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Although tremendous effort has been exerted to elucidate the pathogenesis of severe
COVID-19 cases, the detailed mechanism of moderate cases, which accounts for 90% of
all patients, remains unclear yet, partly limited by lacking the biopsy tissues. Here, we
established the COVID-19 infection model in cynomolgus macaques (CMs), monitored
the clinical and pathological features, and analyzed underlying pathogenic mechanisms at
early infection stage by performing proteomic and metabolomic profiling of lung tissues
and sera samples from COVID-19 CMs models. Our data demonstrated that innate
immune response, neutrophile and platelet activation were mainly dysregulated in COVID-
19 CMs. The symptom of neutrophilia, lymphopenia and massive “cytokines storm”, main
features of severe COVID-19 patients, were greatly weakened in most of the challenged
CMs, which are more semblable as moderate patients. Thus, COVID-19 model in CMs is
rational to understand the pathogenesis of moderate COVID-19 and may be a candidate
model to assess the safety and efficacy of therapeutics and vaccines against SARS-CoV-
2 infection.
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INTRODUCTION

Coronavirus disease 2019 (COVID-2019), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread
around the world rapidly, infected over 523 million individuals
worldwide, and led to over 6.280 million deaths by June 25, 2022
(https://covid19.who.int). Unfortunately, both numbers are
still increasing.

SARS-CoV-2 infection leads to COVID-19 with various severity,
ranging from asymptomatic to symptomatic patients, and the latter
is usually further classified as severe and moderate cases. Special
attention has been given to severe COVID-19 cases who present
with high fever and dry cough, pneumonia, uncontrolled
inflammatory responses, and are at higher risk of death.
Emerging studies have greatly unclosed the clinical and
immunological characteristics, epidemiology, and pathology of
severe COVID-19 patients (1, 2). For example, an epidemiological
study by Ragonnet-CroninMin et al. showed that early intervention
means much lower morbidity and mortality rate of severe COVID-
19 (3). Rébillard RM et al. reported that general neutropenia and
lymphopenia are not specific predictors of COVID-19, while higher
proportions of ALCAM+ monocytes, ICAM-1+ neutrophils, and
CD38+ CD8+ T cells are often associated with higher mortality (4).
Guo and colleagues performed proteomic and metabolomics
profiling of sera from non-severe and severe COVID-19 patients,
revealed characteristic protein and metabolite changes in severe
patients (5). However, considering moderate cases account for 90%
of COVID-19 patients, and timely and efficient treatment of them
means better prognosis and is beneficial to alleviate the burden on
medical resources, there is an urgent need to identify the underlying
pathological mechanisms and effective prevention strategies for
moderate cases.

Establishment of animal models is undoubtedly necessary
and a great help for understanding the pathogenesis of COVID-
19 (6), evaluating potential vaccines and antiviral agents against
SARS-CoV-2 infection before they are used clinically (7, 8). Non-
human primate models have been extensively used to investigate
pathogenesis of a wide spectrum of viral diseases (9). Previous
studies have reported the pathogenesis of COVID-19 in non-
human primate models and compared it with MERS and SARS.
The data showed that low passage clinical isolate of SARS-CoV-2
caused COVID-19-like disease in both young and aged
cynomolgus macaques (CMs), with shedding virus for a
prolonged period, although in the absence of overt clinical
signs (10). Several groups have used rhesus macaques to
simulate SARS-CoV-2 infection and pathogenesis, which
usually recapitulates mild to moderate infection in humans
(11, 12). These non-human primate COVID-19 models can
also be effectively used to evaluate vaccines and drugs for
COVID-19 therapy (12–15). Unfortunately, only rare studies
performed proteomics and metabolomics analysis in non-human
primate models to elucidate the mechanistic details that drive
SARS-CoV-2 pathogenesis in humans (11, 16). Additionally,
timely and accurate diagnosis of SARS-CoV-2 RNA makes it
necessary to study the pathological characteristics of patients
with very early infection (14). Thus, in this study, we established
COVID-19 model in CMs and performed proteomics and
Frontiers in Immunology | www.frontiersin.org 2
metabolomics to reveal the molecular signature for COVID-19
pathogenesis at very early stages of SARS-CoV-2 infection (7
days post infection).
MATERIALS AND METHODS

Animals and Experimental Procedures
The CMs used in this study were bred and provided by the
Laboratory Animal Center, Academy of Military Medical
Sciences (Beijing). All animals were confirmed to be specific
pathogens (especially SARS-CoV-2) free before the experiment.
To establish the model of COVID-19, CMs were anesthetized
with Zoletil 50 and inoculated with a dose of 4.7 × 106 TCID50/
mL SARS-CoV-2 via a combined intranasal (0.25 mL per nasal),
intratracheal (4.0 mL), and ocular conjunctival routes (0.1 mL
per eye). The control CMs were inoculated with an equivalent
dose of DMEM. On 2, 4 and 6 days after infection, the nasal,
throat, and anal swabs were collected and incubated in 1 mL of
PBS containing 1000 mg/mL streptomycin and 1000 U/mL
penicillin. The body weight and temperature were measured
every other day. The UCT-2112 temperature probes (American
Health & Medical Supply International Corp., USA), which were
injected interscapularly into the CMs before the experiment,
were used to monitor the body temperature. On day 7 post
infection, all animals were euthanized and tissues including nasal
turbinate, trachea, different lobes of lung, heart, spleen, kidney,
colon, brain, liver, and testes were collected to detect the viral
loads. All the experiments were done in Animal Biosafety Level 3
(ABSL3) at the Key Laboratory of Jilin Province for Zoonosis
Prevention and Control, Institute of Military Veterinary
Medicine, according to the protocols approved by the
Administrative Committee on Animal Welfare of the Institute
of Military Veterinary.

RNA Extraction and qRT-PCR
Total RNA was isolated from 200 mL of samples by using
Magnetic Viral DNA/RNA Kit (Tiangen Biotech, Beijing,
China). After synthesizing cDNA with reverse transcriptase
(Invitrogen, Carlsbad, CA, USA), qPCR was conducted by Bio-
Rad CFX96 Real-time PCR system (Bio-Rad, Hercules, CA)
following cycling protocol: 50°C for 20 min, followed by 95°C
for 3 min and then by 45 cycles of 95°C for 5 s, and 57°C for 45 s.
The ORF1ab gene-specific primers (forward, 5’-CCCTGTGGG
TTT TACACTTAA-3’; reverse, 5’-ACGATTGTGCATCAGCT
GA-3’) and probe 5’-FAM-CCGTCTGC GGTATGTGGAAA
GGTTATGG-BHQ1-3’. The N gene-specific primers (forward,
5’-GGGGAAC TTCTCCTGCTAGAAT-3’; reverse, 5’-CAGAC
ATTTTGCTCTCAAGCTG-3’) and probe 5’-FAM-TTGCTGC
TGCTTGACAGATT-TAMRA-3’ were used according to the
information provided by the National Institute for Viral
Disease Control and Prevention, China. The gene-specific
primers (sgLead-forward: 5’-CGATCTCTTGTAGATCTGTTC
TC-3’; reverse: 5’-ATATTGCAGCAGTAC GCACACA-3’) and
probe 5’-FAM-ACACTAGCCATCCTTACTGCGCTTCG-
BHQ1-3’ were used for E gene subgenomic mRNA quantitation.
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Luminex Assay of Inflammatory Cytokines
and Chemokines in Macaque Serum
Peripheral blood samples and sera were collected from all
Macaques, the levels of 30 cytokines and chemokines like
interleukin (IL)-2, IL-6, IL-8, IL-10, IL12, IL-17, IL-23, MCP-1,
IP-10 (CXCL10), MIG, MIP-1b (CCL4), CD40, and SDF-1a etc.
were determined by Luminex multi-factor detection platform
(eBioscience ProcartaPlex, Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s protocol.

Flow Cytometry and Blood
Routine Analysis
Samples of EDTA anticoagulated peripheral blood (6 mL) were
collected from control or SARS-CoV-2–infected CMs. Then,
diverse cell populations were measured by flow cytometry
according to the manufacturer’s instructions with the following
monoclonal antibodies: anti-CD3-PE-Cy7 (BD Biosciences,
557917), anti-CD4-APC (Biolegend, 317415), anti-CD8-PE
(Biolegend, 301008), anti-CD20-PE (Biolegend, 302306), anti-
CD16-PE (Biolegend, 302007), and anti-CD56-APC (Biolegend,
318309). Samples were analyzed on a BD FACS Canto II flow
cytometry system (BD Biosciences). For blood routine analysis,
anticoagulant venous blood collected at indicated time points
were subjected to five classification hematologic analyzer
(Mindray, China).

Histological Evaluation
For histopathologic examination, tissue samples including lung,
trachea, salivary gland, heart, liver, kidney, and brain, were 4%-
paraformaldehyde-fixed, paraffin-embedded, sectioned at 5 mm,
and subjected to hematoxylin and eosin (H&E) and
immunohistochemical (IHC) staining. For IHC staining, the
primary antibodies used in the experiments including anti-
CD4, CD8, CD14, CD16, CD20, CD64, and Myeloperoxidase
(MPO) were all purchased from Abcam. Images of H&E and
IHC stained slides were captured with an Olympus BX43
microscope (Olympus).

Proteome Analysis
A 4D-Label free quantitative proteomics analysis was performed
using tandem MS/MS in Q Exactive™ Plus coupled online to an
EASY-nLC 1000 UPLC system (Thermo) in JingJie Sciences
Company (Hangzhou, China). Total proteins were extracted
from the frozen lung samples by adding 4 times the volume of
10% TCA/acetone at -20°C and precipitating for more than 4 h.
After centrifugation at 4500 g for 5 min, the precipitate was
collected and washed 2-3 times with pre-cooled acetone. Then,
the pellet from each specimen was reconstituted with lysis buffer
(8 M urea, 3 mM TSA, 50 mM NAM, 1% protease inhibitor), and
the protein concentration was determined by BCA kit. Equal
amount of each protein sample was then enzymatically lysed and
adjusted the volume to the same with the lysate. Then, samples
were reduced by 5 mM dithiothreitol (DTT) at 56°C for 30 min
and alkylated by 11 mM iodoacetamide (IAA) at room
temperature for 15 min in the dark, respectively. The alkylated
sample was then transferred to an ultrafiltration tube and
centrifuged at 12000 g at room temperature for 20 min,
Frontiers in Immunology | www.frontiersin.org 3
followed by replacement with 8 M urea and replacement buffer
for 3 times. After that, protein samples were digested by
incubation with trypsin at a ratio of 1:50 (protease: protein, m/
m) for overnight. Finally, the fragmented peptides were
recovered by centrifugation at 12000 g for 10 min at room
temperature, and the peptides were recovered with ultrapure
water once, and the two peptide solutions were combined. For
LC-MS/MS analysis, the tryptic peptides were dissolved in
solvent A (0.1% formic acid (FA), 2% acetonitrile in water)
and loaded onto a home-made reversed-phase analytical column
(25-cm length, 100 mm i.d.). The peptides were separated by
eluting the column with a gradient from 6% to 24% solvent B
(0.1% FA in 98% acetonitrile) over 70 min, 24% to 35% in 14 min
and reached up to 80% in 3 min, then keeping at 80% for 3 min,
all at a constant flow rate of 450 nL/min on a nanoElute UHPLC
system (Bruker Daltonics). The peptides were then subjected to
capillary source followed by the timsTOF Pro MS (Bruker
Daltonics). The timsTOF Pro was operated in a parallel
accumulation serial fragmentation (PASEF) mode with the
electrospray voltage 2.0 kV. Precursors and fragments were
analyzed at the TOF detector, and the MS/MS scan ranged
from 100 to 1700 m/z. Precursors with charge states 0 to 5
were selected for fragmentation, and 10 PASEF-MS/MS scans
were acquired per cycle. The dynamic exclusion was set to 30 s.
For database search, The MS/MS data were processed by
MaxQuant search engine (v.1.6.6.0). Tandem mass spectra
were searched against the Macaca_mulatta_9544 database
(45179 entries) concatenated with reverse decoy database.
Trypsin/P was specified as cleavage enzyme allowing up to 2
missing cleavages. The mass error tolerance for precursor ions
was set to 20 ppm in both First search and Main search, and
fragment ions mass error tolerance was also set to 20 ppm.
Carbamidomethyl on Cys was specified as fixed modification,
and acetylation on protein N-terminal and oxidation on Met
were specified as variable modifications. The false discovery rate
(FDR) (strict) was adjusted to < 1%.

Metabolome Analysis
Plasma/serum samples were thawed on ice, and 3 volumes of ice-
cold methanol was added. Samples were agitated for 3 min and
centrifuged at 12,000 rpm and 4°C for 10 min. Then the
supernatant was collected and centrifuged at 12,000 rpm and
4°C for 5 min. The final supernatant was collected for LC-MS/
MS analysis using an LC-ESI-MS/MS system (UPLC, Shim-pack
UFLC SHIMADZU CBM A system, https://www.shimadzu.com/;
MS, QTRAP® System, https://sciex.com/) in JingJie PTM BioLab
Co. Ltd. (Hangzhou, China). The analytical conditions were as
follows, UPLC: column, Waters ACQUITY UPLC HSS T3 C18
(1.8 µm, 2.1 mm × 100 mm); column temperature, 40°C; flow
rate, 0.4 mL/min; injection volume, 2 mL; solvent system, water
(0.1% FA): acetonitrile (0.1% FA); gradient program, 95:5 V/V at
0 min, 10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min, 95:5 V/V at
12.1 min, 95:5 V/V at 14.0 min. Finally, samples were analyzed
with ESI-QTRAP-MS/MS. LIT and triple quadrupole (QQQ)
scans were acquired on a triple quadrupole-linear ion trap mass
spectrometer (QTRAP), QTRAP® LC-MS/MS System, equipped
with an ESI Turbo Ion-Spray interface, operating in positive and
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negative ion mode, and controlled by Analyst 1.6.3 software
(Sciex). The ESI source operation parameters were set as follows:
source temperature 500°C; ion spray voltage 5500 V (positive),
-4500 V (negative); ion source gas I, gas II, and curtain gas were
set at 55, 60, and 25 psi, respectively; the collision gas was high.
Instrument tuning and mass calibration were carried out with 10
and 100 mM polypropylene glycol solutions in QQQ and LIT
modes. A specific set of MRM transitions was monitored for each
period according to the metabolites eluted within this period. For
combined omics analysis, we extracted the proteins and
metabolites with differential expression and performed pair-
wise correlation network analysis to identify co-regulated
nodes. Each node in blue circle represented a protein and the
box nodes of different colors represented different kinds of
metabolites. We calculated the Spearman’s correlation
coefficient(r) between each protein and metabolite based on
their abundance levels and then we showed the nodes between
which the absolute value of r is greater than 0.6.

Statistical Analysis
All data were analyzed with GraphPad Prism 8.0 software. For
any test, a P value of < 0.05 was considered to be significant.
Statistical significance is shown as *P < 0.05, and **P < 0.01
compared between indicated groups.
RESULTS

Establishment and Identification of
COVID-19 Model in CMs
We inoculated 12 adult CMs (11–17 years old, mean = 14 years)
and 2 young CMs (1–3 years old, mean = 2 years) with a dose of
Frontiers in Immunology | www.frontiersin.org 4
4.7 × 106 TCID50/mL SARS-CoV-2 (BetaCoV/Beijing/IME-
BJ05/2020) (17), administered by intranasal (IN, 0.25 mL per
nasal), intratracheal (IT, 4.0 mL), and conjunctival (CJ, 0.1 mL
per eye) routes (18, 19). The detailed information of infection
and detection time was demonstrated in Figures 1A, B. The
body temperature was monitored every other day after SARS-
CoV-2 challenge from 0 to 7 days. As shown in Figure 2A, an
increased body temperature of 0.75°C was observed in 10 out of
14, whereas a decrease of 0.5°C was observed in 3 out of 14
SARS-CoV-2-infected CMs. To determine the infection kinetics,
viral load and shedding in swabs and tissues were detected by
qRT-PCR at indicated time points. We found that the levels of
viral genomic RNA in nasal swab samples from all CMs reached
peak at 2 dpi (median: 5.4 × 1011 copies/mL), then 8 of 14
decreased and 6 remained high levels. The peak values were
observed in throat swabs at 2 dpi, the values were lower than
those in nasal swabs, which decreased to 2.45 × 106 copies/mL
(median value) at 6 dpi. Meanwhile, the viral RNA levels in anal
swab samples were lower than that in nasal and throat
swabs (Figure 2B).

Moreover, we evaluated the SARS-CoV-2 viral RNA copies in
various tissues of the infected CMs at 7 days after infection. As
shown in Figure 2C, viral RNA could be detected in 15 of 20
tissues with highest level found in the nasal turbinate, trachea
and lung, but much lower viral RNA copies were measured in
brain, heart, liver, spleen, kidney, testes, parotid gland, adrenal
gland, prostate gland, pulmonary lymph node and tonsil.
Moreover, a relatively high level of viral copies could be
detected in colon in 7/14 infected CMs.

To verify the active virus replication, the viral E gene
subgenomic mRNA were further examined (20). As indicated
in Figure 2D, except kidney, the viral could replicate in several
A

B

FIGURE 1 | Schematic of the study design and clinical signs of SARS-CoV-2 infection in CMs. (A) Two age groups of monkeys (14 in total) were selected for this study to
assess their ability to establish COVID-19 model. The monkeys were randomly assigned into two groups, the detail of age and sex were demonstrated. (B) The body weight
and temperature, swabs, tissues and blood were collected at the indicated time points for evaluation of clinical symptoms, viral shedding and replication, and host responses
to SARS-CoV-2. CMs, cynomolgus macaque; NC, negative control; nCoV, SARS-CoV-2.
July 2022 | Volume 13 | Article 954121
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tissues including nasal turbinate, trachea, lung, spleen, colon,
prostate, pulmonary lymph node and tonsil, although with the
limited replication efficacy. These results confirmed that SARS-
CoV-2 could replicate in multiple tissues of CMs besides the
respiratory route, the fecal–oral route may be involved in viral
transmission (21, 22), which supported that establishment of
COVID-19 in CMs is an ideal model for SARS-CoV-2–
associated study.

Clinical Features of COVID-19 in CMs
Several infection markers like alanine aminotransferase (ALT),
aminotransferase (AST), lactate dehydrogenase (LDH), high-
sensitivity C-reactive protein (CRP), and ferritin were measured
to evaluate the severity of COVID-19 in CMs. Results demonstrated
Frontiers in Immunology | www.frontiersin.org 5
that ALT, CRP, and ferritin values were distributed in normal range
in almost all the infected CMs, which are similar as those observed
in moderate COVID-19 patients (23, 24), but are apparently
different from severe ones, in which all these indicators increased
significantly (5). As to AST and LDH, significant decreases were
found in about 57.1% (4/7) of infected CMs at 7 dpi when compared
with control CMs. (Figure 3A).

We then isolated peripheral blood mononuclear cell (PBMC)
from CMs blood and analyzed the changes of white blood cell count
(WBC), lymphocyte count (LYC), monocyte count, absolute
neutrophils count (ANC), platelet count (PLT), and hemoglobin
(HGB). As shown in Figure 3B, WBC decreased slightly from 11.11
to 8.94 × 109/L upon SARS-CoV-2 infection. LYC remains
unchanged (about 3.74 × 109/L) in infected CMs at 7 dpi, which
A B

D

C

FIGURE 2 | Body temperature, viral shedding and replication in CMs inoculated with SARS-CoV-2. (A) The body temperature of each monkey was monitored and
recorded at above indicated time points after SARS-CoV-2 inoculation (0, 2, 4, 6, 7dpi). The body temperature changes were calculated by subtracting the baseline
(37°C) from each. (B) Every two days after virus inoculation, swabs (nasal, throat, and anal) were collected from the monkeys for quantification of virus genomic RNA
via qRT-PCR. (C) Tissue samples were harvested from necropsied animals at 7 dpi for detection of viral load by qRT-PCR. The viral copies were indicated as a log10
value, and the heatmap was prepared via heatmap illustrator in TB tools. (D) E gene subgenomic viral RNA transcripts were examined by qRT-PCR. qRT-PCR, real-
time quantitative-polymerase chain reaction; sgRNA, subgenomic viral RNA.
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was consistent with the evidence that lymphopenia (LYC < 0.8 ×
109/L) was always developed in severe (72.7%) but not in moderate
COVID-19 cases (25). ANC were found to be decreased in
challenged CMs (4.02 × 109/L) when compared with the healthy
controls (5.58 × 109/L, p<0.05), as reported in moderate COVID-19
patients (2.6-4.4 × 109/L) (26). Additionally, monocytes increased
slightly, while HGB and PLT appeared almost unchanged in
infected CMs.These data collectively suggested that PBMC
indicators are more semblable in CMs models at early stage as
that in moderate patients, the obvious turbulence of hematological
indicators such as lymphopenia and thrombocytopenia that
appeared in very severe and severe COVID-19 patients, is
obviously weakened in infected CMs.

Immunological Features of COVID-19
Model in CMs
To gain insight into the immunological features of COVID-19 in
CMs, we applied a Luminex multi-factor detection to assess the
immune cytokines alteration in serum samples of CMs before
Frontiers in Immunology | www.frontiersin.org 6
and post SARS-CoV-2 inoculation. As showed in Figure 4A,
sCD40L, IL-8, GM-CSF, IP-10, MCP-1, and MIG and IL-10
significantly increased (p<0.01), while IL-6, IL-1b, IL-7 andMIP-
1b moderately increased in infected CMs (p<0.05). Notably, IL-
10, the traditional Th2 cytokine which usually exerts dual effects
on T cells in terms of inhibiting Th1 cell production of IL-2, IFNs
as well as TNF-a and enhancing the proliferation and cytolysis
activity of NK and CD8+ T cells, elevated in infected CMs, which
indicated the susceptibility to COVID-19. Emerging studies also
reported that IL-10 is a well-known marker of COVID-19
severity in the clinical setting (27, 28). Several cytokines like
IL-12, IL-13, IFN-g, and IL-1RA, which elevated significantly and
predicted severe cases, were unchanged or weakly increase in our
CMs model. Therefore, these cytokines may coordinately induce
the anti-virus and inflammatory response, explaining why SARS-
CoV-2 infection induces moderate symptoms and thoracic
injury in CMs.

Then, immune cells populations in PBMC of CMs were
investigated by flow cytometry. As showed in Figure 4B, the
A

B

FIGURE 3 | Clinical features in monkeys inoculated with SARS-CoV-2. (A) The infection indicators (AST, ALT, LDH, CRP and Ferritin) were examined at indicated
time points and compared with each other. The 0 dpi (before infection) of each monkey was put as the control of itself. The heatmap was prepared via heatmap
illustrator in TB tools. (B) The counts and proportion of indicator cells in PBMC were detected at indicated time points in macaques before and after SARS-CoV-2
challenge, and the analysis was plotted in GraphPad Prism 8.0.1. *p<0.05. ns, not significant. AST, aspartate transaminase; ALT, alanine transaminase; LDH, lactate
dehydrogenase; CRP, C-reactive protein; nCoV, SARS-CoV-2; PBMC, peripheral blood mononuclear cell.
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absolute numbers of total T lymphocytes, CD4+ T and CD8+ T
cells significantly increased at 4 dpi. Then, CD4+ T cells
decreased to basal level, while CD3+ and CD8+ T cells hold a
slightly higher level than the basal value at 7 dpi. Similar trends
were found for CD20+ B lymphocytes. Analysis of NK cells
showed an increase of secretory population (CD16lowCD56bright)
upon infection, then decreased to basal level at 7 dpi, while
cytotoxic CD16+CD56dim NK cells remained relatively stable
after infection as compared to before infection. These data
indicated that SARS-CoV-2 infection stimulated T, B and NK
cells proliferation and activation in CMs at very early stage,
followed by quickly decrease to the basal level. In contrast, the
absolute counts of total T lymphocytes, CD4+, CD8+ T
subpopulations and NK cells were all reduced potently in the
vast majority of severe COVID-19 patients, even below the lower
limit of normal, and these reductions are closely-associated with
the severity of COVID-19 cases (29). In addition, the proportion
of B cells was significantly higher in severe cases (20.2%) than in
moderate ones (10.8%) (30). Thus, these data indicated that
SARS-CoV-2 triggered rapid, timely, moderate and controllable
immunological response in CMs, and hence avoided excessive
immune responses appeared in severe COVID-19 patients.
Frontiers in Immunology | www.frontiersin.org 7
Histopathological Change and Immune
Cells Infiltration
Noting the results of serum cytokines and chemokines, H&E and
immunohistochemical (IHC) staining were performed to
confirm the inflammatory response and injury in lung tissues
of infected CMs. The moderate histopathological characteristic
for diffuse alveolar damage were observed in lung tissues, which
represented as interstitial pneumonia, widened alveolar septum,
hyperemia of alveolar wall capillaries, mainly infiltration of
macrophages, neutrophils, accompanied with scattered
eosinophils, proliferation of fibroblast-like cells and deposition
of powdered matrix (Figure 5A). Focal consolidation was
frequently observed in some areas, with coagulation necrosis
occasionally, and inflammatory exudation in alveolar cavity.
Meanwhile, monocytes dominated inflammatory infiltration
were observed in heart, and renal interstitium, no significant
histopathological changes were observed in other organs, such as
salivary gland, liver, brain, tonsil, adrenal gland, prostate, spleen,
intestine and testicles (Figure 5A).

The SARS-CoV-2-Spike protein was then examined in
diverse tissues of CMs. Strong positive staining was
predominantly observed in alveolar epithelial cells, vascular
A

B

FIGURE 4 | Inflammatory cytokines and immune cell subpopulations in COVID-19 macaques. (A) Inflammatory cytokines in serum samples from macaques before
and after challenge were measured by Luminex multiplex assays as described in the “Materials and methods” section. The scale bar indicates the change-fold of the
cytokines at 7dpi, compared with themselves at before exposure. (B) The proportion of immune cells including CD3+, CD4+, and CD8+ T lymphocytes, CD20+ B
lymphocytes, and NK cells were analyzed by flow cytometry. *p<0.05; **p<0.01; ***p<0.005. ns, not significant.
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endothelial cell, alveolar macrophages, salivary gland, hepatic
Kupffer cells, and part of glomerulus cells. Weak positive staining
was observed in brain and kidney, and no staining was observed
in heart (Figure 5B). These data were consistent with the results
of viral genomic RNA copies in Figure 2C.

IHC was further employed to detect infiltration of immune
cells in lung tissues of CMs. As showed in Figure 5C, moderate
infiltration of CD4+ T, CD8+ T cells, CD14+ monocytes, CD64+

and MPO+ neutrophils, CD16+ NK cells, and CD169+

macrophages were detected in CMs at 7 dpi. Meanwhile, no
significant increase of CD20+ B cells were observed in challenged
CMs. Most of these are consistent with the distribution of
immune cells in PBMC, except neutrophil, which increased
apparently in challenged lung tissues (p<0.05), whereas
decreased in PBMC. These data supported that adequate
innate and adaptive immunity play critical anti-viral roles, and
recruitment of circulating neutrophils to the infection site is a
main characteristic of COVID-19 models in CMs.

Proteomic and Metabolomic Alterations
Post SARS-CoV-2 Exposure
Although accumulating proteomics and metabolomics analysis
have been performed in COVID-19 patients (5), rare studies paid
attention to omics changes at the initial stage of viral infection,
especially for moderate cases. Considering the viral detection is
Frontiers in Immunology | www.frontiersin.org 8
becoming more efficient, and timely and efficient treatment of
moderate cases (which account for 90% of COVID-19 patients)
means better prognosis and alleviation of burden on medical
resources, we thus tried to explore the pathogenesis of COVID-
19 in CMs models at early stage of infection. We used 4D Label-
free proteomics and ultra-performance liquid chromatography/
tandem mass spectrometry (UPLC-MS/MS) targeted
metabolomics approaches to analyze the lung tissues and sera
samples, respectively. Altogether, 4493 proteins and 500
metabolites were identified and quantified.

We found that 194 proteins were differentially expressed in
lung tissue of nCoV2 CMs (65 increased vs 129 decreased, >1.5-
fold, Figure 6A) as compared with NC CMs. Target and
functional analyses showed that 83 of these proteins belong to
four major pathways, namely innate immune response (44
proteins), neutrophil activation and degranulation (33
proteins), platelet degranulation (17 proteins), and viral
genome replication (11 proteins). Consistently, the Gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis data also revealed that innate
immune response, neutrophil and platelet activation pathways
are involved in moderate COVID-19 onset in CMs (Figure 6B).
For all differentially expressed proteins, 9 most significantly
changed innate immune-associated proteins were shown in
Figure 6C. most of the differentially expressed genes (DEGs)
A B

C

FIGURE 5 | Pathological evaluation, viral distribution and host response in tissues of COVID-19 CMs. (A) After necropsy, different tissue samples were cut and fixed
in 10% neutral buffered formalin for H&E staining, followed by microscopic inspection. (B) SARS-CoV-2–Spike antibody was used to evaluate the viral load and
distribution in different tissues. (C) Infiltration of immune cells was examined in the lung tissues. The red arrowheads indicate corresponding positive cells in the
pulmonary airspace. Scale bar=100 mm. NC, negative control; nCoV, SARS-CoV-2; 7d, 7 days post infection; CMs, cynomolgus macaque.
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in these four signal pathways can form a protein-protein
interaction (PPI) network, so as to potently and jointly
regulate the process of COVID-19 (Figure 6D). In addition,
GO analysis was performed to produce a further protein
classification and assess gene enrichment sets, in biological
process, cellular component, and molecular function.

Meanwhile, 131 metabolites were found to be significantly
changed in nCoV2 CMs (Figures 7A-C). Among them, 116
metabolites were involved in the four biological processes
revealed in the proteomic analysis, and we summarized both
proteomics and metabolomics data in the following sections and
indicated their function in COVID-19 onset.

SARS-CoV-2 Infection Leads to Neutrophil
Recruitment and Activation
As the most abundant white blood cell in humans, neutrophils
play critical roles in antiviral defense of innate immune system.
But through degranulation and formation of neutrophil
extracellular traps (NETs), they can be cytotoxic during severe
pneumonia (31). Constantly updated data proved that a
fulminant neutrophilia is often observed in severe COVID-19
cases, which could be a symbol of excessive inflammatory
response and associated with unfavorable prognosis (26, 32,
33), whereas neutropenia was more common in non-severe
group (34, 35), which is consistent with our CM models.
Frontiers in Immunology | www.frontiersin.org 9
Hence, it is urgent to unravel the roles of neutrophils in the
moderate cases of COVID-19.

We obtained 33 altered proteins (12 upregulated, 21
downregulated) that are involved in neutrophil recruitment,
activation, and degranulation by target-function analysis
(Figure 6A) in the current model. ATP6V0C, a modulator of
neutrophil degranulation and activation, were increased 6.16-
and 10.61-fold, respectively. Whereas AXL, which is important
for neutrophil infiltration and COVID-19 therapy via regulating
TGF-b and PI3K signaling pathways (36, 37), also works as a
candidate receptor for SARS-CoV-2 entry (38), was significantly
reduced about 3-fold in infected CMs as compared with the
healthy control. Glia maturation factor-g (GMFG), decreased by
0.45-fold, could regulate directional migration of neutrophils
through regulation of actin cytoskeletal reorganization and
integrin-mediated adhesion (39). As known, NETosis is a
critical pathologic driver of direct lung injury in COVID-19
patients (40, 41). Of these 33 proteins, LGALS9, MPO, S100A8,
C1QC, C1QB, and CTSC were NETs-associated, and their
changes were not as obvious as in severe COVID-19
patients (42).

Considering the facts that neutrophil-attracting chemokines
like IL-8, MCP-1, and MIP-1b are dramatically upregulated
(Figure 4A); dozens of neutrophil recruitment, activation, and
degranulation-associated genes were significantly changed
A

B

D

C

FIGURE 6 | Dysregulated Proteins in lung tissue of monkeys inoculated with SARS-CoV-2, and statistics of functional enrichment. (A) Heatmap of 83 selected proteins
whose regulation concentrated on four enriched pathways. (B) The median CV values was analyzed to confirm the proteomics data with good degree of consistency and
reproducibility (median<0.25). (C) The expression level change of nine selected proteins with significant difference before and after inoculated with SARS-CoV-2. (D) The
histogram of GO terms enriched in biological process, cellular component and molecular function. CV, coefficient of variance; GO, Gene Ontology.
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(Figure 6A); neutrophil counts were reduced in PBMC of
infected-CMs, these data collectively indicated that the
migration and adhesion capacity of neutrophils to lung tissues
were tightly- and timely-regulated in infected CMs.

Innate Immune Response Was Potently
Activated by SARS-CoV-2 Infection
Activation of innate immunity may assist rapid recognition,
suppressed viral evasion and short-term retention of SARS-
CoV-2. We identified 44 proteins from all 194 proteins
significantly altered in infected-CMs which are known to be
responsive to innate immunity. A few representative examples
were showed in Figures 6A, C. Most of these proteins are encoded
Frontiers in Immunology | www.frontiersin.org 10
by interferon-stimulated genes (ISGs), therefore, our data strongly
supported that interferon (IFN) signaling pathway-associated
anti-viral action play an essential role in the model. STAT1, a
crucial modulator of IFN signaling, can’t be avoided in antiviral
innate immunity. A study showed that hACE2 transduced
STAT1-/- C57BL/6 mice exhibited enhanced inflammatory cell
infiltration, and delayed SARS-CoV-2 clearance (43). In our
model, STAT1 was significantly upregulated 2.62-fold as
compared with the NC CMs. ISG15 was upregulated up to
20.51-fold. MX1 and MX2, downstream targets of ISG15 which
play important anti-viral effects on a variety of RNA and DNA
viruses, were upregulated 21.44- and 56.85-fold, respectively (44).
As a family of IFN-induced antiviral proteins, IFITs potently
A
B

C

FIGURE 7 | Dysregulated metabolites in sera of CMs inoculated with SARS-CoV-2, and statistics of functional and pathway enrichment. (A) Heatmap of 116 most
significantly regulated metabolites belonging to 11 major classes as indicated. (B) The expression level change of nine selected regulated metabolites with significant
difference before and after inoculated with SARS-CoV-2. (C) Scatter plot of KEGG enrichment analysis between nCoV vs. nCoV-d7 with significant changes. CMs,
cynomolgus macaque; nCoV, SARS-CoV-2; nCoV_7d, 7 days post SARS-CoV-2 infection; KEGG, Kyoto encyclopedia of genes and genomes. *p<0.05; **p<0.01;
***p<0.005. ns, not significant.
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restrict viral infection by recognizing virus-derived exogenous
RNAs (45, 46). IFIT1 and IFIT2 were upregulated 7.8- and 5.7-
fold, respectively. Thus, it is rationale to predict that in moderate
cases, SARS-CoV-2 induced ISGs activation, the latter one leaded
to the constitutively expression of MX1/2 and IFIT1/2, which then
extended and enhanced the anti-viral activity of innate response,
thereby alleviate the symptoms of COVID-19 and overcome
SARS-CoV-2 viral evasion in CMs.

DDX58 (also known as RIG-I) can initiate a signaling cascade
to start an inflammatory and type-1 IFN responses once
recognizing pathogen-associated molecular patterns (PAMP),
like virus-derived dsRNA. DDX58 was upregulated (3.6-fold)
in infected CMs. DDX60, another member of RIG-I signaling
pathway, is essential for viral RNA degradation (47), was also
remarkably upregulated (3.1-fold, Figure 6C). TRIM28, which is
involved in innate immunity, has been identified recently to be a
regulator of ACE2 expression and SARS-CoV-2 entry (48), also
increased significantly in our model.

Although lots of ISGs proteins were potently upregulated in
this model, dozens of proteins like MED1, PUM2, MUC1,
VPS26B, MRC1, CD59, NPLOC4, S100A14, and S100A8 were
significantly downregulated. These data indicated that strong but
controllable innate immune response was elicited for SARS-
CoV-2 defense and clearance in the COVID-19 model, which
provide evidence to explain why CMs mainly present mild
symptom after SARS-CoV-2 infection.

No Thrombopenia Was Observed in SARS-
CoV-2–Infected CMs
PLTs, as dynamic cells, participate in inflammation and
prothrombotic responses in many viral infections (49).
Thrombopenia, caused by reduced PLTs production and
unrestricted consumption, has been reported to be associated
with enhanced risk of severe COVID-19 and mortality (50). Our
data demonstrated that no thrombopenia was observed in
moderate CMs models.

Platelet factor 4 (PF4) and platelet-expressing chemokines
pro-platelet basic protein (PPBP) were reported significantly
downregulated in severe COVID-19 patients, which associated
with platelet degranulation and potently contributed to
thrombopenia (5). Herein, neither PF4 (1.27-fold) nor PPBP
(1.78-fold) were decreased in lung tissues of infected CMs.
Whereas 17 proteins which associated with platelet aggregation
and function were altered significantly. Of them, KNG1, TXNIP,
ITIH4, TIMP1 and SERPING1/2/3, which contribute to platelet
aggregation and function (51), were increased; whereas ITGA1,
CLIC5, ARRB1, MFAP2, and GNAI1 (52–54), which negatively
regulate platelet activation, were greatly decreased (Figure 6A).
As to these proteins, TIMP1 was reported to be overexpressed in
anti-inflammatory M2 macrophages upon SARS-CoV-2
infection (55). TXNIP regulates neutrophil platelet aggregates
in acute lung injury (ALI), and has been proved to be involved in
glucose and lipid metabolism, and NLRP3 inflammasome
activation, a known factor for the immunopathogenesis of
COVID-19 (56). CLIC5 could be exploited by virus for
transportation of new virions (57).
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Metabolomic Changes in the Sera of
SARS-CoV-2–Infected CMs
Compared with the normal control, more than 116 metabolites,
or their derivatives, were significantly decreased in the sera of
SARS-CoV-2 infected-CMs. Enriched are 11 metabolites mainly
involved in lipids, bile acids, amino acids, and heterocyclic
compounds (Figure 7A).

According to the aforementioned data, we analyzed the
metabolites closely associated with platelet degranulation,
innate immune response, neutrophil and macrophage function.
We found that several well-known metabolites, such as
serotonin, choline, mannose, arachidonate, and eicosanoids
(prostaglandins, thromboxanes, and leukotrienes) (58–60),
were not changed significantly in infected-CMs. Consistent
with previous reports in COVID-19 patients (61, 62), dozens
of metabolites like L-cystine, L-glutamic acid, and L-serine were
increased in COVID-19 CMs as compared with the healthy
control. Notably, for the first time, several lipids, nucleotide,
bile acids, and amino acids metabolites were found to be
apparently changed, including different products of carnitine,
glutathione (0.3-fold), N-acetyl-L-glutamic acid (2.1-fold),
adenosine (0.02-fold), and inosine (2.99-fold) (Figure 7B).

It is well known that adenosine play critical roles in regulating
neutrophil chemotaxis, phagocytosis, and granule release (63,
64). Usually, pathological conditions of inflammation lead to
release of adenosine, conferring protection against tissue
damage, platelet activation and inflammatory response. In
addition, adenosine could be phosphorylated to AMP or
deaminated to inosine (65). We found that adenosine
decreased to 0.02-fold and inosine increased up to 2.99-fold in
SARS-CoV-2 infected CMs. This revealed that adenosine
generated and released by neutrophils at sites of inflammation
was mainly deaminated to inosine, which was consistent with the
increased platelet activation, recruitment and activation of
neutrophils and leukocytes observed in the COVID-19 model
in CMs. In addition, decreased adenosine-to-inosine ratio
indicated elevated adenosine deaminases (ADARs) activity.
ADARs can be a pro- or anti-viral factor and has been
reported to shape SARS-CoV-2 fate by virus genome editing
(66). Thus, these data suggested that elevated ADAR (1.39-fold)
are involved in the moderate COVID-19 model.

Carnitine derivatives are the most changed metabolites,
among which 38 metabolites were significantly decreased, with
lowest down to 0.28-fold. Besides the role in b-oxidation,
carnitine also acts in immune regulation as an anti-
inflammatory and anti-apoptotic factor (67). It has been
reported that carnitine negatively regulated neutrophil and
platelet activation (68), and decreased serum carnitine levels
usually associated with impaired reactions, metabolic disorders
and recurrent infections (69). Thus, significant carnitine
reduction in CMs might relieve immune suppression and
profit SARS-CoV-2 clearance.

To further uncover the function of DEGs and metabolites in
this model, a protein-metabolite interaction regulatory network
was done. As shown in Figure 7C, most metabolites are
associated with metabolic pathways, bile acid biosynthesis and
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secretion pathways, and lipid metabolism in SARS-CoV-2
infected CMs, and there are extensive and fine regulations
between metabolites and differentially expressed proteins. The
detailed mechanism and function of these intermodulations is
still under investigation.
DISCUSSION

COVID-19, an unprecedented threat caused by SARS-CoV-2,
has been spreading worldwide rapidly. Until now, over 523
million individuals have been infected, leading to over 6.279
million deaths. Epidemiological and clinical characteristics
studies have uncovered that most of COVID-19 patients
usually recovered with good prognosis who displayed mild or
moderate symptoms, or even a higher proportion of
asymptomatic symptoms in Delta or Omicron infections (70,
71). However, it is still a great challenge to discriminate cases
which will likely become clinically severe and to treat them
effectively. Although many specific hematologic indicators have
been reported to be strongly associated with severe COVID-19
cases, with low levels of PLTs count, lymphocyte count and
percentage, total protein, and high levels of D-dimer, leukocyte
count, CRP, creatinine, neutrophil count and percentage,
creatine kinase activity, and prolonged prothrombin time to be
changed the most (30, 72, 73), the pathogenesis and detailed
mechanisms of COVID-19, especially at early stage of infection is
still largely unknown.

In the present study, we analyzed the lung tissues and sera
samples of SARS-CoV-2–infected CMs via 4D Label-free
proteomics strategy and UPLC-MS/MS targeted metabolomics
approaches. About 4493 proteins and 500 metabolites were
identified and quantified. KEGG analysis suggested that most
of these differentially expressed proteins focused on innate
immune response, neutrophil recruitment, activation and
degranulation, and platelet degranulation.

Innate immune response stands as the first line of antiviral
defense, the cellular innate immune responses play crucial roles
in initiating resistance to virus infection. SARS-CoV-1–infected
patients elicited strong innate inflammatory responses, rather
than a virus-specific immune response (74). Although only a
small percentage of primary endothelial cell were infected,
Dengue Virus exerts substantial influence on type I IFN-driven
innate immune response induction that can effectively restrict
infection (75). Therefore, innate immunity may be the best
weapon for flattening the curve of COVID-19 spread, and
dysregulated immune response can reduce the ability to detect
antigens, blunt the healing process and delay the recovery of
patients with COVID-19 (76). In our model, dozens of known
host genes that associated with innate immunity and response to
viral infections, such as MX1/2, ISG15, IFIT1, DDX58/60,
IFI44L, IFI44, OAS3, STAT1, POLB, BANF1, TRIM28,
LOC703156, MED1, PUM2, VPS26B, MRC1, CD59, NPLOC4
and S100A14/A8, were greatly changed. Several of these genes
can regulate viral genome replication, viral infection process and
life cycle. The significant change of ISG15, MX1, MX2, and
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STAT1 strongly indicated that IFN signaling pathway associated
anti-viral action play critical roles in SARS-CoV-2–infected CMs
model (77, 78). Which is consistent with a previous report that
IFN signaling is significantly induced in rhesus macaque infected
lungs (79).

In this moderate COVID-19 model, we found that
neutrophils play pivotal roles in host defense against SARS-
CoV-2 infection. The proteomics and Luminex data showed that
various macrophage and neutrophil related cytokines and
chemokines like MCP-1, IP-10 (CXCL10), MIG, MIP-1b
(CCL4), CXCL8 (IL-8), SAA2, and AXL were dramatically
upregulated at 7 days after infection. This indicated that the
circulating or tissue resident macrophages are activated by the
intruder/virus at the fastest time and recruited neutrophils to the
attack site where they synergistically defense virus infection. IP-
10, a chemoattractant for monocytes/macrophages, has been
reported as an excellent predictor for the progression of
COVID-19 strongly associated with disease severity and ICU
admission (80). Our data supported that IP-10 also contributed
to the progression of COVID-19 in infected CMs. Most
nucleated cells, including neutrophils and monocytes, are the
main source of IL-8. So, it is easy to understand the high level of
IL-8 after SARS-CoV-2 infection. According to our data, we
hypothesize that SARS-CoV-2 infection activates innate immune
cells to secrete multi-factors at early stage in CMs, which then
exert anti-viral effects. Among them, the sedentary macrophages
in lung tissues released abundant IL-8, which acts as a classical
neutrophil chemotactic factor, recruiting neutrophil from the
blood stream into the infected tissue (alveolar space and
airways). IL-8 stimulated the phagocytosis and degranulation
of neutrophil to kill virus, and induced the necrosis and
exhaustion of neutrophil as well. Neutrophilia is a main feature
of severe COVID-19 cases, whereas neutropenia is found in the
sera of our model (apparent neutrophil infiltration were also
observed in lung tissues). This may be partly due to the
significantly regulated metabolites like adenosine, inosine and
carnitine derivatives, which take part in regulating neutrophil
chemotaxis, phagocytosis, and granule release.

A recent study reported that immature neutrophils with
elevated calprotectin S100A8/S100A9 plasma levels can be used
as robust biomarkers of COVID-19 severity (81). In the current
model, S100A8 was significantly downregulated, and no
apparent change was found for S100A9. In addition, the
classical inflammatory cytokines secreted by neutrophils and
macrophages like TNF-a, IL-1b and IL-2 were not obviously
changed, whereas the immunosuppressive IL-10 was
significantly upregulated. Which would be helpful to explain
the moderate “cytokines storm” and tissue injury in the model
and we speculated that potent but controllable spatial and
temporal innate immune cell response was essential for SARS-
CoV-2 defense and clearance (82), and might be used as potential
biomarkers for discriminating severe from mild or moderate
COVID-19.

Our Luminex assay data showed that CD40L was significantly
increased in CMs, which was also found greatly elevated in ICU
patients (83). Although CD40L is a marker of platelet and T-cell
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activation, the major source of CD40L present in plasma is
derived from platelet, thereby the increase of CD40L here
suggested that platelet activation might be an important factor
in the pathophysiology of COVID-19–associated coagulopathy
and might accelerate the progression of disease. Consistently,
proteomic and metabolomics data from CMs revealed several
genes (KNG1, TXNIP, ITIH4, TIMP1, SERPING1/2/3, ITGA1,
ADAR, and CLIC5 etc.) and molecules (adenosine and inosine)
were related with platelet activation, thus, adding antiplatelet
might be a possible therapeutic for COVID-19.

As to other viral immunity responses, complement activation
can suppress virus invasion and trigger inflammation.
Suppression of complement system has successfully
ameliorated syndrome of SARS-infected mouse model (84).
Upregulation of C1s (1.60-fold), C1q (1.53-fold), C2 (2.76-
fold), C3 (1.9-fold), and C4b (2.45-fold) indicated that timely
complement activation may contribute to COVID-19 in CMs.

Since some mild patients clear SARS-CoV-2 virus without
obvious symptoms stands in sharp contrast to the lethal damage
that the virus has brought upon severe patients, early diagnosis
and treatment of severe COVID-19 patients remain a major
challenge. Therefore, it is necessary to elucidate the pathogenesis
and detailed mechanism of mild COVID-19 casels, especially at
early stage of SARS-CoV-2 infection. Our data demonstrated
that innate immune system, neutrophil and platelet activation
and degranulation play central roles in these processes in CMs,
which mimicked moderate COVID-19 syndrome. This study
shed light on characteristic protein and metabolite changes in
COVID-19 and might be used as potential biomarkers reservoir
for severity evaluation.
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