
The mitochondrial genome of plants is a challenge to 
molecular evolutionary biologists. Its content is highly 
dynamic: plant mitochondrial DNA (mtDNA) is large 
and variable in size (200 to 2,500 kb), contains many 
introns and repeated elements (typically 90% of the total 
sequence), and experiences frequent gene gain/loss/
transfer/duplication, and genome rearrangements [1]. 
Its nucleotide substitution rate, paradoxically, is 
remarkably low - even lower than for nuclear DNA. 
These features are in sharp contrast with the highly 
studied mtDNA of animals, which is small-sized, 
structurally conserved, devoid of selfish elements, and 
has a very fast nucleotide substitution rate [2]. Why 
these two genomes behave so differently is one of the 
most head-scratching questions of current comparative 
genomics. The study by Davila et al. [3] contributes a 
potentially decisive argument by con nect ing the plant 
mtDNA mutation rate to yet another intriguing feature 
of this organellar genome - recombination.

DNA repair: keeping a watch on repeated elements
Unlike in animal mitochondria, recombination is wide-
spread in plant mtDNA. Recombinant molecules have 

been detected in various species, and are involved in a 
number of phenotypic traits, including thermotolerance 
and male sterility. The nuclear-encoded MSH1 gene, 
which is the product of fusion between a homologue of 
the bacterial DNA-repair gene MutS and an endonuclease 
gene, is involved in the control of plant mtDNA recom-
bination. Using next-generation sequencing technologies, 
Davila et al. [3] have examined the recombination pattern 
in wild-type versus MSH1-mutant ecotypes of the 
Brassicaceae Arabidopsis thaliana model. They report 
that MSH1 mutants experience mitochondrial recombi-
nation at a much higher rate than the wild type, as 
reflected by the frequent detection of rearranged mito-
chon drial molecules generated by illegitimate (ectopic) 
recombination between repeated elements. Interestingly, 
recombination in MSH1 mutants is shown to be asso-
ciated with asymmetrical genetic exchanges: in a window 
of a few hundred bases surrounding the recombination 
breakpoint, one of the two recombining DNA sequences 
is copied and pasted onto the other one. This process, 
known as gene conversion, is mediated by efficient DNA 
mismatch repair activity, and contributes to sequence 
homogenization of recombinogenic motifs. An analysis 
of mitochondrial variations across 72 natural ecotypes of 
A. thaliana reveals similar patterns, suggesting that the 
processes described by Davila et al. actually impact on 
the evolution of plant mtDNA.

This study, therefore, provides us with a proximal 
expla nation for the low substitution rate of plant mtDNA, 
namely the existence of efficient recombination-
associated DNA repair activity. Ectopic recombination is 
potentially harmful in generating chromosomal rearrange-
ments that disrupt coding frames or impede gene expres-
sion regulation. Mechanisms of recombination surveil-
lance and repair of recombination-induced DNA damage, 
including mismatch repair, appear necessary for plant 
mtDNA. Animal mtDNA, in contrast, is essentially 
devoid of repeated elements, so illegitimate recombina-
tion is much less an issue in these genomes. Selective 
pressure for efficient DNA repair might thus be relaxed, 

Abstract
The mitochondrial genome of plants is - in every 
respect and for yet unclear reasons - very different 
from the well-studied one of animals. Thanks to 
next-generation sequencing technologies, Davila 
et al. precisely characterized the role played by 
recombination and DNA repair in controlling 
mitochondrial variations in Arabidopsis thaliana, thus 
opening new perspectives on the long-term evolution 
of this intriguing genome.

The intriguing evolutionary dynamics of plant 
mitochondrial DNA
Nicolas Galtier

See research article: http://www.biomedcentral.com/1741-7007/9/64

CO M M E N TA RY  Open Access

Correspondence: galtier@univ-montp2.fr 
Université Montpellier 2, CNRS UMR 5554 - Institut des Sciences de l’Evolution, 
Place E Bataillon - CC64, 34095 Montpellier, France

© 2011 Galtier; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.

Galtier BMC Biology 2011, 9:61 
http://www.biomedcentral.com/1741-7007/9/61



leading to an increased mutation rate. We note that, in 
turn, its elevated mutation rate has been invoked to 
explain the absence of introns in animal mtDNA - in a 
highly mutable context, the functional sequences neces-
sary to proper intron excision imply an additional, 
counter-selected mutation load [4]. The contrast between 
plant and animal mtDNA behaviour might therefore 
reflect the two distinct solutions they implement to cope 
with repeated element threats: either avoiding them, at 
the cost of a high point mutation rate (animals), or 
repairing the damage they cause by selecting for efficient 
DNA repair activity (plants). This response, however, 
gives rise to another question: what properties of plants 
and animals, if any, have made them take such distinctive 
pathways regarding mitochondrial evolution?

Lesson from corrals and sponges
An exciting clue comes from the report of plant-like 
mtDNA evolution in two specific lineages of animals. 
Like plants, the mitochondrial genomes of Porifera 
(sponges) and Anthozoa (corrals and sea anemones) 
include introns, intergenic spacers, genes of foreign 
origin, and selfish elements, and show an extremely low 
substitution rate [5]. Remarkably, a gene similar in 
structure to the plant MSH1 gene - a fusion between a 
MutS homologue and an endonuclease gene - conver-
gently evolved in the soft corral Sarcophyton glaucum [6], 
thus giving even more credit to the link established by 
Davila et al. [3] between recombination, genome dynamics 
and substitution rate. Porifera and Anthozoa share, with 
plants, an important feature in their life cycle: a develop-
mentally late distinction between somatic and germline 
cells. This feature might be of primary importance in 
mtDNA dynamics and evolution, as we shall now see.

In mammals, as in most animals, germ cell differen-
tiation occurs early in embryonic development. During 
the series of mitoses leading from fertilized oocytes to 
primordial germ cells, mitochondrial replication is down-
regulated, and the per-cell number of mitochondria 
drops from hundreds of thousands to approximately ten 
[7]. This germline bottleneck explains the rapid segrega-
tion of mitochondrial variants across generations. It is 
thought to have evolved to decrease heteroplasmy, the 
co-existence of several mitochondrial haplotypes within 
the same individual. Avoiding heteroplasmy is beneficial 
for the nuclear genome since it reduces the opportunity 
for selfish mtDNA mutations to increase in frequency in 
the population [8]. Such a germline bottleneck is not 
documented in plants, perhaps as a consequence of their 
delayed differentiation of reproductive cells. Gene 
conver sion and efficient mismatch repair in plants might 
therefore be interpreted as mechanisms selected in the 
nuclear genome to homogenize mtDNA sequences 
within an individual, thus limiting the spread of selfish 

mitochondrial variants, in the absence of a germline 
bottleneck. The syndrome of cytoplasmic male sterility, 
in which mtDNA variants arrest pollen growth, illustrates 
the major role played by mitochondrial heteroplasmy in 
the nucleo-cytoplasmic conflict in plants [9], and the 
potential benefit for the nucleus to control it.

Mitochondrial mutations, life cycle and ageing
Although nucleo-cytoplasmic conflicts certainly affect 
mitochondrial evolutionary dynamics, they probably do 
not explain every aspect of the difference between plant 
and animal mitochondrial genomes First, we note that in 
S. glaucum (soft corral) the MutS homologue, similar in 
function to the plant MSH1 gene, is carried by the mito-
chondrial genome, not the nuclear genome. The hypothe-
sis of nuclear control of mitochondrial hetero plasmy 
does not seem to hold here. Second, one could object 
that nucleo-cytoplasmic conflict arguments should apply 
to the chloroplast as well. Although recombination and 
DNA repair systems are documented in chloroplasts, 
they do not result in a particularly low nucleotide 
substitution rate or in a particularly high rearrangement 
rate in this organelle. The very low point mutation rate of 
mtDNA in plants, sponges and anthozoans apparently 
reflects a mitochondrion-specific property. In animals, 
mitochondria play a major role in a number of cellular 
and physiological functions, including respiration, lipid 
metabolism, apoptosis and, importantly, senescence. The 
mitochondrial theory of ageing stipulates that senescence 
occurs through the accumulation of molecular damage 
caused by oxidative by-products of mitochondrial 
respira tion. It was recently proposed that the mitochon-
drial mutation rate might consequently be constrained to 
low values in long-lived animals in order to avoid pre-
mature somatic senescence [10]. This model would 
account for the low mtDNA nucleotide substitution rate 
of corrals, whose colonies can grow asexually for 
hundreds of years. It is unclear whether this hypothesis is 
relevant to plants, which like a well-defined dispensable 
soma, and in which a role of mitochondria in senescence 
and longevity has not been established.

The peculiarities of plant mtDNA are still largely 
unexplained. Although major advances have been made 
in identifying the underlying molecular mechanisms, we 
are only starting to consider their ultimate causes. Multi-
level selection and genomic conflicts appear to be pivotal 
in this process, but the details are hypothetical. A promis-
ing opportunity to make progress is offered by a couple of 
plant genera in which particular species have recently 
experienced a fantastic increase in point muta tion rate, 
reaching values similar to those typical of animals [11]. 
Understanding these exceptions might help explain the 
rule, and eventually solve the mystery, of the plant 
mitochondrial genome.
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