality of results.

Conclusion
The importance of quantitative imaging methods in cell biology
research is becoming widely recognized. Quantification has
many benefits over qualitative presentation of a handful of
images from a dataset, including strict definition of selection
criteria and ease of inclusion of larger datasets and statistical
tests. However, in our experience, researchers often underesti-
mate the difficulty of rigorous quantitative microscopy experi-
ments. When advising researchers on microscopy experimental
design, we routinely suggest procedures for validation of meth-
ods and control experiments. We sometimes get the response
that a particular control or validation is not possible because, for
example, required samples cannot be prepared. It is important to
understand that omitting method validation and control experi-
ments restricts accurate conclusions that can be made from an
experiment, often to an extent that makes the experiment not
worth the time and effort. Early and thorough planning, in-
cluding investigating the necessary known and control samples
before experimental samples are prepared, can help to circum-
vent this situation. Whenever possible, it is advisable to consult
or seek collaboration with expert microscopists and image ana-
lysts; quantitative imaging experiments can be difficult to design
and validate, and even for experts often require multiple rounds
of testing and optimization to achieve confidence in the repro-
ducibility of a protocol. Unfortunately, researchers cannot as-
sume that an imaging protocol described in a published methods
section will contain all validations and controls required to in-
terpret results, so it is highly advisable to consult primary lit-
erature on methods, reviews by experts, and educational
resources (Table 1) when adapting a published protocol for use in
your own experiments.

Materials and methods
Fig. 1 methods
(A) Images of 2.5-µm Inspeck beads (100% intensity green, 0.3%
intensity red; ThermoFisher) mounted in glycerol were collected
with a Nikon Ti2 microscope, using a Plan-Apochromat 20×
0.75-NA objective lens (Nikon) and Orca-Flash 4.0 LT camera

(Hamamatsu Photonics) controlled by NIS Elements (Nikon).
Green channel images were acquired with a Semrock filter set
(466/40 excitation, 495 dichroic, and 525/50 emission). Red
channel images were collected with a Chroma Cy3 filter set (see
Fig. 3 E, filter set A, for spectra). Green circles denote selected
green beads and magenta circles denote selected red beads.
Images are contrast stretched (brightness and contrast “reset”)
using Fiji (Schindelin et al., 2012). (B) 0.2-µm Tetraspeck beads
were imaged on a DeltaVision OMX Blaze microscope (GE) using
a Plan Apo 60× 1.42-NA objective lens (Olympus) and the FITC
and mCherry presets (488 laser, 528/58 emission filter, and 568
laser, 609/37 emission filter). Channels were imaged on separate
cameras (pco.edge; PCO). Images were pseudo-colored, overlaid,
and brightness and contrast adjusted in Fiji (Schindelin et al.,
2012). (C) HeLa cells were either fixed and immunofluorescence
labeled against POI or imaged live after treatment with SNAP-
Surface AlexaFluor647 (New England BioLabs) and washing.
POI-SNAP cells contain a POI-SNAP tag fusion; WT cells contain
no SNAPtag. All cells were imaged on a Nikon Ti TIRF micro-
scope with an Apo TIRF 100× 1.49-NA oil objective lens (Nikon)
and an ImagEM EMCCD camera (Hamamatsu Photonics) con-
trolled by Metamorph (Molecular Devices). Acquisition settings
for SNAP dye conditions are identical, but not for immuno-
fluorescence images due to different dyes used. Gamma 0.5 was
applied to images in C using Fiji.

Fig. 2 methods
(A) A concentrated fluorescein slide was prepared according to
Model (2006). Images were collected with a Nikon Ti2 micro-
scope equipped with a Plan Fluor 10× 0.3-NA Ph1 DLL objective
lens (Nikon) and ORCA Flash 4.0 LT camera (Hamamatsu Pho-
tonics) controlled by NIS Elements (Nikon). FluoCells prepared
slide #3 (ThermoFisher) was used for test images. Fiji was used
to generate line scans, subtract camera offset, perform correc-
tion (Image Calculator function), and adjust brightness and
contrast. (B) 0.2-µm Tetraspeck beads were imaged on a Del-
taVision OMX Blaze microscope (GE) as described in Fig. 1 B.
Images were pseudo-colored and overlaid, and brightness and
contrast was adjusted in Fiji (Schindelin et al., 2012). Transfor-
mation matrix was generated and applied using the imregtform
and imwarp functions in MATLAB (Image Processing Toolbox).
(C) 2.5-µm Inspeck beads (100% intensity green, 0.3% intensity
red; ThermoFisher) were mounted in glycerol and imaged on the
same setup as Fig. 1 A. The bleed-through coefficient was esti-
mated using slope of the correlation regression line generated by
the Coloc2 plugin in Fiji. The correctionwas performed using Fiji
(Math > Multiply and Image Calculator functions). (D) LLC-PK1
cells expressing H2B-mCherry were plated on a #1.5 coverslip-
bottom 35-mm dish (MatTek), fixed with formaldehyde, and
imaged on a Nikon Ti-Eclipse microscope equipped with a Yo-
kogawa CSU-X1 spinning disk confocal head, controlled by
Metamorph (Molecular Devices). Images were acquired with a
Hamamatsu Flash 4.0 V3 sCMOS camera using a Plan Apo 20×
0.75-NA objective lens. A 561-nm laser was used for illumina-
tion. Emission was selected with a 620/60-nm filter (Chroma).
Brightness and contrast were adjusted in Fiji (Schindelin et al.,
2012). Intensity of a manually selected ROI within one nucleus
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was measured in Fiji and plotted in Microsoft Excel. Single ex-
ponential fit with offset was performed using the curve fitting
tool in Fiji. Correction was performed in Microsoft Excel by
dividing the measured intensity value at each time point by the
value of the normalized fitted exponential function.

Fig. 3 methods
Images were collected with the same setup as in Fig. 1 A, with the
exception of panel D, which used filter set B illustrated in the
spectrum (545/30 excitation, 570 dichroic, and 610/75 emission;
Chroma). Exposure times are the same for all channel 2 images.
A longer exposure time was used for channel 1 in panel C, be-
cause the beads used were much dimmer. Computational bleed-
through correction in B was performed as described in Fig. 2.
Images were adjusted for brightness and contrast in Fiji. Spectra
were downloaded from ThermoFisher (beads) and FPbase.org
(filters), and then plotted in Excel.

Fig. 4 methods
(A–C) Images were collected and corrected as described in Fig. 2
A. Images are displayed using the mpl-viridis LUT (Fiji). (D)
Images were collected and corrected as described in Fig. 2 C. (E)
Images were collected and corrected as described in Fig. 2 D.
Over- and undercorrected plots were generated using expo-
nential functions that were altered to reflect a higher or lower
photobleaching rate.

Fig. 6 methods
Images were collected as described in Fig. 2 D. Nuclei were seg-
mented in Fiji by thresholding, binary morphological operations
and the Analyze Particles tool. Mean intensity measurements per
nucleus were plotted using PlotsOfData (https://huygens.science.
uva.nl/PlotsOfData/; Postma and Goedhart, 2018 Preprint).
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