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Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a
result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate
in 2020 is rising, making TB prevention and control more challenging. Vaccination has
been considered the best approach to reduce the TB burden. Unfortunately, BCG, the
only TB vaccine currently approved for use, offers some protection against childhood TB
but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are
more effective than BCG. Accumulating data indicated that peptides or epitopes play
essential roles in bridging innate and adaptive immunity and triggering adaptive immunity.
Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies,
new materials, and transgenic animal models have put wings on the research of peptide-
based vaccines for TB. Hence, this review seeks to give an overview of current tools that
can be used to design a peptide-based vaccine, the research status of peptide-based
vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for
the peptide-based vaccines. These explorations will provide approaches and strategies
for developing safer and more effective peptide-based vaccines and contribute to
achieving the WHO’s End TB Strategy.
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1 INTRODUCTION

As an ancient infectious disease, tuberculosis (TB) has followed the footsteps of humanity for
thousands of years (1, 2). Mycobacterium tuberculosis is the pathogen that causes TB. The war
between humans andM. tuberculosis has never stopped from ancient times to modern society. Even
today, TB remains a serious health threat. It has been reported that there were almost 1.3 million TB
deaths among the human immunodeficiency virus (HIV) negative population in 2020 globally, up
from 1.2 million in 2019 (3). These data indicated that the coronavirus disease 2019 (COVID-19)
pandemic had disturbed years of global progress in reducing TB deaths, pushing the total number of
TB deaths in 2020 back to the 2017 level (3). Furthermore, the emergence of drug-resistant and
multidrug-resistant TB (MDR-TB) and the lack of effective methods for differential diagnosis of
latent TB infection (LTBI) pose many challenges to TB prevention and treatment (4, 5).
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Vaccination is the most effective way to control TB. The only
licensed TB vaccine is Bacille Calmette-Guérin (BCG), which has
been used for more than 100 years (6, 7). Previous studies have
reported that BCG can protect children from severe TB and
miliary TB. Therefore, BCG has been recommended by the
World Health Organization (WHO) for widespread use in
childhood immunization programmes in 154 countries in 2020
(3). However, a growing number of studies have reported that
BCG is protective for only 10 - 20 years (8). This may be the
reason why the defensive efficiency of BCG in adult pulmonary
TB ranges from 0% to 80% (1, 9). According to the report
released by WHO, there are 14 TB vaccine candidates in clinical
trials, including AEC/BC02, Ad5 Ag85A, and ChAdOx185A-
MVA85A vaccines in Phase I, MTBVAC, ID93 + GLA-SE, TB/
FLU-04L, and GamTBvac vaccines in Phase IIa, DAR-901
booster, H56: IC31, M72/AS01E, BCG revaccination, and
RUTI® vaccines in Phase IIb, VPM1002 and MIP/Immuvac
vaccines in Phase III (10). These TB novel vaccines can be
divided into four categories: Viral vector vaccines, subunit
vaccines, attenuated live mycobacterial vaccines, and
inactivated vaccines (10). The most promising of these
vaccines is M72/AS01E. It has been reported that the M72/
AS01E vaccine had good protection in healthy adults (11, 12),
HIV infected adults in Switzerland (13), and healthy infants in
Gambia (14). Consequently, M72 has been selected for further
vaccine development. In 2018, a Phase IIb controlled trial of the
M72/AS01E vaccine showed that the protective efficacy of the
vaccine against active pulmonary TB in adults was 54.0%, and
there was no obvious safety problem (15). One year later, after
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three years of follow-up, the New England journal of medicine
(NEJM) published the final results of this Phase IIb clinical trial
of the M72/AS01E vaccine. It was found that the total
effectiveness was 49.7% after 36 months of follow-up, and the
evaluation of vaccine efficacy increased throughout the study
period, with vaccine effectiveness of 27.4% in the first year, 55.2%
in the second year and 60.2% in the third year (16). However, it
needs to be recognized that even if M72/AS01E vaccine is proven
to be reliable in larger populations, TB control cannot be based
on the M72/AS01E vaccine alone. We should develop more
effective and safer vaccines to prevent and control TB.

The biggest obstacle to developing a TB vaccine is the lack of
understanding of the pathogenesis of M. tuberculosis and host
immune protective mechanism. The innate and adaptive
immunity of the host plays a vital role in the elimination or
killing of M. tuberculosis (Figure 1). Innate immune cells, such as
macrophages, dendritic cells (DCs), and natural killer (NK) cells, are
the front-line to resist M. tuberculosis invasion. As the most
important antigen presenting cells (APCs), macrophages and DCs
play an essential role in phagocytosing M. tuberculosis. DCs
activated by M. tuberculosis migrate to lymph nodes to display
peptides of mycobacteria on their surface, which will be recognized
by CD4+ T cells and CD8+ T cells through major histocompatibility
complex (MHC) II and MHC I molecules, respectively (5, 17).
Interestingly, the recognition between T cells and APCs is based on
peptides rather than full-length protein (Figure 1). Therefore, the
selection of vaccine candidate antigens and the prediction and
screening of these immunodominant peptides are the key to
designing a new generation of TB vaccine, known as peptide-
FIGURE 1 | Schematic diagram of TB infection and anti-TB immunity of the host. APCs, such as DCs, macrophages, neutrophils, and even B cells, not only play
the role of innate immune cells but also serve as a bridge between innate and adaptive immunity. DCs are the most important APCs, and their antigen presenting
ability in vitro is 10-100 times that of other APCs. M. tuberculosis bacilli invading host’s pulmonary alveoli are first recognized and swallowed by APCs. Then,
immature dendritic cells (iDCs) take up M. tuberculosis antigens and migrate to lymph nodes. During this process, the expression of MHC molecules on the surface
is up-regulated, the antigen presentation function and the ability to activate T cells are also enhanced, and iDCs are transformed into mature dendritic cells (mDCs).
mDCs can secrete interleukin-12 (IL-12), tumor necrosis factor-a (TNF-a), and interferon-a (IFN-a) to act on native CD4+ T cells (Th0 cells) to differentiate into Th1
cells. IFN-g, IL-2, and TNF-a produced by Th1 cells can effectively activate CD8+ T cells and macrophages to eliminate intracellular M. tuberculosis by perforin,
granzyme, reactive oxygen, and reactive nitrogen. Furthermore, mDCs produce IL-4, making Th0 cells differentiate into Th2 cells. The function of the Th2 response
and lL-4 in the anti-tuberculosis immune response remains unclear. It is generally believed that Th2 cells will affect B lymphocytes by secreting IL-4, IL-5, and IL-10,
mediating humoral immune response.
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based vaccine. The most significant advantage of peptide-based
vaccines is the aggregation of immunodominant epitopes, which
improves the immunogenicity of the vaccine and reduces its side
effects (2).

This study reviewed the latest bioinformatics tools, linkers,
and adjuvants used in designing peptide-based vaccines, the
research status of peptide-based vaccines for TB, the protein-
based bacterial vaccine delivery system, and animal models for
peptide-based vaccines. To our knowledge, this is the first
detailed and comprehensive review to report peptide-based
vaccines for TB. We hope that through this review, we can
provide practical tools and methods for designing peptide-based
vaccines and contribute new ideas to developing novel
TB vaccines.
2 THE DEVELOPMENT OF
BIOINFORMATICS TECHNOLOGY HAS
LAID THE FOUNDATION FOR THE RISE
OF PEPTIDE-BASED VACCINES FOR TB

The rapid development of bioinformatics technology makes it
possible to predict and design a peptide-based vaccine with
computers in advance. Compared with conditional vaccines,
peptide-based vaccines have many advantages: more
straightforward and faster production, more stable and
convenient transportation and storage, lower cost, and
decreased side effects (18). Despite these benefits of peptide-
based vaccines, the following tasks must be done to design a
peptide-based vaccine successfully: identification of potential
antigens, prediction of T cell and B cell epitopes, analysis of
epitope immunogenicity, antigenicity, allergenicity, and toxicity,
selection of linkers and adjuvant peptides, construction and
optimization of final vaccine, and analysis of the characteristics
of the final vaccines. A list of databases or servers used to
construct a peptide-based vaccine has been shown in Table 1.

2.1 Epitope Prediction
2.1.1 Determination of Protective Antigens and the
Coverage of MHC Alleles
Before predicting T cell or B cell epitopes, it is necessary to
determine the protective antigens for vaccine construction and
the coverage of MHC alleles in specific populations. Protective
antigens should be selected from previous studies, and these
antigens must have been proven to have significantly higher
protective efficacy in animal models or clinical trials. Amino acid
sequences of protective antigens can be obtained from National
Center of Biotechnology Information (NCBI, https://www.ncbi.
nlm.nih.gov/protein), Target-Pathogen database (http://target.
sbg.qb.fcen.uba.ar/patho), Uniprot protein database (https://
beta.uniprot.org/), and GeneDB database (http://www.genedb.
org/Homepage) (19, 21–23).

Fortunately, with the rapid development of bioinformatics
technology, a growing number of TB specific databases or
servers have been developed for TB vaccine construction, such
as Mycobrowser (20), MtbVeb (24), MycobacRV (26), and PeMtb
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(25). These novel tools provide powerful support for designing
peptide-based vaccines for TB. Mycobrowser (https://
mycobrowser.epfl.ch/) is a comprehensive genomic and
proteomic database for ten pathogenic mycobacteria species,
including M. tuberculosis H37Rv, M. tuberculosis 18b, M.
smegmatis MC2-155, M. orygis 51145, M. marinum M, M.
lepromatosis Mx1-22A, M. leprae TN, M. haemophilum
DSM_44634/ATCC_29548, M. bovis AF2122/97, and M.
abscessus ATCC_19977. The Mycobrowser knowledge base
provides general annotation, gene or protein summary
information, orthologues, and cross-references to the UniProt,
Gene Ontology, SWISS-MODEL, and TB database (20). MtbVeb
(http://crdd.osdd.net/raghava/mtbveb/) is a database developed by
scientists from Institute of Microbial Technology in India for
designing TB vaccines by using three approaches, such as strain,
antigen, and epitope based vaccines (24). This database maintains
integrated genomic information of 59 mycobacterium strains and
provides comprehensive information for the antigenicity of
potential vaccine candidates (24). MycobacRV database (http://
mycobacteriarv.igib.res.in), developed by scientists from CSIR-
Institute of Genomics and Integrative Biology in India, includes
whole-genome sequences of 22 pathogenic mycobacterium species
and one non-pathogenic mycobacterium H37Ra strain, and a set
of 233 most probable vaccine candidates (26). Recently, a database
of MHC antigenic peptide of M. tuberculosis named PeMtb has
been developed to assist scientists in more efficient selection of
epitopes that can be used for peptide-based vaccine construction
(25). PeMtb is a free platform for predicting potential antigenic
peptides of M. tuberculosis, which has unique advantages in
epitopes prediction for TB vaccines development.

Furthermore, the most significant difference between peptide-
based vaccines and traditional vaccines is that the former has
MHC restriction. Human MHC molecules are also known as
human leukocyte antigen (HLA). The HLA gene is located at the
end of the short arm of human chromosome 6 and is divided into
three regions: HLA Class I, HLA Class II, and HLA Class III
(101). HLA genes with antigen presentation function are classic
HLA genes located in HLA class I and HLA class II regions. The
classic HLA I genes are divided into three categories: HLA-A,
HLA-B, and HLA-C, and the classic HLA II genes are divided
into three categories: HLA-DP, HLA-DQ, and HLA-DR (102).
Therefore, selecting peptides with different MHC binding
specificities will increase the coverage of the target population
of peptide-based vaccines. However, due to the polymorphism of
MHC molecules in other races, the design of peptide-based
vaccines has become more complicated. Therefore, the
coverage of MHC alleles in the vaccinated population must be
considered when constructing a peptide-based vaccine. To
overcome this issue, some databases and resources have been
developed, including the Allele Frequency Net Database (http://
www.allelefrequencies.net/pops.asp) and population coverage
submodule of Immune Epitope Database and Analysis
Resource (IEDB, www.iedb.org) (103). The Allele Frequency
database provides allele frequencies for 115 countries and 21
different ethnicities grouped into 16 other geographical areas
(28). IEDB is a popular database for providing information on
immune epitopes. There are two components in the IEDB
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TABLE 1 | A list of databases or servers used to construct a peptide-based vaccine for TB.

Items Subitems Databases or
servers

Web site Remark References

Protein
sequence and
functional
information

Universal databases NCBI https://www.ncbi.nlm.nih.
gov/protein

– (19)

Uniprot protein
database

https://beta.uniprot.org/ – (20, 21)

GeneDB
database

http://www.genedb.org/
Homepage

– (21, 22)

Target-
Pathogen
database

http://target.sbg.qb.fcen.
uba.ar/patho

Designed and developed as an online resource that allows the
integration and weighting of protein information.

(23)

Databases for M.
tuberculosis

Mycobrowser
database

https://mycobrowser.epfl.
ch/

A comprehensive genomic and proteomic database for
pathogenic mycobacteria

(20)

MtbVeb http://crdd.osdd.net/
raghava/mtbveb/

A web portal for M. tuberculosis vaccines (24)

PeMtb http://www.pemtb-amu.org A practical platform for trial and computational analyses of
antigenic peptides for M. tuberculosis

(25)

MycobacRV http://mycobacteriarv.igib.
res.in

An immunoinformatics database of known and predicted
mycobacterial vaccine candidates

(26)

MHC alleles Population Coverage Allele
Frequency Net
Database

http://www.
allelefrequencies.net/pops.
asp

– (27)

IEDB
population
coverage

http://tools.iedb.org/
population/

– (28)

T Cell epitope
prediction tools

Epitope binding to
MHC class II
molecules (HTL
epitope)

IEDB database http://tools.immuneepitope.
org/mhcii/

A small numbered adjusted percentile rank indicates high
affinity, peptides with IC50 values <50 nM are considered high
affinity

(29)

RANKPEP
server

http://imed.med.ucm.es/
Tools/rankpep.HTML

Threshold 1.0: 49.5% sensitivity, 76.0% specificity; Threshold
0.5: 59.4% sensitivity, 69.4% specificity (Default); Threshold 0.0:
68.3% sensitivity, 60.9% specificity

(30)

MetaMHCIIpan http://datamining-iip.fudan.
edu.cn/MetaMHCpan/index.
php/pages/view/info

Peptides with IC50 less than 500 nm can be deemed as a
binder.

(31)

ProPred http://www.imtech.res.in/
raghava/propred/

The peptides predicted to bind > 50% HLA-DR alleles included
in the ProPred were considered promiscuous for binding
predictions.

(32, 33)

NetMHCIIpan-
4.0

https://services.healthtech.
dtu.dk/service.php?
NetMHCIIpan-4.0

The output of the model is a prediction score for the likelihood
of a peptide to be naturally presented by and MHC II receptor of
choice.

(34, 35)

NetMHCIIpan
3.2

https://services.healthtech.
dtu.dk/service.php?
NetMHCIIpan-3.2

The prediction values are given in IC50 values and as %Rank, a
lower % Rank value indicates a stronger binding peptide

(36)

Epitope binding to
MHC class I
molecules (CTL
epitope)

IEDB database http://tools.immuneepitope.
org/mhci/

A small numbered adjusted percentile rank indicates high
affinity, peptides with IC50 values <50 nM are considered high
affinity

(37)

NetCTL-1.2 https://services.healthtech.
dtu.dk/service.php?
NetCTL-1.2

Different thresholds for the integrated score can be translated
into sensitivity/specificity values.

(38)

RANKPEP
server

http://imed.med.ucm.es/
Tools/rankpep.HTML

Threshold 1.0: 49.5% sensitivity, 76.0% specificity; Threshold
0.5: 59.4% sensitivity, 69.4% specificity (Default); Threshold 0.0:
68.3% sensitivity, 60.9% specificity

(30)

ProPred1 http://www.imtech.res.in/
raghava/propred1/

Mirror site of this server is available at http://bioinformatics.
uams.edu/mirror/propred1/

(39)

NetMHCpan-
4.1

https://services.healthtech.
dtu.dk/service.php?
NetMHCpan-4.1

The peptide will be identified as a strong binder if it is found
among the top x% predicted peptides, where x% is the
specified threshold for strong binders (by default 0.5%).

(34)

MetaMHCIpan http://datamining-iip.fudan.
edu.cn/MetaMHCpan/index.
php/pages/view/info

Peptides with IC50 less than 500 nm can be deemed as a
binder.

(31)

NetMHC4.0 http://www.cbs.dtu.dk/
services/NetMHC/

A default threshold value of 0.5% for strong binders and 2% for
weak binders is recommended in NetMHC4.0

(40)

MHCpred 2.0 (41)

(Continued)
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TABLE 1 | Continued

Items Subitems Databases or
servers

Web site Remark References

http://www.ddg-pharmfac.
net/mhcpred/MHCPred/

Suggested IC50 values are between 0.01 to 5000 nM. If the
value is above 5000, then the peptide is unlikely to bind MHC
molecules.

EpiJen http://www.ddg-pharmfac.
net/epijen/EpiJen/EpiJen.
htm

– (42)

CTLPred http://www.imtech.res.in/
raghava/ctlpred/index.html

A SVM and ANN based CTL epitope prediction (43)

B Cell epitope
prediction tools

Linear B cell
epitopes

ABCpred http://www.imtech.res.in/
raghava/abcpred

Sensitivity = 67.14%, specificity = 64.71%, and accuracy =
66.41%.

(44, 45)

IEDB Antibody
Epitope
Prediction

http://tools.iedb.org/bcell/ A collection of 7 methods to predict linear B cell epitopes based
on sequence characteristics of the antigen using amino acid
scales and HMMs.

(46–52)

BCPred http://ailab-projects1.ist.
psu.edu:8080/bcpred/
predict.html

AUC = 0.758, accuracy = 65.89% (53, 54; a)

BepiPred 2.0 https://services.healthtech.
dtu.dk/service.php?
BepiPred-2.0

AUC = 0.620 (52)

APCpred http:/ccb.bmi.ac.cn/
APCpred/

AUC = 0.748 and accuracy = 68.43% (55)

SVMTriP http://sysbio.unl.edu/
SVMTriP/

Sensitivity = 80.1%, AUC = 0.702, and a precision of 55.2% (56)

Conformational B
cell epitopes

DiscoTope-2.0 https://services.healthtech.
dtu.dk/service.php?
DiscoTope-2.0

AUC = 0.824 or 0.748 on the benchmark or Discotope dataset,
respectively.

(57)

BEpro (formerly
known as
PEPITO)

http://pepito.proteomics.ics.
uci.edu/

AUC = 0.754 or 0.683 on the Discotope or Epitome dataset,
respectively.

(58)

ElliPro http://tools.iedb.org/ellipro/ AUC = 0.732 on the benchmark dataset (59)
SEPPA http://www.badd-cao.net/

seppa3/index.html
AUC = 0.742 and a successful pick-up rate of 96.64% (60)

Epitopia http://epitopia.tau.ac.il AUC = 0.600 (61)
EPCES http://sysbio.unl.edu/

EPCES/
Sensitivity = 47.8%, specificity = 69.5%, and AUC = 0.632. (62)

EPSVR http://sysbio.unl.edu/
EPSVR/

AUC = 0.597 (63)

EPMeta http://sysbio.unl.edu/
EPMeta/

AUC = 0.638 (63)

Epitope
Screening tools

Inducing MHC II
binders’ prediction

IFNepitope http://crdd.osdd.net/
raghava/ifnepitope/index.
php

Maximum prediction accuracy of 82.10% with MCC of 0.62 on
main dataset

(64)

IL4pred https://webs.iiitd.edu.in/
raghava/il4pred/index.php

Maximum accuracy of 75.76% and MCC of 0.51 (65)

IL-10pred https://webs.iiitd.edu.in/
raghava/il10pred/predict3.
php

MCC = 0.59 with an accuracy of 81.24% (66)

Immunogenicity IEDB MHC I
immunogenicity

http://tools.iedb.org/
immunogenicity/

The higher score indicates a greater probability of eliciting an
immune response

(67)

IEDB MHC II
immunogenicity

http://tools.iedb.org/
CD4episcore/

predict the allele independent CD4 T cell immunogenicity at
population level

(68)

MARIA https://maria.stanford.edu/ An integrated tool to predict how likely a peptide to be
presented by HLA-II complexes on cell surface.

(69)

PopCover-2.0 https://services.healthtech.
dtu.dk/service.php?
PopCover-2.0

An effective method for rational selection of peptide subsets with
broad HLA and pathogen coverage

(70)

BciPep http://www.imtech.res.in/
raghava/bcipep

A database of experimentally determined linear B-cell epitopes
of varying immunogenicity

(71)

Antigenicity VaxiJen 2.0 http://www.ddg-pharmfac.
net/vaxijen/VaxiJen/VaxiJen.
html

The result will be showed as a statement of protective antigen
or non-antigen

(72)
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TABLE 1 | Continued

Items Subitems Databases or
servers

Web site Remark References

ANTIGENpro http://scratch.Proteomics.
ics.uci.edu/

Correctly classifies 82% of the known protective antigens,
accuracy on the combined dataset is estimated at 76%

(73)

Allergenicity AllerTOP v 2.0 http://www.ddg-pharmfac.
net/AllerTOP/

The result will be showed as a statement of allergen or non-
allergen

(74)

AllergenFP
v.1.0

http://ddg-pharmfac.net/
AllergenFP/

The recognition accuracy was 88% and the Matthews
correlation coefficient was 0.759.

(75)

AlgPred 2.0 https://webs.iiitd.edu.in/
raghava/algpred2/

The result will be showed as a statement of allergen or non-
allergen

(76)

Allermatch™ http://allermatch.org The amino acid sequence of a protein of interest can be
compared with sequences of allergenic proteins.

(77)

Toxicity ToxinPred http://crdd.osdd.net/
raghava/toxinpred/

The performance of dipeptide-based model in terms of
accuracy was 94.50% with MCC 0.88

(78)

T3DB http://www.t3db.ca/biodb/
search/target_bonds/
sequence

Currently there are 3543 small molecule toxins (<1500 Da) and
136 peptide or protein toxins (>1500 Da) in T3DB

(79)

Epitope Cluster
Analysis

IEDB Clusters
with Similar
Sequences

http://tools.iedb.org/cluster/ This tool groups epitopes into clusters based on sequence
identity

(80)

Proinflammatory
peptides

PIP-EL http://www.thegleelab.org/
PIP-EL/

MCC of 0.435 in a 5-fold cross-validation test (81)

Anti-inflammatory
peptides

PreAIP http://kurata14.bio.kyutech.
ac.jp/PreAIP/

AUC = 0.833 in the training dataset via 10-fold cross-validation
test, Score ≥ 0.468, Sensitivity = 63.22%; Specificity = 90.30%

(82)

Codon
optimization and
in silico cloning

Codon optimization Java Codon
Optimization
Tool (JCat)

http://www.jcat.de/ The best CAI value is 1.0, while > 0.8 is regard a good score (83)

In silico clone SnapGene
software

https://www.snapgene.
com/try-snapgene/

(84)

Solubility prediction Protein–Sol
server

https://protein-sol.
manchester.ac.uk/

Solubility value greater than 0.45 is predicted to have a higher
solubility

(85)

Structure and
function
prediction

TCR-pMHC Binding
Model

PAComplex http://pacomplex.life.nctu.
edu.tw./

Investigating and visualizing both TCR-peptide/peptide-MHC
interfaces

(86)

HADDOCK 2.2 http://haddock.science.uu.
nl/services/HADDOCK/
haddockserver-guru.html

Achieved success rate is 34.1% (87)

ClusPro server https://cluspro.org Achieved success rate is 27.3% (88)
LightDock https://life.bsc.es/pid/

lightdock/
Achieved success rate is 6.8% (89)

ZDOCK http://zlab.bu.edu/~rong/
dock

Achieved success rate is 15.9% (90)

iMOD https://bio3d.colorado.edu/
imod/paper/

NMA analysis of refined complexes (91)

Secondary structure
prediction

PDBsum http://www.ebi.ac.uk/
thornton-srv/databases/
pdbsum/

(92)

SSpro8 http://scratch.proteomics.
ics.uci.edu/

Can predict 8-class secondary structure of a protein (93)

GOR V server https://abs.cit.nih.gov/gor/ Accuracy of prediction Q3 of 73.5%. (94)
SOPMA http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=
npsa_sopma.html

(95)

Tertiary structure
prediction

GalaxyWEB http://galaxy.seoklab.org/
cgi-bin/submit.cgi?type=
REFINE

Protein structure prediction and refinement (96)

CABS-Flex 2.0 http://biocomp.chem.uw.
edu.pl/CABSflex/

Predicts the structural flexibility of a protein/peptide (97)

3Dpro http://scratch.proteomics.
ics.uci.edu/

Predict tertiary structure of a protein (98)

Phyre2 (99)

(Continued)
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database, including the home page search and Analysis Resource.
The home page search is designed to simplify the search process
for many commonly queries such as Epitope (Linear peptide,
discontinuous peptide, non-peptidic, and Any), Assay (T cell, B
cell, and MHC ligand), Epitope Source (Organism and Antigen),
MHC Restriction (Class I, Class II, Non-classical, and Any),
hosts (humans, non-human primates, and other animal species),
and Disease. The Analysis Resource component provides a set of
tools for predicting and analyzing immune epitopes, which can
be divided into three categories: (1) T Cell Epitope Prediction
Tools: Peptide binding to MHC class I or II molecules (29, 37),
peptide processing predictions and immunogenicity predictions
(67, 104–106), TCRmatch (107), and structure tools such as
LYRA (Lymphocyte Receptor Automated Modelling) (108),
SCEptRe (Structural Complexes of Epitope Receptor) (109),
and Docktope (109); (2) B Cell Epitope Prediction Tools:
Prediction of linear epitopes from protein sequence including
Chou & Fasman Beta-Turn Prediction, Emini Surface
Accessibility Prediction, Karplus & Schulz Flexibility
Prediction, Kolaskar & Tongaonkar Antigenicity, Parker
Hydrophilicity Prediction, Bepipred Linear Epitope Prediction,
and Bepipred Linear Epitope Prediction 2.0 (46–52); Discotope
(110), ElliPro (59), methods for modeling and docking of
antibody and protein 3D structures (111), LYRA server (108),
and SCEptRe (109); (3) Analysis tools: Population Coverage (28),
Epitope Conservancy Analysis (112), Epitope Cluster Analysis
(80), Computational Methods for Mapping Mimotopes to
Protein Antigens (http://tools.iedb.org/main/analysis-tools/
mapping-mimotopes/), RATE (Restrictor Analysis Tool for
Epitopes) (113), and ImmunomeBrowser (114). The
components of the IEDB database related to peptide-based
vaccine development are described in detail below.

2.1.2 T Cell Epitope Prediction Tools
MHC molecules, expressed on the surface of APCs, are
responsible for presenting antigenic peptides to T cells, making
them irreplaceable in activating adaptive immunity (34). MHC
molecules can be divided into two sets, MHC Class I (MHC I)
and MHC Class II (MHC II), which primarily presents
intracellular and extracellular peptides, respectively. Hence,
identifying peptides binding to MHC I and II molecules is
crucial for activating CD8+ and CD4+ T lymphocytes.
Furthermore, recent studies have reported that engaging both
helper T lymphocytes (HTL) epitopes binding to MHC II
molecule and cytotoxic T lymphocytes (CTL) epitopes binding
to MHC I molecule is desirable for inducing a robust immune
Frontiers in Immunology | www.frontiersin.org 7
response against M. tuberculosis (115, 116). Therefore, accurate
computational prediction of HTL and CTL epitopes is the
cornerstone for successfully constructing a peptide-
based vaccine.

Currently, a growing number of bioinformatics technologies
are available for HTL and CTL epitopes prediction, such as the
IEDB database (29), RANKPEP server (30), MetaMHCIIpan
(31), ProPred (32, 33), NetMHCIIpan-4.0 (34, 35),
NetMHCIIpan 3.2 (36), NetCTL-1.2 (38), RANKPEP server
(30), ProPred1 (39), NetMHCpan-4.1 (34), MetaMHCIpan
(31), NetMHC4.0 (40), MHCpred 2.0 (41), EpiJen (42), and
CTLPred (43) (Table 1). Three of these servers or databases can
predict both HTL and CTL epitopes, including RANKPEP
server, MetaMHCpan, and MHCPred. RANKPEP server
predicts HTL and CTL epitopes from protein sequence using
Position Specific Scoring Matrices (PSSMs) (30). MetaMHCpan
has two parts: MetaMHCIpan and MetaMHCIIpan, for
predicting CTL and HTL epitopes, respectively. MetaMHCIpan
is based on two existing predictors (MHC2SKpan and LApan),
while MetaMHCIIpan is based on four existing predictors
(TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) (31).
MHCPred was developed to predict both HTL and CTL epitopes
based on an Allele specific Quantitative Structure Activity
Relationship (QSAR) model generated using partial least
squares (PLS). MHCPred 2.0 covers 11 HLA class I, three
human HLA class II, and three mouse MHC class I models
(41). Furthermore, MHCPred 2.0 has multiple significant merits,
such as incorporating a binding model for human transporter
associated with antigen processing (TAP) that offers additional
evidence, comprising a tool for designing heteroclitic peptides,
and providing a confidence percentage for every peptide
prediction (41).

As the most popular epitope prediction database, IEDB has
unique advantages in HTL and CTL epitopes prediction. For
MHC II epitopes prediction, nine methods are implemented,
including IEDB recommended, Consensus method (117),
Combinatorial library, NN-align-2.3 (netMHCII-2.3) (36), NN-
align-2.2 (netMHCII-2.2) (118), SMM-align (netMHCII-1.1)
(119), Sturniolo (120), NetMHCIIpan-3.1 (121), and
NetMHCIIpan-3.2 (36). IEDB Recommended, selected as the
default method, uses the best possible scenario for a given MHC
molecule based on the following rules: the Consensus approach
(a combination of any three of NN-align, SMM-align, CombLib,
and Sturniolo) will be used if any corresponding predictor is
available for the antigen. Otherwise, NetMHCIIpan is used. The
performance of the MHC class II binding predictions has been
TABLE 1 | Continued

Items Subitems Databases or
servers

Web site Remark References

http://www.sbg.bio.ic.ac.
uk/phyre2

A typical structure prediction will be returned between 30 min
and 2 h after submission

SWISS-
MODEL

http://swissmodel.expasy.
org

(100)
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evaluated in two studies based on over 10,000 binding affinities
(117) and 40,000 binding affinities (29), and one study
comparing pan-specific methods (122). For MHC I epitopes
prediction, ten methods are implemented, including IEDB
recommended 2020.09 (NetMHCpan EL4.1), Artificial neural
network (ANN) (40), Stabilized matrix method (SMM) (123),
SMM with a Peptide: MHC Binding Energy Covariance matrix
(SMMPMBEC), Scoring Matrices derived from Combinatorial
Peptide Libraries (Comblib_Sidney2008) (124), Consensus
(125), NetMHCpan (126), NetMHCcons (127), PickPocket
(128) and NetMHCstabpan (129) . Similar ly , IEDB
recommended NetMHCpan EL 4.1 is selected as the default
method and used across all alleles.

2.1.3 B Cell Epitope Prediction Tools
More and more attention has been paid to the role of B cells in
M. tuberculosis infection. B cells secrete antigen-specific
antibodies to fight against M. tuberculosis invasion. Antigenic
peptides are critical triggers for B cell antibody recognition.
Therefore, the prediction of B cell epitopes is helpful to study
the mechanism of the host’s self-protection system and design a
peptide-based vaccine. Unlike T cell epitopes, B cell epitopes
have both continuous (also known as linear epitopes) and
discontinuous (also known as conceptual epitopes). A linear
epitope is a continuous fragment from an antigen sequence. In
contrast, a conformational epitope comprises several fragments
distributed in an antigen sequence that form a structural
domain-like interface in three dimensions.

At present, most of the available methods for predicting B cell
epitopes are focused on continuous epitopes, such as ABCpred
(44, 45), IEDB B-cell epitope tools (46–52), BCPred (53, 54; a),
BepiPred 2.0 (52), APCpred (55), and SVMTriP (56). These
methods are based on antigen amino acid sequence, and the
operation method is simple and easy to study. Overall, the
sensitivity and specificity of these methods for predicting linear
B cell epitopes ranged from 60% to 70%, and the area under the
curve (AUC) ranged from 0.6 to 0.8 (Table 1). Compared with
other methods, IEDB Antibody Epitope Prediction is a collection
of seven methods to predict continuous B cell epitopes based on
antigen sequence using amino acid scales and machine learning
algorithm Hidden Markov Model (HMM), including Bepipred
Linear Epitope Prediction 2.0, Bepipred Linear Epitope Prediction,
Chou & Fasman Beta-Turn Prediction, Emini Surface
Accessibility Prediction, Karplus & Schulz Flexibility Prediction,
Kolaskar & Tongaonkar Antigenicity, and Parker Hydrophilicity
Prediction (46–52). These seven methods of IEDB predict linear B
cell epitopes based on specific characteristics of an antigen
sequence, such as hydrophilicity, accessibility, flexibility, turns,
polarity, exposed surface, and antigenic propensity.

Previous studies have shown that up to 90% of B cell epitopes
are discontinuous in nature, but most predictions have focused
on linear epitopes, which may be related to the tertiary structure
of proteins required for B cell conformational epitopes
prediction. Despite the rapid development of single-crystal X-
ray diffraction (SCXRD), nuclear magnetic resonance (NMR)
spectroscopy, and X-ray crystallography, many tertiary
structures of biological macromolecules have been elucidated,
Frontiers in Immunology | www.frontiersin.org 8
but accurate prediction of B cell epitopes remains challenging
(58). Currently, several methods have been used for predicting
conformational B cell epitopes, including DiscoTope-2.0 (57),
BEpro (formerly known as PEPITO) (58), ElliPro (59), SEPPA
(60), Epitopia (61), EPCES (62), EPSVR (63), EPMeta (63). A
previous study compared the performance of DiscoTope-2.0 to
the PEPITO, ElliPro, SEPPA, Epitopia, EPCES and EPSVR
methods. The results indicated that the AUC value of
DiscoTope-2.0 was observably higher than that of ElliPro but
comparable to PEPITO. Furthermore, DiscoTope-2.0 revealed
an enhanced AUC value compared to that of SEPPA (0.720 vs
0.711), EPCES (0.733 vs 0.695), Epitopia (0.727 vs 0.652) and
EPSVR (0.746 vs 0.588) based on benchmark dataset (57).

2.1.4 Peptide Analysis and Screening Tools
As shown in Figure 1, the IFN-g and IL-4 cytokines secreted by
APCs play an essential role in promoting the differentiation of
native CD4+ T cells into Th1 and Th2 cells, which is the principal
arm for controlling and killing intracellularM. tuberculosis (130).
Three methods have been developed to predict the IFN-g, IL-4,
and IL-10 inducers by bioinformatics technologies, including
IFNepitope (64), IL4pred (65), and IL-10pred (66). IFNepitope is
an online prediction server that can predict the epitopes that can
induce CD4+ T cells to secrete IFN-g based on the protein
sequence. It can help immunologists select and design IFN-g-
induced MHCClass II binding epitopes from proteins of interest,
which is essential for designing better and more effective peptide-
based vaccines (64). IL4pred and IL-10pred were developed to
predict IL-4 and IL-10 inducing MHC II binding epitopes,
respectively. The algorithm of the three servers relies on the
following three models: Motif based model, Support Vector
Machine (SVM) based model, and/or Hybrid approach (a
combination of Motif and SVM). The maximum prediction
accuracy of the three servers is 82.10%, 75.76%, and 81.24%,
and the Matthew’s correlation coefficient (MCC) is 0.62, 0.51,
and 0.59, respectively (64–66).

In the design of peptide-based vaccines, in addition to
considering those mentioned cytokine-induced epitopes, it is
also necessary to assess the immunogenicity, antigenicity,
allergenicity, and toxicity of the epitopes. Previous studies have
shown that these characteristics vary significantly among
epitopes (67, 72, 74, 78). Therefore, how to choose epitopes
with strong immunogenicity and antigenicity but low toxicity
and allergenicity is a challenge for peptide-based vaccine
design. To overcome these obstacles, some new algorithms,
models or servers have been developed, including IEDB MHC
I immunogenicity, IEDB CD4 T cell immunogenicity prediction,
MARIA, BciPep, and PopCover-2.0 for immunogenicity
(67–71), VaxiJen 2.0 and ANTIGENpro for antigenicity (72,
73), AllerTOP v 2.0, AllergenFP v.1.0, AlgPred 2.0, and
Allermatch™ for allergenicity (74–77), ToxinPred and T3DB
for toxicity (78, 79). In addition, other useful tools have been
developed to help scientists design more effective peptide-based
vaccines, such as IEDB Clusters with Similar Sequences for
epitope cluster analysis (80), PIP-EL for proinflammatory
peptides prediction (81), and PreAIP for anti-inflammatory
peptides prediction (82).
January 2022 | Volume 13 | Article 830497
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2.2 Construction of Peptide-Based
Vaccines
The most potential immunodominant epitopes are short
peptides composed of dozens of amino acid residues and
quickly degrade at the inoculation site. In order to overcome
this shortcoming, it is necessary to use appropriate linkers and/or
additional helper peptides (adjuvant peptides and agonists used
in constructing a peptide-base vaccine) to fuse these dispersed
epitopes to improve the efficiency of the vaccine.

2.2.1 Linkers
Linkers are short amino acid sequences of natural origin that
separate multiple domains in proteins (131). The selection of
suitable linkers to link protein domains together is always
complicated, but it is often overlooked in the design of
peptide-based vaccines. If there are no linkers, a direct fusion
of immunodominant epitopes may lead to many undesirable
results, including misfolding of peptide-based vaccine (132), low
vaccine yields (133), and impaired biological activity (134).
Therefore, the selection and rational design of linkers
connecting dominant epitopes is a crucial but undeveloped
field in developing peptide-based vaccines.

According to the characteristics of linkers, they can be divided
into three categories: flexible linkers, rigid linkers, and cleavable
linkers. (1) Flexible linkers are usually used to connect protein
domains that need mobility and interaction. They contain some
polar or nonpolar amino acids with small molecular weight,
which provides flexibility for the movement and interaction
between protein domains (135). The commonly used flexible
linkers include (GGGGS)n (135), (Gly)8 (136), (Gly)6 (137),
GSAGSAAGSGEF (138), KESGSVSSEQLAQFRSLD and
EGKSSGSGSESKST (139). The GSAGSAAGSGEF linker is
better than the (GGGGS)4 linker due to its better
hydrophilicity and no-repeats (140). Providing flexibility for
the movement and interaction between protein domains is the
advantage of flexible linkers, but the lack of rigidity may lead to
inefficient expression of recombinant proteins or loss of
biological activity (133, 141). (2) Rigid linkers are usually used
to maintain the distance between protein domains, effectively
separating different protein domains and reducing the
interaction and influence between the domains. Common rigid
linkers are (EAAAK)n, A(EAAAK)nA (n = 2-5), PAPAP, (Ala-
Pro)n (132, 140, 142, 143). The rigid linker exhibits a relatively
rigid structure by adopting an a-helical structure, and they
separate protein domains more effectively than flexible linkers.
Furthermore, the length of the rigid linker can be easily adjusted
by changing the number of copies to achieve the best distance
between domains. Therefore, rigid linkers are chosen when the
spatial separation of domains is essential to maintain the stability
or biological activity of the fusion protein. (3) Cleavage linkers
are usually used to separate domains or peptides from protein or
vaccine to achieve the biological functions of a single domain or
peptide. These linkers can reduce steric hindrance, improve
biological activity, and realize the independent function/
metabolism of a single domain of the recombinant fusion
protein after the linker is cut. However, the design of cleavable
linkers for recombinant fusion proteins in vivo is a very
Frontiers in Immunology | www.frontiersin.org 9
challenging subject. Hence, cleavage linkers are rarely used in
the design of peptide-based vaccines. Linkers used in peptide-
based vaccine construction can be found in Table 2.

2.2.2 TLR Agonists and Helper Peptides
Like other subunit vaccines, weak immunogenicity is one of the
disadvantages of peptide-based vaccines. Covalent conjugation
of helper peptides to peptide-based vaccines appears to be a
powerful strategy for improving the immunogenicity and
protective efficiency of peptide-based vaccines. Currently, two
kinds of adjuvants have been used in peptide-based vaccine
construction to enhance its protective efficacy: Toll-like
receptor (TLR) agonists and helper peptides. TLRs are
important protein molecules involved in innate immunity and
serve as a bridge between innate and adaptive immunity (168).
There are ten common TLRs, of which, TLR1, TLR2 (a
heterodimer of TLR1 and TLR6), TLR4, TLR5, TLR6 and
TLR10 are located on the cell membrane, while TLR3, TLR7,
TLR8, and TLR9 are located on the membrane of the endosome
(Figure 2). Among these TLRs, TLR10 is an orphan receptor
whose ligand, signaling pathway and biological function are still
unknown (Figure 2).

Previous studies have reported that TLR2-, TLR4-, and TLR9-
mediated immune responses are critical for host defense against
M. tuberculosis infection (169, 170). TLR9, expressed by human
B cells and DCs, play an essential role in recognizing the CpG
DNA in bacterial rather than in not mammalian, which induces
the differentiation, maturation, and proliferation of
macrophages, NK cells, monocytes, T cells, and B cells, and
enhances the production of Th1 type cytokines, such as IFN-g,
TNF-a, and IL-12 (171). More currently, there are three kinds of
CpG oligonucleotides (ODN) that have been used as TLR-9
agonists, 1) Type A CpG ODN is consist of a phosphodiester/
phosphothioate backbone, a palindrome sequence containing
CpG dinucleotide, and poly G tail at the 3’ and 5’ terminals,
which can activate the plasmacytoid dendritic cells (pDCs) to
produce IFN-a (172); Type B CpG ODN is composed of
multiple CpG motifs, which has solid immunostimulatory
activity against B cells, but cannot activate pDCs (173); Type C
CpG ODN is composed of whole phosphorothioate and
palindromic CpG motifs, has the activity of both type A and
type B CpG-ODNs, and can activate B cells and pDCs (174).
TLR2 and TLR4 activate DCs by recognizing with the pathogen
associated molecular patterns (PAMPs), and the activated DCs
will produce kinds of cytokines to kill M. tuberculosis via TLR2-
MyD88-NK-kB/IRFs-IFN-I/g signaling pathway and TLR4-
MyD88/TRIF-NK-kB/IRFs-IFN-I/g signaling pathway
(Figure 2) (175). Therefore, enhancing host immune responses
with TLR2 and TLR4 agonists may be the option for constructing
an ideal peptide-based vaccine in future. At present, some TLR2
and TLR4 agonists have been used in peptide-based vaccines
against infectious diseases, including TB, such as TLR2 agonists
ESAT6 (144), phenol-soluble modulin a4 (PSMa4) (145),
dipalmitoyl-S-glyceryl cysteine (Pam2Cys) (115, 146), and
PorB (147, 148), TLR4 agonists RpfE (Rv2450c) (149), 50S
ribosomal protein L7/L12 (RplL) (22, 150–155), heparin
binding hemagglutinin (HBHA) (156), cholera toxin subunit B
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 2 | Linkers and helper peptides used in peptide-based vaccine construction.

Linkers for epitopes Diseases or
pathogen

CTL HTL B cell

Y – – TB

rnately
ed by
GPG and
Y

– – TB

NA NA TB

Y GPGPG – Streptococcus
pneumoniae

GPG AAY – Neisseria
meningitidis

Y GPGPG KK TB

Y GPGPG KK TB

GPG HEYGAEALERAG – Schistosoma
mansoni

Y GPGPG KK Staphylococcus
aureus

Y GPGPG – Helicobacter
pylori

Y GPGPG KK Leishmania
parasite

Y GPGPG – Onchocerca
volvulus

GPG AAY – Schistosoma
mansoni

GPG GPGPG – Melanoma

GPG Brucellosis

GPGPG – Vibrio cholerae

GPG GPGPG KK Helicobacter
pylori

Y GPGPG – TB
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Reference Helper peptides Sequence of helper peptides Linker for
helper

peptides

(144) TLR2 agonist
ESAT6

MTEQQWNFAGIEAAASAIQGNVTSIHSLLDEGKQSLTKLAAAWGGSGS
EAYQGVQQKWDATATELNNALQNLARTISEAGQAMASTEGNVTGMFA

EAAAK AA

(145) TLR2 agonist
PSMa4

MAIVGTIIKIIKAIIDIFAK EAAAK Alt
lin
GP
AA

(115, 146) TLR-2 agonist
Pam2Cys

FNNFTVSFWLRVPKVSASHLE NA NA

(147) TLR2 agonist PorB IALTLAALPVAAMADVTLYGTIKAGVETSRSVAHNGAQAASVETGTG
IVDLGSKIGFKGQEDLGNGLKAIWQVEQ KASIAGTDSGWGNRQSFIGLKGGFGK

EAAAK AA

(148) TLR2 agonist PorB
and helper epitope
PADRE

PorB (IALTLAALPVAAMADVTLYGTIKAGVETSRSVAHNGAQAAS
VETGTGIVDLGSKIGFKGQEDLGNGLKAIWQVEQ KASIAGTDSGWGNRQSFIG
LKGGFGK), and PADRE (AGLFQRHGEGTKATVGEPV)

EAAAK GP

(149) TLR4 agonist RpfE
(Rv2450c)

LKNARTTLIAAAIAGTLVTTSPAGIANADDAGLDPNAAAGPDAVGFDPNL
PPAPDAAPVDTPPAPEDAGFDPNLPPPLAPDFLSPPAEEAPPVPVAYS
VNWDAIAQCESGGNWSINTGNGYYGGLRFTAGTWRANGGSGSAANA
SREEQIRVAENVLRSQGIRAWPVCGRRG

EAAAK AA

(150) TLR4 agonist RplL MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEEQ
SEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK

EAAAK AA

(151) TLR4 agonist RplL
and PADRE

RplL (MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEEQSEF
DVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK),
PADRE (AGLFQRHGEGTKATVGEPV)

EAAAK GP

(152) TLR4 agonist RplL MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEE
QSEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK

EAAAK AA

(153) TLR4 agonist RplL MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEEQSEFD
VILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK

EAAAK AA

(154) TLR4 agonist RplL MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEEQSEFDVILE
AAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK

EAAAK AA

(155) TLR4 agonist RplL MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAA
PAGAAVEAAEEQSEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLV
DGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK

EAAAK AA

(22) TLR4 agonist RplL MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEEQSEFDVILEA
AGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK

EAAAK GP

(156) TLR4 agonist HBHA
and helper epitope
PADRE

HBHA (MAENSNIDDIKAPLLAALGAADLALATVNELITNLRERAEETRTDTRSRVEESRARLTKL
QEDLPEQLTELREKFTAEELRKAAEGYLEAATSRYNELVERGEAALERLRSQQSFEEVSARAE
GYVDQAVELTQEALGTVASQTRAVGERAAKLVGIEL), PADRE (AGLFQRHGEGTKATVGEPV)

EAAAK GP

(157) TLR4 agonist CTB MTPQNITDLCAEYHNTQIYTLNDKIFSYTESLAGKREMAIITFKNGAIFQVEVPGSQHID
QKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

EAAAK GP

(158) TLR4 agonist CTB MTPQNITDLCAEYHNTQIYTLNDKIFSYTESLAGKREMAIITFKNGAIFQVEVPG
SQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

EAAAK –

(159) TLR4 agonist CTB MTPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKREMAIITFKNGATFQVEV
PGSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

GPGPG GP

(160) TLR-4 agonist RS-
09

APPHALS EAAAK AA
e
k
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(CTB) (157–159), and RS-09 (160, 161). In addition, helper
peptides and antimicrobial peptides are also used to construct
peptide-based vaccines to enhance their immune effects, such as
PADRE (148) (151) (156), Hsp70 (161), TR-433 (161), human b-
defensin 1 (HBD-1) (162), HBD-2 (163), HBD-3 (19, 164–167),
and Griselimycin (84). The amino acid sequences of the
mentioned helper peptides can be found in Table 2.

2.2.3 Codon Optimization and Prediction of
Structure and Function of Peptide-Based Vaccines
After the prediction and screening of dominant epitopes and the use
of linkers and helper peptides (or adjuvants), a preliminary peptide-
based vaccine was constructed. However, this native vaccine needs
further optimization to become a mature peptide vaccine, including
codon optimization, cloning and expression evaluation, and
solubility prediction. Codon optimization is essential because the
degeneracy of the genetic code allows one amino acid to be encoded
by multiple codons (84). Java Codon Adaptation Tool (JCat) is the
most popular tool for codon adaptation (Table 1). Compared with
previous tools, JCat has superiorities in avoiding unnecessary
cleavage sites for restriction endonuclease and Rho-independent
transcription terminators and defining highly expressed genes as
more intelligent, faster, andmore accessible (83). Codon Adaptation
Index (CAI) values are used to evaluate codon optimization. The
best CAI value is 1.0, while CAI > 0.8 is regarded as a good score
(83). Then, the sequence of the final vaccine optimized with JCat
should be inserted into an appropriate plasmid vector using
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FIGURE 2 | Toll-like receptors and their agonists. TLRs play an essential role
in innate immunity and serve as a bridge between innate and adaptive
immunity. TLR1, TLR2 (a heterodimer of TLR1 and TLR6), TLR4, TLR5,
TLR6, and TLR10 are located on the cell membrane, while TLR3, TLR7,
TLR8, and TLR9 are located on the membrane of the endosome. It has been
reported that TLR2, TLR4, and TLR9 are critical for host defense against M.
tuberculosis infection. In addition, the agonists of TLR2, TLR4, and TLR9 can
enhance the immunogenicity and protective efficacy of peptide-based
vaccines via TLR2- MyD88-NK-kB/IRFs-IFN-I/g signaling pathway and TLR4-
MyD88/TRIF-NK-kB/IRFs-IFN-I/g signaling pathway. TLR10 is an orphan
receptor without confirmed ligands, signalling pathway and biological function.
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SnapGene software (84). Finally, the solubility of the final vaccine
should be predicted by bioinformatics methods such as Protein-Sol
server (85).

TCR andMHC are the bridges connecting APCs, T lymphocytes
and peptide-based vaccines. Accurate recognition of TCR and
major histocompatibility complex presented antigenic peptides
(pMHC) triggers adoptive immune responses to kill M.
tuberculosis. In the past, the crystallization and structural
resolution of TCR-pMHC complexes were expensive and took a
lot of time. However, with the development of computational
technology, some valuable models or algorithms have been
developed to study the TCR-pMHC interaction at the molecular
level, such as PAComplex (86), ZDOCK (90), LightDock (89),
ClusPro (88), HADDOCK (87) and iMOD (91). Furthermore, a
recent study compared the ability of four standard tools (including
ZDOCK, LightDock, ClusPro, and HADDOCK) to perform
accurate molecular docking of the TCR-pMHC based on an
expanded benchmark set of 44 TCR-pMHC docking cases (176).
It was suggested that achieved success rates of HADDOCK,
ClusPro, ZDOCK, and LightDock are 34.1%, 27.3%, 15.9% and
6.8%, respectively, indicating that HADDOCK is the best
performer. At present, HADDOCK has been updated to version
2.2, which provides some new characteristics such as additional
experimental restraints, support for mixed molecule types,
improved protocols, and a more friendly interface (87).

The epitope prediction is based on the amino acid sequence of
the protein. However, the immunological function of the
peptide-based vaccine depends not only on the amino acid
sequence but also on the secondary structure and tertiary
structure of the vaccine candidate (177). Recently, some
bioinformatics approaches and immunoinformatics
technologies have been widely used in predicting the secondary
structure and tertiary structure of peptide-based vaccines,
including PDBsum (92), SSpro8 (93), GOR V server (94), and
SOPMA (95) for secondary structure prediction, GalaxyWEB
(96), CABS-Flex 2.0 (97), 3Dpro (98), Phyre2 (99), and SWISS-
MODEL (100) for tertiary structure prediction.
3 RESEARCH STATUS OF TB PEPTIDE-
BASED VACCINES

Peptide-based vaccines are subunit vaccines and are new
vaccines with unique advantages. Compared with traditional
subunit vaccines, peptide-based vaccines are more precise and
accurate in design (178). As mentioned above, the construction
of peptide-based vaccines involves the identification of potential
antigens, prediction and screening of dominant epitopes,
comparison of MHC affinity, the addition of adjuvants or
helper peptides, codon optimization, and prediction of
structure and function. These tedious but indispensable
processes enable peptide-based vaccines to efficiently cluster
dominant epitopes together to induce a more robust immune
response in the recipient, improving the efficiency and reducing
side effects by excluding unwanted material from a full-length
protein or whole pathogen (179).
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The first peptide-based vaccine was reported and developed
to fight against Plasmodium falciparum by Etlinger HM et al. in
1988 (180). This peptide-based vaccine consisted of a synthetic
peptide [Ac-Cys-(NANP)3] and a tetanus toxoid protein. The
immunological parameters of this vaccine were evaluated in a
mouse model. To determine the research process of peptide-
based vaccine for TB, we searched the PubMed database with
terms of “peptide, epitope, and tuberculosis” (Figure 3A).
Analyzing these results showed that the research of peptide-
based vaccines for TB can be traced back to around 1990, but due
to the lack of bioinformatics technology, the research progress is
slow. Around 2010, with the rapid development of
bioinformatics technology, the research of peptide-based
vaccines for TB began to enter the fast lane. Especially in 2020,
with the rise of COVID-19 peptide-based vaccines, the
investigation of peptide-based vaccines for TB has also been
extensively developed (red bubbles in Figure 3A).

Further analysis indicated that 150 studies involved in the peptide
or epitope for TB, including 76 studies in epitope screening and
prediction, 45 studies in evaluating immunogenicity, 8 studies in
peptide-based vaccine construction, and 21 studies in assessing
vaccine efficacy in animal models (Figure 3B and Table S1).
Among these 150 articles, we found that 14 teams had published at
least 3 articles in these four areas ofTBepitopes orpeptides, including
six studies on epitope screening and prediction (181–186) and three
studies on immunogenicity (187–189) fromPro.Markus JMaeurer’s
team; seven studies on epitope screening and prediction from Pro.
AbuSalimMustafa’s team(190–196); one studyon epitope screening
and prediction (197) and two studies on immunogenicity (197, 198)
from Pro. Anne S De Groot’s team; two studies on epitope screening
and prediction (199, 200), one study on immunogenicity (201), and
two studies on protective efficacy (202, 203) from Pro. Annemieke
Geluk’s team; one study on epitope screening and prediction (204)
and two studieson immunogenicity (205, 206) fromPro.DoraP.A. J.
Fonseca’s team; three studies on epitope screening and prediction
from Pro. Harald G Wiker’s team (207–209); four studies on
protective efficacy from Pro. Javed Naim Agrewala’s team (115,
146, 210, 211); one study on epitope screening and prediction (212)
and three studies on immunogenicity (212–214) from Pro. Juraj
Ivanyi’s team; three studies on epitope screening andprediction from
Pro. KrisHuygen’s team (215–217); two studies on epitope screening
and prediction (218, 219) and one study on immunogenicity (220)
from Pro. Marisol Ocampo’s team; one study on epitope screening
and prediction (221) and two studies onprotective efficacy (222, 223)
from Pro. Peter Andersen’s team; four studies on epitope screening
and prediction from Pro. R Nayak’s team (224–227); two studies on
epitope screening and prediction (228, 229) and one study on
protective efficacy (230) from Pro. Tom H. M. Ottenhoff’s team;
three studies on epitope screening and prediction from Pro. Yanfeng
Gao’s team (231–233). Theworks from these teams and the efforts of
other scientists have laid the foundation for the development of
peptide-based TB vaccines.

The detailed information of TB peptide-based vaccines in the
stage of prediction, construction, and immunogenicity can be found
in Tables 2, S1. Therefore, the following sections will focus on TB
peptide-based vaccines in the stage of efficacy evaluation (Table 3).
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3.1 Peptide-Based TB Vaccines Evaluated
for Immunogenicity
As early as 2004, Mollenkopf HJ et al. identified 36 DNA vaccine
candidates preselected by comparative proteomic and found that
BCG prime-Rv3407 encoding DNA vaccine boost vaccination
induced significantly higher protection compared to BCG alone
Frontiers in Immunology | www.frontiersin.org 13
(234). Then, the putative MHC I epitopes of Rv3407 were
predicted by computational method and determined by enzyme-
linked immunospot assay (ELISPOT). It was found that Rv3407
64-72 (IPARRPQNL) and Rv3407 68-76 (RPQNLLDVT) peptides
stimulated splenocytes collected from BALB/c mice immunized
with Rv3407 DNA vaccine secreting significantly higher
A

B

FIGURE 3 | The progress in peptide-based vaccines for TB. The PubMed database was used to search the literature related to the peptide-based vaccine for TB
using “peptide, epitope, and tuberculosis”. Their relationships were shown as bubble charts based on publication year and association strength by using VOSviewer
software (A). Furthermore, the relationships among 150 pieces of literature related to peptides or epitopes for TB were shown by using Gephi software. These
literatures were divided into four categories: epitope screening and prediction, vaccine construction, immunogenicity, and protective efficacy. Gephi software was
used to show 150 articles under corresponding authors. Each bubble represents a study, the size of which is proportional to the number of papers the author has
published, and the color from blue to purple indicates the level of activity (B).
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TABLE 3 | A list of TB peptide-based vaccines evaluated for immunogenicity and protection in animal models.

Reference Protein and peptide (sequences) Formulation (likers or
adjuvant)

Host
organism

Dose/route Adjuvant Challenge Efficacy

(234) Rv3407 64-72 (IPARRPQNL), and Rv3407

68-76 (RPQNLLDVT)
– Splenocytes

from
vaccinated
BALB/c mice

105

splenocytes
per well were
stimulated
with 10 mg of
peptide

– - These peptides
stimulated
splenocytes
collected from
vaccine
immunized
mice secreting
significantly
higher IFN-g

(197) 15 peptides† from Rv0203, Rv3106,
Rv2223c, Rv3201c, Rv3296, Rv1242,
Rv1184c, Rv3207c, Rv1157c, Rv1158c,
Rv1291c, Rv1860, Rv2190c, Rv333c,
Rv0309

– PBMCs – – - 15 peptides
stimulated IFN-
g response,
and eight
peptides
stimulated
lymphocyte
proliferation in
vitro.

(235) pcDNA3-M-38 vaccine, MPT64 190-198

(FAVTNDGVI) and 38 kDa proteins 166-175

(IAALNPGVNL)

pcDNA3 vector + MPT64 190-198

(FAVTNDGVI) + 38 kDa proteins

166-175 (IAALNPGVNL)

C57BL/6 (H-
2b) mice

100µg of DNA
per mouse/
i.m., 3 times
at intervals of
21 days

– – DNA
immunization
with p3-M-38
vaccine could
induce epitope-
specific CD8+

CTL response
but not
antibodies

(236) Ag85B 96–111 (QDAYNAAGGHNAVFN)
and Ag85B 241–256

(PAFEWYYQSGLSIVMP)

Rv1886c 96-111 or Rv1886c 241-

256 + RVG peptide
(YTIWMPENPRPGTPCDIFTNSR)

C57BL/6
mice

10mg of
peptides
(RVG,
Rv1886c 96-

111 or
Rv1886c 241-

256)/s.c. or i.n.,
3 times at
14days apart

– – Higher levels of
IL-12, IFN-g, IL-
2, and TNF-a

(237) Rv0934 169-405 and Rv0934 802-1119 Rv0934 169-405 + Rv0934 802-

1119 + His-tag
BALB/c mice Triplicate over

a 2-week
interval/s.c.

DDA/poly
(I: C)

– Elicited higher
IgG and IFN-g,
IL-2

(198) TB 001 DNA multi
epitope vaccine, 24 peptides from
Antigen 85 complex, MPT 64, MPB/MPT
70, MPT 63, the 38 kDa, 14-kDa, 16-
kDa, 19-kDa, and 32-kDa Mtb

24 peptides linked with GPGPG
linker

HLA-DR
B*0101
transgenic
mice

100 mg of
DNA vaccine/
i.m., 3 times
at intervals of
14 days

rIL-15 - Epitope-
specific T cell
responses
were observed
to eight of the
24 epitopes
contained in
the DNA
construct

(223) ESAT-6 (Rv3875) 1–15
(MTEQQWNFAGIEAAA)

ESAT-6 or D15ESAT-6 (lack the
immunodominant ESAT-6 1–15)
+ CAF01 adjuvant

CB6F1 mice 5 mg of ESAT-
6 or D15-
ESAT with a
200ml CAF01/
s.c., 3 times,
with a 2-week
interval

CAF01 Mtb Erdman
strain (20-50
CFUs/
aerosol)

Both vaccines
reduced CFUs
at the early
time point, only
the D15ESAT-
6-based
vaccine gave
significant
levels of
protection (0.9
log10 reduction
of CFU)

(222) ESAT-6 (Rv3875) 51–70
(YQGVQQKWDATATELNNALQ)

DDA/MPLA/IL2 emulsion B6CBAF1
mice

10mg peptide
with a mixture

DDA and
TLR4

Mtb H37Rv
strain

ESAT-651–70
epitope
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TABLE 3 | Continued

Reference Protein and peptide (sequences) Formulation (likers or
adjuvant)

Host
organism

Dose/route Adjuvant Challenge Efficacy

of 25mg
MPLA, and
100 ng
recombinant
mouse IL-2/
i.p. or i.m., 3
times, with a
2-week
interval

agonist
MPLA

(5×104

CFUs/i.v. or
250 CFUs/
aerosol)

promoted
significant
levels of
protective
immunity
(equivalent to
BCG and
ESAT-6).

(238) ESAT-6 (Rv3875) 4-18
(QQWNFAGIEAAASAI), ESAT-6 22-36

(VTSIHSLLDEGKQSL) and ESAT-6 56-70

(QKWDATATELNNALQ)

pIRES + FL + ESAT-6 4-18 +AAY
+ ESAT-6 22-36 + AAY + ESAT-6

56-70 + HIS

C57BL/6
mice

100 µg
plasmid DNA
per mouse/
i.m., two
boosters at
the interval of
3 weeks

– Mtb H37Rv
strain
(5×105

CFUs/
intratracheal
instillation)

DNA vaccine
and boosted
with the
peptides
increased IFN-g
and IL-12, the
number of IFN-
g+ T cells and
activities of
CTL as well as
IgG, enhanced
protection
challenge.

(239) Ag85B (Rv1886c) 10-27
(AWGRRLMIGTAAAVVLPG), Ag85B 19-36

(TAAAVVLPGLVGLAGGAA), Ag85B 91-108

(WDINTPAFEWYYQSGLSI), ESAT6
(Rv3875) 33-47 (KQSLTKLAAAWGGSG),
ESAT6 37-51 (TKLAAAWGGSGSEAY),
ESAT6 29-43 (LDEGKQSLTKLAAAW),
ESAT6 72-95

(LARTISEAGQAMASTEGNVTGMEA)

1 mL of vaccine mixture
contains 10 mg of each peptide,
100 mg of Pam3Cys-SK-4, and
10 mg of CpG ODN

C57BL/6
mice

50 ml per
mouse per
dose

TLR9
agonist
CpG ODN

Mtb H37Rv
strain (150
CFUs/
aerosol)

Enhanced BCG
protective
efficacy,
induced Th1
and Th17
responses

(116) Ag85B (Rv1886c) 239-247 (KLVANNTRL),
IniB (Rv0341) 33-45 (GLIDIAPHQISSV) and
PPE68 (Rv3873) 127-136 (FFGINTIPIA)

Branched chain palmitoyl-
peptide conjugate on Tuftsin
(TKPKG) carrier, A/P/I mix, A(P)I,
and Pal-A(P)I.

CB6F1 mice 50 mg vaccine
in 100 ml PBS
were injected
s.c. three
times, two
weeks apart.

– Mtb H37Rv
strain
(2×105

CFUs/i.p.)

Significantly
lower number
of bacteria in
the spleen after
i.p. challenge
with Mtb.

(240) TB10.4 (Rv0288) 4–11 (IMYNYPAM) and
Ag85B (Rv1886c) 280–294
(FQDAYNAAGGHNAVF)

TB10.4-KFE8 nanofibers or
TB85B-KFE8 nanofibers with
KFE8 (FKFEFKFE) + Pam2Cys
adjuvant

C57BL6
mice

1 × 106 CFU
of BCG/s.c.
prime followed
by 25 ml of
nanofiber
formulations
and boosted
with 15 ml 30
or 90 days
later

Pam2Cys Mtb H37Rv
strain (100
CFUs/
aerosol)

Induced a 8-
fold expansion
in
multifunctional
CD8+ T cell
populations
and 1.3 log10
CFU reduction
in lung bacterial
burden.

(241) Ag85A (Rv3804c) 141-160 Recombinant (Ag85A) BCG
Tokyo or Ag85A DNA vaccine
with Ag85A peptide boosting

Guinea pigs 1.
Recombinant
(Ag85A) BCG:
5×106 CFUs/
s.c. boosted
by 500 mg of
Ag85A (141–
160)/s.c. at 3
weeks later.
2. Ag85A
DNA: 50 mg/
i.m., 2 times
at intervals of
3 weeks,
boosted by

– Mtb Kurono
strain (150
CFUs/
aerosol)

Peptide
boosting is
important for
the induction of
higher
protective
efficacy by
recombinant
BCG Tokyo or
a tuberculosis
DNA vaccine

(Continued)
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TABLE 3 | Continued

Reference Protein and peptide (sequences) Formulation (likers or
adjuvant)

Host
organism

Dose/route Adjuvant Challenge Efficacy

500 mg of
Ag85A (141–
160)/s.c. in
IFA.

(242) Acr (Hsp16.3, Rv2031c) 91–104
(SEFAYGSFVRTVSL)

Hsp16.3 91–104 peptide mixed
with DDA-MPLA (TLR4 agonist)
or IFA

BALB/c mice 25mg synthetic
peptide with
DDA-MPLA/
mouse/s.c., 3
times, with a
2-week
interval

250mg
DDA +
25mg
MPLA, or
100ml IFA

Mtb H37Rv
strain
(1×105

CFUs/i.v.)

Induced
significantly
stronger
specific
antibodies but
lower IFN-g
than BCG, the
protection was
equivalent to
BCG

(210) Acr (Rv2031c) 91–110
(SEFAYGSFVRTVSLPVGADE)

Peptide + Pam2Cys BALB/c mice
or
Duncan-
Hartley
guinea pigs

20 nmol per
mouse or 100
nmol per
guinea pig/i.p.,
21 days later a
booster (10
nmol per
mouse and 50
nmol per
guinea pig)

– Mtb H37Rv
strain (100
CFUs per
mouse or 30
CFUs per
guinea pigs,
aerosol)

Enhanced
activation of
DCs, rousted
Th1 immune
response, and
harbored
significantly
lower CFUs in
the lungs

(146) Acr (Rv2031c) 91–110
(SEFAYGSFVRTVSLPVGADE)

L91 vaccine, 1 HTL
(SEFAYGSFVRTVSLPVGADE) +
TLR-2 agonist (Pam2Cys)

BALB/c mice Danish strain
of BCG (106

CFU/animal),
21 days later,
two boosters
with L91 (20
nmol) at the
interval of
2 weeks

– Mtb H37Rv
strain (100
CFUs/
aerosol)

L91 booster
significantly
enhanced Th1
cells and Th17
cells and
reduced the
mycobacterial
burden

(115) Acr (Rv2031c) 91–110
(SEFAYGSFVRTVSLPVGADE), TB10.4
(Rv0288) 20-28 (GYAGTLQSL)

L4.8 vaccine, 1 HTL
(SEFAYGSFVRTVSLPVGADE) +
1 CTL (GYAGTLQSL) + TLR-2
agonist (Pam2Cys)

BALB/c mice Danish strain
of BCG (106

CFU/animal),
21 days later,
two boosters
with L4.8 (20
nmol) at the
interval of
2 weeks

– Mtb H37Rv
strain (100
CFUs/
aerosol)

Significantly
elicited both
CD8 T cells
and CD4 T
cells immunity,
and the BCG-
L4.8 prime
boost strategy
imparts a
better
protection
against TB than
the BCG alone.

(211) TB10.4 (Rv0288) 1-13
(MSQIMYNYPAMLG), TB10.4 (Rv0288)

78-94 (ANTMAMMARDTAEAAKW),
Rv0476 1-19 (MLVLLVAVLVTAVYAFVHA),
CFP10 (Rv3874) 71-90
(EISTNIRQAGVQYSRADEEQ), Acr
(Rv2031c) 91-110
(SEFAYGSFVRTVSLPVGADE), and Acr

21-40 (LFAAFPSFAGLRPTFDTRLM)

All six peptide sequences
aligned in duplicates were
attached by protease-sensitive
linker sequence with N terminal
secretory signal of human
growth hormone

C57BL/6
mice

100 mg per
mouse/s.c.
Two boosters
at the interval
of 2 weeks

– Mtb H37Rv
strain (100
CFUs/
aerosol)

Significant
reduction in the
Mtb burden
and enhanced
IFN-g and TNF-
a cytokine
release.

(202) Hsp65 (Rv0440) 3–13 (KTIAYDEEARR),
Ag85B (Rv1886c) 56–64 (PSMGRDIKV), 19
kDa (Rv3763) 51–61 (KVVIDGKDQNV), Acr
(Hsp16.3, Rv2031c) 31–50
(LRPTFDTRLMRLEDEMKEGR) and
Rv1733c 63–77 (AGTAVQDSRSHVYAH)

Recombinant polyepitope with
CpG ODN1826 adjuvant

HLA-DR3
transgenic
mice

25 mg peptide
vaccine with
50 mg CpG in
200 ml PBS
were injected
s.c. three

50 mg
TLR9
agonist
CpG
(ODN1826)

Mtb H37Rv
strain
(1×105

CFUs/i.n.)

High IgG levels
and
polyfunctional
CD4(+) T-cells
producing IFN-
g, TNF and IL-

(Continued)
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TABLE 3 | Continued

Reference Protein and peptide (sequences) Formulation (likers or
adjuvant)

Host
organism

Dose/route Adjuvant Challenge Efficacy

times, two
weeks apart.

2, and reduce
CFUs in lungs

(243) Four Th1 peptides ESAT-6 1–20

(MTEQQWNFAGIEAAASAIQG), Ag85B

241–255 (VANNTRLWVYCGNGT), PE19
(Rv1791) 4–18 (VTTQPEALAAAAANL),
PPE25 (Rv1787) 241–255
(AQFFASIAQQLTFGP), and 1 CTL
peptide MTB10.4 (Rv0288) 3–11
(QIMYNYPAM)

HSP65 scaffold + ESAT-6 1–20 +
Ag85B 241–255 + MTB10.4 3–11

+ AAY + PPE25 241–255 + PE19

4–18

C57BL/6
mice

Four doses of
50 µg DNA
vaccine per
mouse/i.m.

– Intranasally
inoculated
with 1 × 107

CFUs BCG
in 100 µL
PBS under
anesthesia

Induce higher
IFN-g+ T cell
response,
granzyme B+

CTL and IL-2+

CD8+ T cell
responses, and
significantly
improved
protection

(244) 21 conserved PE/PPE peptides ‡ PE peptide + ESAT-6 (PE-
ESAT-6), PPE peptide + ESAT-6
(PPE-ESAT-6), and PE + PPE
peptide + ESAT-6 (PE/PPE-
ESAT-6)

C57BL/6J
mice

2mg per
mouse/s.c.
Two boosters
at the interval
of 3 weeks

GLA-SE
(5mg/
mouse)

Mtb Beijing
strain
HN878 (100
CFUs/
aerosol)

Enhanced IL-
2+IFN-g+ CD4+

T cells, lower
CFUs

(2) Mtb8.4 (Rv1174c) 69-83
(LRNFLAAPPPQRAAM), PPE18 115-129

(RAELMILIATNLLGQ), PPE18 (Rv1196)

149-163 (AAAMFGYAAATATAT), PPE68
(Rv3873) 138-152 (DYFIRMWNQAALAME),
RpfA (Rv0867c) 377-391
(AYTKKLWQAIRAQDV), and TB10.4
(Rv0288) 21-35 (YAGTLQSLGAEIAVE)

TrxA-tag +6 HTL (GGGGS) +
His-tag

Humanized
C57BL/6
mice and
wild- C57BL/
6 mice

30 µg MP3RT
per mouse/
s.c. Two
booster (20
µg) at the
interval of
2 weeks

TLR9
agonist
CpG-
ODN2395

Mtb H37Rv
strain (2 ×
105 CFUs/
tail vein
injection)

Inducing
protection
characterized
by high levels
of IFN-g and
CD3+IFN-g+ T
lymphocytes

(245) MPT64 (Rv1980c) 190-198 (FAVTNDGVI) AMM (Ag85B-Mpt64 190-198

-Mtb8.4)
C57BL/6
mice

5 × 105 CFU
of BCG prime
followed by 20
mg of AMM
plus 250 mg of
DDA and 30
mg of BCG
PSN/s.c.
Boosting twice
at weeks 8
and 10

250 mg of
DDA and
30 mg of
BCG PSN

Mtb H37Rv
strain
(1×106

CFUs/i.v.)

AMM induced
stronger
humoral and
cell-mediated
immune
responses than
Ag85B alone
and could
boost BCG-
primed
immunity and
lead to a better
protection than
BCG alone or
BCG-prime
followed by
Ag85B-boost.

(246) MPT64 (Rv1980c) 190-198 (FAVTNDGVI) AMH (Ag85B-Mpt64190-198
-HspX)
AMM (Ag85B-Mpt64 190-198

-Mtb8.4)

C57BL/6
mice

5 × 105 CFU
of BCG prime
followed by 10
mg of AMM
and 10 mg of
AMH plus 250
mg of DDA
and 30 mg of
BCG PSN/s.c.
Boosting twice
at weeks 8
and 10

250 mg of
DDA and
30 mg of
BCG PSN

Mtb H37Rv
strain
(1×106

CFUs/i.v.)

Boosted with
AMM + AMH
had significantly
lower bacterial
count in the
lungs than
those receiving
BCG, whereas
mice boosted
with AMH or
AMM did not.

(247) MPT64 (Rv1980c) 190-198 (FAVTNDGVI) ESAT6 + Ag85B + MPT64(190–
198) + Mtb8.4-Rv2626c

C57BL/6
mice

13 mg/dose/
mouse, s.c., 3
times at 2-
week intervals

250 mg
DDA and
50 mg
TLR3
agonist
Poly (I:C)

Mtb H37Rv
strain (50-
100 CFUs/
aerosol)

Generated
strong antigen-
specific
humoral and
cell-mediated
immunity, and
induced higher
protective
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IFN-g (234). Similarly, a year later, McMurry J et al. also identified
15 MHC II binding epitopes by bioinformatics tools and
ELISPOT, these peptides from 15 antigens of M. tuberculosis
could stimulate the PBMCs obtained from healthy or
asymptomatic tuberculin skin test-positive donors producing
high levels of IFN-g (197). Although both studies simply
validated potential peptides in vitro, they provide new insights
into the development of peptide-based vaccines.

With the deepening of the understanding of epitopes, studies
on evaluating the immunogenicity of peptides began to shift from
in vitro experiments to in vivo experiments. Wang QM et al.
constructed a pcDNA3-M-38 vaccine consisting of a pcDNA3
vector and two MHC II binding peptides MPT64 190-198

(FAVTNDGVI) and 38 kDa proteins 166-175 (IAALNPGVNL).
The results showed that immunization with the p3-M-38 vaccine
could induce epitope-specific CD8+ CTL response in C57BL/6 (H-
2b) mice (235). Recently, a study constructed a new peptide-based
vaccine, PstS1p, which consists of PstS1 169-405 and PstS1 802-1119

peptides (237). The immunity and immunogenicity of the PstS1p
vaccine and PstS1 (Rv0934) protein were evaluated in BALB/c
mice. The results showed that both vaccines elicited remarkably
higher levels of IgG antibodies and IFN-g as well as IL-2 Th1-type
cytokines (237). Interestingly, the PstS1p peptide-based vaccine
showed more potent immunogenicity than the PstS1 vaccine,
indicating that the peptide-based vaccine has better prospects
than the traditional subunit vaccine.

These studies indicate an excellent method to construct peptide-
based vaccines using bioinformatics technology to predict the
dominant epitopes and ELSPOT technology for in vitro validation
and screening. However, the immunogenicity of peptide-based
vaccines containing only dominant epitopes is not ideal, and the
addition of adjuvants or helper peptides can significantly improve
the immunogenicity of peptide-based vaccines. Garnica O et al. used
RVG peptide (YTIWMPENPRPGTPCDIFTNSR) to enhance the
immunogenicity of Ag85B 96–111 (QDAYNAAGGHNAVFN) and
Frontiers in Immunology | www.frontiersin.org 18
Ag85B 241–256 (PAFEWYYQSGLSIVMP) peptides (236). They
observed that stimulation with RVG peptide fused Ag85B 96–111

or Ag85B 241–256 peptide can improve the antigen presentation
ability of mouse bone marrow derived DCs (BMDCs) and human
THP-1 macrophages. Furthermore, the number of IFN-g, IL-2, and
TNF-a producing cells were significantly higher inmice immunized
with RVG peptide fused Ag85B 241–256 peptide than in mice
immunized with Ag85B 241–256 peptide only (236). These results
reveal that helper peptide RVG may be a promising adjuvant to
developing effective peptide-based TB vaccines. The limitation of
these studies is that the animal models used were wild-type mice.
Still, the MHC molecules of mice and humans are significantly
different, which may result in the failure of a peptide-based vaccine
in clinical trials, which has been proved to have an excellent
protective effect in the mouse model (2). To overcome this
disadvantage, De Groot AS et al. developed HLA-DR B*0101
transgenic mice to evaluate the immunogenicity of a DNA multi-
epitope vaccine that contains 24 epitopes derived from Antigen 85
complex, MPT 64, MPB/MPT 70, MPT 63, the 38 kDa, 14-kDa, 16-
kDa, 19-kDa, and 32-kDa Mtb proteins (198). The results found
that 8 of the 24 epitopes induced immune responses in these HLA-
DR B*0101 transgenic mice.

3.2 Peptide-Based TB Vaccines Evaluated
for Protective Efficacy in Animal Models
Previous studies on TB subunit vaccines have provided a large
number of vaccine candidate antigens for peptide-based vaccines
development, such as Ag85A (Rv3804c) (241), Ag85B (Rv1886c)
(116, 202, 239, 240), 6-kDa early secretory antigenic target
(ESAT-6, Rv3875) (222, 223, 238, 239), heat shock protein
HspX (also known as Hsp16.3, Acr, and 14 kDa antigen,
Rv2031c) (115, 146, 202, 210, 211, 242), TB10.4 (Rv0288) (2,
115, 211, 240), Rv0476 (211), Hsp65 (202), 19-kDa lipoprotein
(Rv3763) (202), Rv1733c (202, 203), PE/PPE proteins (2, 243,
244, 248), MPT64 (Rv1980c) (246, 247), Mtb8.4 (2), and
TABLE 3 | Continued

Reference Protein and peptide (sequences) Formulation (likers or
adjuvant)

Host
organism

Dose/route Adjuvant Challenge Efficacy

efficacy than
BCG

(203) Rv1733c 57–84

(IPFAAAAGTAVQDSRSHVYAHQAQTRHP)
Synthetic long
peptide (SLP) with
CpG ODN1826
adjuvant

HLA
-DRB1*0301/
DRA
transgenic
mice

25mg
Rv1733c p63-
77, or
Rv1733c p57-
84 peptide
with CpG/
mouse/s.c., 3
times, with a
2-week
interval

TLR9
agonist
CpG
ODN1826

Mtb H37Rv
strain
(1×106

CFUs/i.n.)

Had the
highest
reduction (0.92
log) in bacterial
load in their
lungs (from 3.6
× 105 to 0.44 ×
105) compared
to mice
vaccinated only
with BCG.
January 2022
 | Volume 13
AcMNPV, Autographa californica multicapsid nucleopolyherovirus; BCG PSN, BCG polysaccharide nucleic acid; DDA, N, N’-dimethyl-N, N’-dioctadecylammonium bromide; FL, fms-like
tyrosine kinase 3 ligand; IFA, Incomplete Freund’s Adjuvant; RVG, Rabies Virus Glycoprotein; MPLA, Monophosphoryl lipid A; Pam2Cys, lipid moiety S-[2,3-bis(palmitoyloxy)propyl]
cysteine; PBMC, Peripheral blood mononuclear cells; p.i., postinfection; Poly (I: C), polyribocytidylic acid; s.c., subcutaneous injection; i.m., intramuscular injection; i.v., intravenous
injection; i.n., intranasally; i.p., intraperitoneal injection; †: Rv0203 (TRRRLLAVLIAL), Rv3106 (GHRRMVFRFLTSPIEI), Rv2223c (WRRRPLSSALLSFGLLLGGLPL), Rv3201c
(GQLLRRVRSRLARL), Rv3296 (RVILHSPYGLRVHGPLAL), Rv1242 (FLRIATSARVLAAPLPT), Rv1184c (LVPVNHLPLTLPL), Rv3207c (QGGLAPVMMQQTFST), Rv1157c
(TQLLMAAASA), Rv1158c (GVNAPIPGI), Rv1291c (FTRRFAASMVG), Rv1860 (RKGRLAALAIA), Rv2190c (ARVIMRSAIG), Rv333c (VMRLYPVRLTTTMTR), Rv0309 (SVVMGVNKAK);
‡These 21 PE/PPE peptides can be found at https://doi.org/10.1016/j.bbrc.2018.06.017.
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resuscitation-promoting factors (Rpfs) (2, 228). These antigens
have been reported to be attractive vaccine candidates for
preventing and controlling TB. Herein, we will summarize the
peptide-based vaccines developed from these protective antigens.

3.2.1 Peptide-Based Vaccines Derived From ESAT-6
Family Proteins
ESAT-6 family antigens are low-mass fractions of culture filtrates
of M. tuberculosis (249). Previous studies reported that ESAT-6,
CFP10, and TB10.4 antigens belong to ESAT-6 family members,
they play an essential role in TB pathogenesis and induced
significantly enhanced humoral and cellular responses in
animal models or clinical trials (250–256). This evidence lay
the foundation for constructing peptide-based vaccines based on
ESAT-6 family antigens. Aagaard CS et al. identified an
immunodominant pep t ide ESAT-6 (Rv3875) 1 – 1 5

(MTEQQWNFAGIEAAA) that can be recognized by the
splenocytes of CB6F1 mice and triggered a significant release
of IFN-g (223). To further investigate the role of ESAT-6 1–15

epitope in ESAT-6 full-length antigen, they compared the
protective efficacy of a full-length ESAT-6 vaccine and a
D15ESAT-6 vaccine with the absence of ESAT-6 1–15 epitope.
Surprisingly, although both vaccines decreased bacterial
numbers of the lung at the early time point, only the
D15ESAT-6 vaccine revealed significant protection at the long
time point (223). These data suggest that the ESAT-6 1–15

immunodominant epitope may negatively affect the full-length
ESAT-6 vaccine, reminding that excluding some epitopes may be
a potential approach to construct a more protective vaccine.
Besides ESAT-6 1–15 epitope, other immunodominant epitopes
of ESAT-6 antigen were also determined by different studies.
Olsen AW et al. investigated the vaccine potential of two
peptides, ESAT-6 1–20 (MTEQQWNFAGIEAAASAIQG) and
ESAT-6 51–70 (YQGVQQKWDATATELNNALQ), in B6CBAF1
(H-2b,k) mice. The results showed that both peptides were
recognized by CD4+ T cells and induced a significantly higher
IFN-g release, but only the vaccine based on the ESAT-6 51–70

peptide promoted significant protection against M. tuberculosis
infection (222).

More recently, Jiang Q et al. constructed a recombinant DNA
vaccine (pIRES-epitope-peptide-FL) encoding three T cell
peptides of ESAT-6 antigen, including ESAT-6 4-18

(QQWNFAGIEAAASAI), ESAT-6 22-36 (VTSIHSLLDEGKQSL),
and ESAT-6 56-70 (QKWDATATELNNALQ) peptides (238).
Results revealed that pIRES-epitope-peptide-FL vaccination
increased the proliferation of IFN-g+ T cells, induced
significantly higher levels of IFN-g and IL-12 but relatively lower
levels of IL-4 and IL-10, and enhanced protection from M.
tuberculosis challenge in C57BL/6 mice (238). The results of the
above studies suggest that there is competition between ESAT-6 1–

15 or ESAT-6 1–20 epitope and other epitopes of ESAT-6 antigen,
and ESAT-6 1–15 and ESAT-6 1–20 epitopes may weaken the
recognition ability of other epitopes to MHC molecule (222). It
may explain why the D15ESAT-6 vaccine or ESAT-6 51–70
peptide vaccine is more protective than the ESAT-6 vaccine or
ESAT-6 1–20 peptide vaccine. These results provide a new strategy
Frontiers in Immunology | www.frontiersin.org 19
that synthetic long peptides (SLPs) in peptide-based vaccine
design may attenuate the adverse effects of some epitopes and
improve the immunogenicity and vaccine efficacy (116).
Furthermore, ESAT-6 is a virulence factor secreted by M.
tuberculosis, the safety of this protein and their peptides should
be considered in designing a peptide-based vaccine.

3.2.2 Peptide-Based Vaccines Derived From Ag85A
and Ag85B Proteins
M. tuberculosis Ag85 complex consists of three homologous
proteins, including Ag85A (Rv3804c), Ag85B (Rv1886c), and
Ag85C (Rv0129c), which induce strong humoral and cellular
immune responses (257). They play critical roles in virulence,
preventing the formation of phagolysosomes and drug-resistant
TB of the pathogen (258). Therefore, Ag85 complex proteins
have been utilized by scientists to construct TB vaccines, such
asrBCG30 (259), AERAS-422 (rBCG::Ag85A-Ag85B-Rv3407)
(260), MVA85A (AERAS-485) (261), Ad35/AERAS-402 (262),
Ad5Ag85A (262), ChAdOx1.85A (263), and AEC/BC02 (264).
Previous studies have shown that Ag85A and Ag85B proteins are
rich in epitope resources, giving them a distinct advantage in
constructing peptide-based vaccines (257, 265). Kumar S et al.
generated a vaccine mixture (peptide-TLR agonist-liposomes,
abbreviation for PTL), consisting of three Ag85B peptides, four
ESAT-6 peptides, TLR2 agonist Pam3Cys-SK-4, and TLR9
agonist CpG ODN (Table 3) (239). Interestingly, the BCG-
PTL coimmunization enhanced the proportion of vaccine-
induced Tcm cells and polyfunctional cytokine responses and
increased the defensive efficiency against TB compared with
BCG vaccination (239). Linear T cell epitopes are usually short
and therefore less immunogenic and stable in vivo. It is an
effective strategy to enhance the immunogenicity and
presentation of epitopes by using conjugation and
palmitoylation approaches. To investigate this strategy, Horváti
K et al. developed three peptide-based vaccines termed A/P/I
mix, A(P)I, and Pal-A(P)I, respectively (116). The similarity of
the three vaccines is that they consist of Ag85B 239-247

(KLVANNTRL), isoniazid inductible gene protein IniB
(Rv0341) 33-45 (GLIDIAPHQISSV), and PPE68 (Rv3873) 127-

136 (FFGINTIPIA) peptides. The difference is that A/P/I mix is a
mixture of three peptides, A(P)I is a conjugation of three
peptides separated with a tuftsin sequence (TKPKG), and Pal-
A(P)I is the palmitoylated A(P)I. As expected, the internalization
rates of A(P)I and Pal-A(P)I vaccines were higher than these of
A/P/I mix in human murine bone marrow-derived macrophages
(BMDMs) or MonoMac6 human monocytes (MM6), especially
the Pal-A(P)I vaccine. Immunization with Pal-A(P)I vaccine
induced significantly higher levels of splenocytes proliferation
and Th1-type cytokines, and lower numbers of bacteria in the
lung or spleen of mice. This exploration suggests that
conjugation and palmitoylation are a promising route to
enhance the immunogenicity and protective efficacy of
peptide-based vaccine.

In addition to the conjugation and palmitoylation routes
described above, other novel vaccination strategies have been
developed to design peptide-based vaccines. Recently, Chesson
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CB et al. reported a vaccination strategy based on self-assembling
peptide-nanofibers to present TB10.4 (Rv0288) 4–11 (IMYNYPAM)
and Ag85B (Rv1886c) 280–294 (FQDAYNAAGGHNAVF) peptides
(240). It was found that intranasal immunization with self-
assembling peptide-nanofibers induced an 8-fold expansion in
multifunctional CD8+ T cell populations and bacterial loads in
the lungs of mice primed with BCG and boosted intranasally with
co-assembled nanofibers of TB10.4 4–11 peptide and Pam2Cys
adjuvant showed a 1.3 log10 CFUs reduction compared to naïve
mice (240). Thus, the utilization of new materials or adjuvants can
significantly improve the immunogenicity and protection efficiency
of peptide-based vaccines. Furthermore, the BCG prime-boost
strategy can also considerably enhance the protection efficiency
of peptide-based vaccines. Sugawara I et al. confirmed the prime-
boost strategy by developing a recombinant (Ag85A) BCG vaccine,
an Ag85A DNA vaccine, and an Ag85A (Rv3804c) 141-160 peptide
(241). The results presented that the recombinant BCG Tokyo
(Ag85A) or Ag85A DNA vaccination boosted with Ag85A 141-160

peptide could remarkably reduce pathological lesions and CFUs
burden in the lung of guinea pigs.

3.2.3 Peptide-Based Vaccines Derived From 16-kDa
Alpha-Crystallin (Acr, Rv2031c) Protein
Acr, also known as HspX and Hsp16.3, is a heat shock protein
localized in the inner membrane. This protein plays an essential role
in maintaining the long-term survival during latent or
asymptomatic infection and slowing the growth of M. tuberculosis
in the early stage of active disease (266, 267). Previous study has
suggested it as a subunit vaccine candidate (268). Currently, three
peptides from Acr protein have been used to develop peptide-based
vaccines, including Acr 31–50 (LRPTFDTRLMRLEDEMKEGR), Acr
9 1 – 1 0 4 ( S E F A YG S F V R TV S L ) , a n d A c r 9 1 – 1 1 0

(SEFAYGSFVRTVSLPVGADE) peptides (Table 3). Shi C et al.
compared the immune responses and protection of Acr protein
vaccine and its peptide Acr 91–104 mixed with TLR4 agonist DDA-
MPLA (N, N’-dimethyl-N, N’-dioctadecylammonium bromide-
Monophosphoryl lipid A) on BALB/c mice. They observed that,
compared to the BCG vaccine, both vaccines induced significantly
higher levels of antibodies, splenolymphocyte proliferation, lower
levels of IFN-g, and equivalent protection (242). Two previous
studies constructed a peptide-based vaccine termed L91 by linking
Acr 91–110 (SEFAYGSFVRTVSLPVGADE) peptide to TLR-2
agonist Pam2Cys. Both studies found similar results that L91
vaccination stimulated significantly higher levels of Th1 and Th17
immune responses and induced significantly lower CFUs in the
lungs of BALB/c mice or Duncan-Hartley guinea pigs than BCG
vaccine (146, 210). The possible immune protective mechanism of
the L91 vaccine is to reduce the inhibitory effect of M. tuberculosis
on APCs by enhancing the expression of NF-kB and iNOS (146,
269). Interestingly, to achieve better protection, Rai, PK et al.
improved the L91 vaccine by incorporating a CD8 T cell epitope
TB10.4 20-28 (GYAGTLQSL), and the new peptide-based vaccine
was named as L4.8 (115). The results showed that the L4.8
vaccination elicited significantly higher levels of CD4+ and CD8+

T cells immunity, and the BCG-L4.8 prime-boost strategy resulted
in better protection against M. tuberculosis infection than L91 and
Frontiers in Immunology | www.frontiersin.org 20
BCG vaccines. It can be seen from the above studies that peptide-
based vaccines using both HTL and CTL peptides as well as agonists
or helper peptides can induce stronger CD4+ and CD8+ T cell
immunity to improve their protective effect (115, 270).

Furthermore, two additional studies were performed to improve
the immunogenicity and protection of Acr 91-110 peptide by adding
other peptides, such as TB10.4 1-13 (MSQIMYNYPAMLG), TB10.4
78-94 (ANTMAMMARDTAEAAKW), Rv0476 1-19 (MLVLLVAVL
VTAVYAFVHA), CFP10 (Rv3874) 71-90 (EISTNIRQAGVQ
YSRADEEQ), Acr 21-40 (LFAAFPSFAGLRPTFDTRLM), Hsp65
(Rv0440) 3–13 (KTIAYDEEARR), Ag85B (Rv1886c) 56–64

(PSMGRDIKV), 19 kDa (Rv3763) 51–61 (KVVIDGKDQNV), Acr
31–50 (LRPTFDTRLMRLEDEMKEGR) and Rv1733c 63–77

(AGTAVQDSRSHVYAH) (202, 203). As expected, the results
revealed that peptide-based vaccine with multi-peptides could
induce significantly higher levels of IgG antibodies, IFN-g, TNF,
and IL-2 cytokines, and lower CFUs in lungs of C57BL/6 mice (211)
or HLA-DR3 transgenic mice (202).
3.2.4 Peptide-Based Vaccines Derived From PE/PPE
Family Proteins
InM. tuberculosis, PE/PPE family has up to 167 members, most of
which are located on the surface ofM. tuberculosis or secreted out
of the bacteria and can be well recognized by the host immune
system. Despite the function of most PE/PPE family members is
still unknown, accumulating studies indicate that PE/PPE family
members related to the ESAT6 family are considered as
“immunogenicity islands” due to their high immunogenicity and
immunopathogenic (271; 248). This evidence suggests that PE/PPE
proteins may be promising candidates for the design of peptide-
based vaccines. WuM et al. designed a multi-epitope DNA vaccine
termed as pPES by grafting four Th1 epitopes ESAT-6 1–20

(MTEQQWNFAGIEAAASAIQG), Ag85B 241–255 (VANNTRL
WVYCGNGT), PE19 (Rv1791) 4–18 (VTTQPEALAAAAANL),
PPE25 (Rv1787) 241–255 (AQFFASIAQQLTFGP), and a CTL
epitope MTB10.4 (Rv0288) 3–11 (QIMYNYPAM) into Hsp65
(Rv0440) scaffold protein (243). pPES vaccination generated
HSP65-specific antibodies, induced higher levels of IFN-g+CD4+

T cell response, multi-functional CD4+ T cell response, cytotoxic
CD8+ T cell response, and lower bacterial loads in lungs and
spleens of mice (243). These data indicated that epitope grafting
did not reduce the immunogenicity of HSP65 protein, and epitope
grafting strategy may be a potential method to construct peptide-
based vaccines. A study identified 21 immunodominant peptides
from 167 proteins of the PE/PPE family and constructed three
peptide-based vaccines by fusing these peptides to ESAT-6 protein,
including PE peptides + ESAT-6 (shorten as PE-ESAT-6), PPE
peptides + ESAT-6 (PPE-ESAT-6), and PE + PPE peptides +
ESAT-6 (PE/PPE-ESAT-6) (244). The results showed that,
compared to control, PE/PPE-ESAT-6 immunization induced
significantly higher levels of IFN-g , multifunctional
CD4+CD44+CD62L- T cells, and lower CFUs loads in lungs and/
or spleens of C57BL/6J mice.

We recently developed a novel peptide-based vaccine termed as
MP3RT (2). This vaccine is made up of six immunogenicity HTL
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(LRNFLAAPPPQRAAM), PPE18 115-129 (RAELMILIATNLLGQ),
PPE18 (Rv1196) 149-163 (AAAMFGYAAATATAT), PPE68
(Rv3873) 138-152 (DYFIRMWNQAALAME), RpfA (Rv0867c) 377-

391 (AYTKKLWQAIRAQDV), and TB10.4 (Rv0288) 21-35

(YAGTLQSLGAEIAVE). To evaluate the effect of epitope MHC
restriction on the immunogenicity and protective efficiency of the
MP3RT vaccine, humanized C57BL/6 mice and wild- C57BL/6
mice were used. Our results showed that MP3RT induced
significantly higher levels of IFN-g and CD3+IFN-g+ T
lymphocytes and lower CFUs in the lungs and spleens of
humanized mice rather than wild-type mice (2). The same
method was used to evaluate other peptide-based vaccine named
as ACP that only contains three peptides Ag85B (Rv1886c) 12-26

(GRRLMIGTAAAVVLP), CFP21 (Rv1984c) 12-26 (VVVATT
LALVSAPAG), and PPE18 (Rv1196) 149-163 (AAAMFGYAAATA
TAT) (9). We found that although ACP induced significant
humoral and cellular immune responses in humanized mice, its
protective efficiency was not significantly better than that of the
phosphate buffer solution (PBS) control. Taken together, these data
once again demonstrated that grafting or fusion of multiple
immunodominant epitopes on the protective antigen skeleton
could significantly improve the immunogenicity and protection
efficiency of the antigen, and these findings provide new ideas for
the construction of peptide-based vaccines for TB.

3.2.5 Peptide-Based Vaccines Derived From MPT64
(Rv1980c) Protein
The MPT64 protein is an immunogenic protein initially isolated
from the culture filtrate of the BCG Tokyo strain (272). Previous
studies have shown that MPT64 protein contains T or B cell
epitopes, inducing strong humoral or cellular immune responses
(273). Therefore, MPT64 protein is a promising candidate for
constructing a peptide-based vaccine. Peptide MPT64 190-198

(FAVTNDGVI) has received more attention in recent years.
Professor Zhu BD et al. developed a peptide-based vaccine
Ag85B-MPT64(190-198)-Mtb8.4 (named as AMM). They
investigated its immunogenicity and capacity to boost BCG-
primed immunity in a DDA-BCG PSN adjuvant (dimethyl-
dioctyldecyl ammonium bromide and BCG polysaccharide
nucleic acid). They found that BCG-AMM prime-boost
vaccination induced significantly higher levels of immune
responses and better protection than BCG or AMM
vaccination alone (245). Subsequently, they further confirmed
this vaccine and developed a novel vaccine named AMH that
consists of Ag85B-MPT64(190-198)- HspX (246). Compared
with the mice receiving BCG only, the mice boosted with
AMH, AMM, or their combination (AMH+AMM) showed
significantly higher levels of specific antibodies and IFN-g+ T
cells. In addition, the mice boosted with the combination of
AMM and AMH had substantially lower bacterial counts in the
lungs, whereas mice boosted with AMH or AMM did not.
Heterogeneity of protective effect of AMM vaccine in both
studies may be related to vaccine dose. Analysis of the two
studies showed that all parameters were identical except the
vaccine dose. In their first study, they used 20 µg of the AMM
Frontiers in Immunology | www.frontiersin.org 21
vaccine, but in the second study, the vaccine dose was reduced to
10 µg. It indicates that vaccine dose significantly affects its
protection efficiency, suggesting that future studies should
select an appropriate vaccine dose to immunize mice to avoid
vaccine failure due to this factor.

More recently, Zhu’s team modified and upgraded the AMM
vaccine and constructed a new peptide-based vaccine called
LT70, which consists of ESAT6-Ag85B-MPT64(190-198)-
Mtb8.4-Rv2626c (247). They observed that LT70 was well
recognized by T cells obtained from TB patients and LTBI
volunteers and induced dramatically higher levels of cellular
and humoral immunity as well as protective efficacy compared to
BCG vaccine or PBS control in C57BL/6 mice. There were
significant differences in experimental design between this
study and the previous two studies. For example, the vaccine
dose was adjusted to 13 mg, BCG-PSN adjuvant was replaced by
Poly (I:C) adjuvant, and the route of the challenge was changed
from intravenous injection to respiratory aerosol inhalation.
These optimizations and improvements have contributed to
the improved immune protection efficiency of the LT70 vaccine.

3.2.6 Peptide-Based Vaccines Derived From
Rv1733c Protein
Rv1733c is a probably conserved transmembrane protein of M.
tuberculosis and belongs to dormancy survival regulon antigens
(DosRs) related to LTBI (5). Rv1733c protein has been
considered an immunopotent T cell candidate of the 45 top-
ranking antigens (274). Black GF et al. compared the
immunogenicity of 51 DosR regulon-encoded M. tuberculosis
recombinant proteins among 131 individuals from Uganda,
Gambia, and South Africa. They found that of the 51 DosRs,
Rv1733c is one of the most frequently recognized DosRs in all
three population groups (275). Furthermore, it has been shown
that Rv1733c also induces strong IFN-g response in T cells
collected from tuberculin skin test positive (TST+) individuals
(276) and a Rv1733c DNA prime followed by boosting with
Rv1733c protein increased T cell proliferation and IFN-g
secretion in mice (277).

Thus, it can be seen that Rv1733c has good immunogenicity
and is expected to be a new vaccine candidate for fighting against
LTBI. Coppola M et al. investigated an SLP Rv1733c 57–84

(IPFAAAAGTAVQDSRSHVYAHQAQTRHP) derived from
Rv1733c protein and assessed its immunogenicity and
protective capacity in HLA-DRB1*0301/DRA transgenic mice
(203). After three times’ immunization, the mice vaccinated with
Rv1733c SLP and TLR9 agonist CpG ODN1826 showed
significantly higher levels of IFN-g+ TNF+ and IFN-g+ CD4+ T
cells and Rv1733c protein-specific antibodies. Interestingly,
compared with mice vaccinated with BCG only, the mice
primed with BCG and boosted with Rv1733c SLP revealed the
highest reduction in CFUs burdens in lungs (203). Furthermore,
Geluk A et al. also evaluated the immunogenicity of another
peptide Rv1733c 63–77 (AGTAVQDSRSHVYAH) in HLA-
DRB1*03:01/DRA transgenic mice. It was found that Rv1733c
63–77 stimulated significantly higher levels of IFN-g in splenocytes
harvested from HLA-DR3 mice infected withM. tuberculosis and
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showed higher levels of IFN-g+, TNF+, or IL-2+ CD4+ T cells
(202). These data suggest that Rv1733c SLP may be a potential
booster vaccine for TB.
4 PROTEIN-BASED BACTERIAL VACCINE
DELIVERY SYSTEM

In recent years, subunit vaccines, especially peptide-based
vaccines with more single and safer components, have
gradually become new vaccine forms. However, their weak
immunogenicity makes it difficult to induce an adequate
immune response and thus often need adding additional
adjuvants. With the development of immunology, the delivery
system, which aims to enhance antigens targeting secondary
lymphoid organs and the activation of APCs, is continuously
developed and applied in the vaccine design. Although many
potential delivery systems have been widely explored in
therapeutic vaccines, there have not been thoroughly studied in
prophylactic vaccines because of the higher requirements for the
safety of the materials usually applied in healthy people, even the
elderly and children. With that in mind, more compatible and
safer protein-based delivery vectors have great potential in
prophylactic vaccine research (Table 4).

4.1 Self-Assembled Proteinaceous
Nanoparticles
Some proteins can assemble into particles of a specific size under
natural conditions and have been developed as great delivery
systems. One kind is virus-like particles (VLPs) which are artificial
nanostructures that self-assembled after the expression of viral
c ap s i d p ro t e in . I t h a s be en r epo r t ed tha t po l y
(ribosylribitolphosphate) (PRP) polysaccharide of Hib was
connected to Hepatitis B virus surface antigen (HBsAg) VLP via
an adipic acid dihydrazide (ADH) spacer, and stronger IgG
antibodies to both the PRP were induced than a commercial
conjugate vaccine in mice (279). Similar, VLPs (e.g., Qb and
HBsAg) could also chemically load S. pneumonia capsular
polysaccharide. The VLP vaccines could induce serotype-specific
IgG antibodies. With synthetic biology and protein glycosylation
system development, a new and simpler coupling method between
polysaccharide antigens and protein has been explored. Li X. et al.
successfully prepared the Shigella conjugate vaccine by using
bacterial in vivo protein glycosylation reaction to couple the
complete pathogenic bacterial polysaccharide to VLP (AP205)
for the first time (281, 364). This VLP based conjugate vaccine
showed better immune and protective effects in mice than the
conventional vector. Besides, flock house virus VLP and
bacteriophage T4 nanoparticle vaccine were explored and
exhibited good protection against the challenge (282, 283).
Designable self-assembled nanoparticle is another kind of self-
assembled proteinaceous delivery vector used in pathogenic
bacterial vaccines. Due to its modular design, it is a promising
protein vector, which has shown good development potential in
the development of vaccines such as viruses, but it seems to have
just begun in the field of bacteria. Pan et al. developed a Nano-B5
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system to produce self-assembled nano vaccines by fusion
expression of bacterial B5 toxin and trimeric peptide and
connected polysaccharide antigen through glycosylation in the
pathogenic host (284). This particle was about 25 nm, which
prolonged retention in draining lymph nodes and could stimulate
strong cellular and humoral immune responses. Further, the
system could be introduced into a modified E. coli host to
prepare exogenous pathogenic bacteria, such as Klebsiella
pneumoniae, nano-scaled conjugate vaccine and protect mice
from systemic and pulmonary infection (285). Polysaccharide
conjugate vaccine is considered the most successful bacterial
vaccine at present. Although immunogenicity of carbohydrate
antigen itself is very weak, it could be significantly improved by
conjugating them (either synthetic short sugar chain or natural
polysaccharide) with proteinaceous nanoparticles. Thus, self-
assembled proteinaceous has excellent potential to enhance weak
antigen immunogenicity and be used in the bacterial vaccine.

4.2 Viral Vector
Vaccines consist of a non-replicating virus that contains certain
genetic material from the pathogen that needs to be immunized.
It seems to be an ideal vaccine delivery system because of its
natural viral structure, which can be well recognized by the
immune system (365). The adenovirus vector is widely used
(366) to develop a bacterial vaccine. Other viral vectors (e.g.
influenza viral and semliki forest virus) have also been explored.
McConnell M J et al. described a replication-incompetent
adenovirus expressing domain 4 (D4) of B. anthracis protective
antigen (PA) (Ad.D4), which could induce a more robust
humoral and cellular immune responses than anthrax vaccine
absorbed (AVA) (the only one FDA-approved anthrax vaccine
which needs to be vaccinated six times within 18 months and
enhanced once each year) (367) and provide complete protection
against lethal spore challenge in single immunized mice (286).
However, pre-existing immunity to Ad in humans may inhibit
subsequent immunization-induced antibody responses.
Influenza viral vectors may be another promising one for
human use because of the lack of pre-existing immunity, safety
and immunogenicity, which have been demonstrated in various
models (chickens, ferrets and rhesus macaques and humans)
(368–370). Tabynov K et al. developed recombinant influenza A
viruses of the subtypes Н5N1 and H1N1 expressing Brucella
protective antigen (ribosomal protein L7/L12 or Omp16) and
strong cellular immune response and protection effect were
induced (291). Moreover, these vaccines with adjuvant could
provide long term protection for cattle and induced good cross-
protection against B. melitensis infection in pregnant heifers and
even sheep and goats (371–375). However, influenza viruses
expressing B. anthracis PA unable to induced in vitro anthrax
toxin neutralization activity antibodies, although the titers
against PA were high (287, 376). Interesting, this situation
could be solved by heterologous prime/boost immunization
strategy, which may be attributed to the B-cell affinity
maturation and Ig gene high-frequency mutation in germinal
centres by combining different heterologous vectors. Moreover,
antigen epitopes (PA232–247 and PA628–637) also could be
expressed in a plant-virus Tobacco Mosaic Virus (TMV).
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TABLE 4 | Protein-based bacterial vaccine delivery systems.

Delivery systems Antigens Targeted
pathogens

Adjuvant References

Self-assembled proteinaceous nanoparticles
VLP
HBsAg Capsular polysaccharide 33F S.

pneumoniae
— (278)

PRP polysaccharide H. influenzae
type b

— (279)

Vi polysaccharide S. typhi — (279)
Qb TS3 and TS14 (capsular polysaccharides repeated units) S.

pneumoniae
— (280)

AP205 O-polysaccharide Shigella — (281)
Flock house virus PA B. anthracis — (282)
T4 Bacteriophage PA B. anthracis — (283)

Mutated capsular antigen F1 and low-calcium-response V antigen Y. pestis — (282)
Designable self-assembled nanoparticle

O-polysaccharide Shigella — (284)
O-polysaccharide S. Paratyphi A — (284)
O-polysaccharide K.

pneumoniae
— (285)

Live viral vector
PAD4; PA B. anthracis — (286–288)
Cu-Zn SOD; IF3; L7/L12; Omp16; Omp19 Brucella — (289–292)
D2 domain of FnbpB S. aureus — (293)

Bacterial vectors
Probiotics PsaA; PspA; PspA5; PppA; PspC S.

pneumoniae
— (294–300)

Fusion of ST and LTB; F41; K99 fimbriae; b-Intimin fragment; Fusion of K99,
K88 fimbriae; FaeG; FaeG with DC-targeting peptide; EspA and the Tir central
domain; PapG

E. coli Without, or LTB
mutated LTA
and LTB

(301–311)

CTB V. cholerae — (312)
FliC or fusion of FilC and SipC S. enterica

serovar
Enteritidis

— (313, 314)

PA; PA with DC-targeting peptide B. anthracis — (315–319)
L7/L12, Cu-Zn SOD, Omp31 Brucella — (320–322)
ClfA and FnbpA; B-cell epitope, D3(22–33), from FnbpA S. aureus Without or

Freund’s
adjuvant

(323, 324)

Hp0410; Urease B subunit H. pylori — (325, 326)
LcrV Y. pestis — (327)

GEM PppA; IgA1p; PpmA; SlrA S.
pneumoniae

— (299, 328)

PTd, FHA, and PRN B. pertussis — (329)
CUE H. pylori — (330, 331)
Omp31 Brucella — (322)

S. enterica PA, PAD1 and 4, and PAD4 B. anthracis — (332)
Attenuated S. typhimurium L7/L12; Fusion of L7/L12 and BLS Brucella — (333, 334)

SaEsxA and SaEsxB S. aureus — (335)
Ochrobactrum anthropi Cu-Zn SOD Brucella CpG (336)
OMV

OMV components K.
pneumoniae

— (337)

OMV components B. pertussis — (338–340)
OMV components E. coli — (341)
OMV components Shigella Without or

Alhydrogel
(342–345)

OMV components V. cholerae — (346, 347)
OMV components S.

typhimurium
— (348)

OMV components S. typhi and
paratyphi A

— (349)

HlaH35L, LukE and extracellular vesicle (EV) components S. aureus — (350, 351)
OMV components H. pylori — (352)

(Continued)
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However, immunized mice showed almost no protection (377).
Possible reasons may be the too weak immunogenicity of short
epitopes or plant virus self, and a prime/boost immunization
strategy can be tried.

4.3 Lactic Acid Bacteria Vector
Lactic acid bacteria are commonly used as delivery vehicles because
they are safe and human friendliness and can stimulate mucosal and
systemic immune responses through mucosal pathways. Many
kinds of lactic acid bacteria (e.g. L. reuteri, L. casei, L. plantarum
and L. plantarum) have been used as delivery vectors, of which L.
casei is the most studied (378). Lactic acid bacteria are generally
applied for the vaccine design against intestinal and respiratory
infection, and there aremain two strategies for antigen delivery. One
is to express antigen in vivo directly. Studies have shown that an oral
vaccine expressing E.coli F41 in L. casei can stimulate strong
systemic and local mucosal immune responses simultaneously
and protect mice from the lethal challenge, even still achieving
more than 80% protection nine weeks after the last immunization
(303, 304). In addition, YuM et al. found that when the antigen was
co-expressed with B5 toxins (such as LTB), it induced amore robust
mucosal immune response and provided 100% protection (311).
Moreover, even some capsular polysaccharides, such as type 3 and
type 14 of S. pneumonia, have been successfully expressed in L.
lactis, and the immune response of type 3 vaccine was detected,
showing that L. lactis is a potential host for capsule vaccine antigens
(379). Another strategy is using a non-genetically modified gram-
positive enhancer matrix (GEM) particle for antigen delivery. The
particles were prepared from living bacteria and had no nucleic acid
and cytoplasmic components while maintaining the size and cell
wall components of the bacteria. Multiple S. pneumonia protein
antigens (e.g., PppA, PpmA, SlrA and IgA1p) have been anchored
on the particles by a lactococcal peptidoglycan binding domain and
shown to be efficacious against pneumococci in animal models (299,
328, 380). In addition, GEM loading epitope antigens also showed a
significant effect. For example, when the H. pylori multi-epitope
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vaccine (CUE) (based on CTB fusing with T and B cell epitopes
from H. pylori urease A and B subunits) was displayed on the
surface of GEM, these prophylactic and therapeutic effects in orally
immunized mice could further enhanced by inducing mucosal
specific antibody responses and local Th1/Th17 cell-mediated
immune response (330, 331), which was an optimal immunity
type against H. pylori infection (381, 382).

4.4 Outer Membrane Vesicles (OMVs)
A large number of gram-negative bacteria naturally could
produce extracellular OMVs, which is from 50 to 250 nm in
diameter, suitable for targeting and being phagocytized by APCs
(383). OMV contains many components, such as outer
membrane proteins (OMPs) and lipoproteins, which are
conducive to immune response and various immunogenic
antigens. At present, the use of OMVs has become a very
promising vaccination strategy. OMVs from many pathogenic
bacteria (e.g. Klebsiella pneumoniae, B. pertussis, E. coli, Shigella,
Vibrio cholerae, Salmonella, Helicobacter pylori and Neisseria
meningitidis group B) has been proved to have the ability to
stimulate humoral and cellular immune responses and provide
good protective effect after immunization (337, 384–386).

Because natural OMVs often contains toxic components like
LPS, which could induce host inflammatory responses, many
studies have focused on reducing the toxicity of OMVs by
deleting the lipid A related genes (e.g. msbB, htrB, pagP, lpxL, or
pagL) (355, 387–390) or toxin genes (391, 392). For example, Kim S
H et al. generated OMVs from E. coliO157:H7 with the mutation of
msbB (encoding an acyltransferase catalyzing the final
myristoylation step during lipid A biosynthesis) and Shiga toxin
A StxA. The reduced toxicity OMVs were immunized by eyedrop in
BALB/c mice and showed that it was safe and could induce both
humoral and mucosal immune (tear, saliva, and fecal) responses,
which is enough to protect the vaccinated animal from the challenge
of the lethal HUS-causative agent (wtOMVs) (341). Another
example was that the knocking out of lpxL, which is involved in
TABLE 4 | Continued

Delivery systems Antigens Targeted
pathogens

Adjuvant References

OMV components Y. pestis — (353)
Modified OMV
Deposited onto bovine serum
albumin nanoparticles

OMV components K.
pneumoniae

— (354)

Lipid A-meditation OMV components B. pertussis — (355)
OMVs+Chitosan+Eudragit L-100 OMV components E. coli — (356)
Encapsulated in polyanhydride
nanoparticles

OMV components Shigella — (357, 358)

Encapsulated in chitosan-
tripolyphosphate particles and
Eudragit L-100

OMV components Shigella — (359)

Encapsulated in indocyanine green
(ICG)-loaded magnetic mesoporous
silica
nanoparticles

EVs components S. aureus — (360)

E. coli OMV Glycan antigens (Polysialic acid (PSA) and T antigen) Neisseria
meningitidis
group B

— (361)

HlaH35L, SpAKKAA, FhuD2, Csa1A, and LukE; SAcoagulase S. aureus — (362, 363)
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lipid A biosynthesis, in N. meningitidis could result in at least a 200-
fold decrease in pyrogenicity than wild-type OMV. The protective
effect can be largely restored by adding adjuvants used in humans
(393). In addition, Sinha R et al. reported that the OMV-mediated
toxicity could be significantly reduced by being pre-treated with all-
trans retinoic acid (ATRA), active metabolites of vitamin A, which
are anti-inflammatory and mucosal adjuvant properties, and the
immunity was enhanced (394). Fredriksen J H et al. produced a
group B N. meningitidis OMV vaccines by including an additional
step of detergent extraction (395). The detergent extracted outer
membrane vesicles contain much fewer LPS (5–8%) and have been
helpful in several countries (396). Moreover, a hydroquinone non-
pathogenic OMV from E. coli was developed as delivery vehicles by
expressing group B glycan antigens (361). However, most bacterial
capsular polysaccharides in gram-positive bacteria are difficult to
express in gram-negative bacteria E. coli efficiently. The difference of
membrane structure and the polysaccharide gene cluster is relatively
large (mostly more than 10 kbp), making it difficult for cloning.

OMVs were usually combined with other delivery systems to
meet some specific requirements. For example, to solve the
problems of the poor size uniformity and low stability of
OMV, Wu, G. et al. produced a 70-90 nm sized OMV (from
K. pneumoniae) based nanovaccine by depositing the hollow-
structured OMVs onto bovine serum albumin nanoparticles. As
a result, the OMV could be reinforced from the core-shell
structure. The protecting effect against carbapenem-resistant K.
pneumoniae (CRKP) was significantly improved after
vaccination (354). Camacho A I et al. found that when Shigella
OMVs were encapsulated in polyanhydride nanoparticles, a
stronger Th1 immune response, which was more needed
against intracellular bacteria, was induced (357, 397). OMVs
also be encapsulated in biopolymer chitosan, which was used to
prepare nanogel particles by ionotropic gelation with
tripolyphosphate. After being coated with an enteric polymer,
mice were administrated orally and showed better protection
against infection after 78 days of immunization, whereas free
OMVs have no protection (359). Therefore, although OMV as a
delivery carrier faces some problems, it can achieve the expected
effect through further optimization and transformation.

4.5 Liposome
The liposome is a kind of phospholipid bilayer sphere formed via
self-assembly in water and proved to be a safe and effective delivery
system. Although liposomes do not belong to protein delivery
carriers, we will still review their application in vaccine design,
especially for peptide-based vaccines, because of their wide use
(398). The versatility and plasticity characteristics of liposomes
make them designable according to different parameter
requirements, such as lipid composition, charge, size, entrapment
and location (399). Besides loading various antigens in a liposome,
adjuvants and/or functional molecules could also be loaded quickly
to enhance further the immune effect (400). For peptide antigens,
they were usually coupled to liposomes via lipid core peptide
technology, which consists of an oligomeric polylysine core
conjugated to a series of lipoamino acids for anchoring of the
antigen (401, 402), and this strategy has been frequently utilized in
Group A Streptococcal (GAS) vaccine studies (403–405). Ghaffar
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et al. developed a cationic liposome through the film hydration
method with dimethyldioctadecylammonium bromide (DDAB).
Lipopeptides antigens, entrapped by the liposome, could induce
both mucosal and systemic response for a long time in intranasally
immunizedmice (403). In addition, the high-level antibody reaction
was further confirmed in various sizes (70 nm to 1000 nm) of the
carriers (406). In addition, some polymer, such as polyethylenimine
(PEI), which could attach to the cells’ surface and deliver cargo into
endosomal and cytosolic compartments, was introduced in the
lipopeptide-based vaccine design. PEI incorporated in liposome
peptide vaccine could induce significant specific mucosal and
systemic antibodies, which effectively opsonize multiple isolates of
clinically isolated GAS (407). Further, they found that the ratio of
PEI, rather than molecular weight, present in the liposome vaccines
impact immune response (408). Besides, the addition of some
functional elements can realize the immune enhancement of
vaccines. For example, Yang et al. designed a cell-penetrating
peptides (CPPs)-liposome delivery system on the liposomal
nanoparticles, in which CPP could enhance both cellular and
humoral immune responses through direct delivery of antigen
into the cytoplasm and from the endocytic pathway (409–411).
Nasal immunization of the vaccine in mice could induce antibodies
that showed high opsonic activity against clinically isolated GAS
strains (412). Liposomes have also been used in the study of TB
vaccines. Dimethyldioctadecylammonium (DDA) could self-
assemble into closed vesicular bilayers in water similar to
liposomes and was known as an effective adjuvant for eliciting
cellular and humoral responses (413, 414). However, the physical
instability of the DDA liposomes limits its application. To solve this
problem, Davidsen et al. incorporated a glycolipid trehalose 6,6′-
dibehenate (TDB), comprising a 6,6′-diester of a,a′-trehalose with
two long 22-carbon acyl chains, into the DDA liposome bilayers. By
loading tuberculosis vaccine antigen Ag85B–ESAT-6 fusion protein
and immunization of mice, a robust specific Th1 type immune
response was induced (415). The post-challenge bacterial growth of
M. bovis BCG was reduced in adult or neonatal murine (416),
suggesting the increase of adjuvant efficacy of DDA liposomes. In
conclusion, the characteristics of liposomes endow them with more
designability, and some deficiencies can be solved by further
transformation and optimization so that liposomes have great
potential in peptide vaccine delivery design.
5 ANIMAL MODELS FOR PEPTIDE-
BASED VACCINES

Many animal models have been utilized to develop TB vaccines,
ranging from expensive none-human primates (NHPs) to small
non-mammals such as zebrafish. In comparison, NHP, which
can well reflect the human immune response and susceptibility
to TB, has been used in many preclinical experiments. At the
same time, smaller animal models such as mice, rats, guinea pigs,
rabbits and zebrafish are generally more suitable for studying
narrower aspects of the immune response to Mycobacterium
tuberculosis, such as granuloma formation, susceptibility to
different strains, or immunogenicity of vaccine candidates.
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NHP represents one of the most frequently used and most
important models when testing vaccines against M. tuberculosis
infection. This model has significant similarities in human
physiology, genome, and immune response (417, 418). Rhesus
macaques and cynomolgus are the most commonly used NHPs
in TB infections for vaccine evaluation (417, 419–421). Today, the
NHP models have become indispensable for the preclinical
evaluation of vaccine effects. However, some of the difficulties in
using NHP models to evaluate anti-tuberculosis vaccines are the
considerable investment requirements for the maintenance and use
of BLS-3 biosafety facilities, the lack of commercial molecular and
immune reagents, and the timely availability of sufficient animals.
Compared with the NHPmodel, the advantages of using the mouse
model include the availability of genetically modified strains, more
common molecular and immunological reagents on the market,
and lower cost of feeding and specialized containment facilities.
These characteristics ensure that the mouse model is always the first
choice for TB vaccine research, especially for exploratory studies on
vaccines before preclinical evaluation using NHP models. Although
commonmouse strains exampled as C57BL/6 and BALB/c are often
not susceptible to tuberculosis infection, they are still widely used in
vaccine research. To date, most M. tuberculosis peptides are
discovered in the C57BL/6 model (Table 3).

The use of mice is ubiquitous in scientific research. Still, the
experimental results obtained on rodents, and primarily murine,
in reality, are often very different from the clinical immune
response of humans. Moreover, this difference in immune
response has a certain relationship with the species differences
between animals and humans, causing the development of many
novel vaccines and drugs to stagnate or even fail to continue
when they reach clinical trial phase I/II. Therefore, the
development of small animal models that can more accurately
reflect the characteristics of human immune response is a
problem that deserves special attention.

MHC is one of the gene groups with the most polymorphism in
humans and mammals. It induces and regulates innate immunity
and adaptive immune response and participates in the development
and maturation of T lymphocytes, the presentation of exogenous/
endogenous antigens and immune signals, as well as the
establishment of central immune tolerance (422). At the same
time, MHC is closely related to the occurrence and progression of
many autoimmune diseases and chronic diseases and has essential
biological functions and significance. For example, the HLA-A11
subtype is closely associated with the occurrence of many infectious
diseases, such as familial otosclerosis (423, 424), TB (425), leprosy
(426), epilepsy and cytomegalovirus infection (427), etc. In addition,
increased specific expression of the HLA-A11 gene was found in
patients with upper laryngeal cancer (428) and osteosarcoma (429).
Furthermore, HLA-A11, DR3 and DR4 subtypes played a
synergistic role in the occurrence of autoimmune hepatitis (430).
In addition toHLA-A11, other individualMHC subtypes also play a
significant role in the disease process after HIV-1 infection (431–
435). In recent years, how to use and exert the biological functions
of HLA through animal models has gradually become a research
hotspot in animal models, and the first is the development of new
vaccines based on MHC-restricted CTL and HTL epitopes.
Frontiers in Immunology | www.frontiersin.org 26
Mice and humans share more than 95% of genes and about
80% of genetic material. As small animal models, mice are widely
used in vaccines and drugs preclinical trials (436). Although the
MHC of the mouse (H-2) and human (HLA) are very similar in
structure and function, there are still significant differences in the
presentation of antigens (437), and the dominant antigen
peptides presented also have different structural characteristics.
Therefore, the MHC humanized mouse has become an essential
model for epitope research and the development and evaluation
of epitope vaccines.

In recent years, MHC humanized mouse models have played a
vital role in developing and evaluating disease immune pathogenic
mechanisms, vaccines, and drugs. This mouse model has also
undergone a continuous development and progress stage. In the
first stage, thewholeHLAmolecule is usuallydirectly transferred into
the mouse genome, such as HLA-B27 mice (438), HLA-B7 mice
(439), HLA-A2 mice (440), HLA-Cw3 mice (441) and other early
developed models. However, the binding force between the a3
functional region in the human HLA molecule and the mouse CD8
isweak(442–444).At the sametime, thepresenceofmouseMHC(H-
2) leads to competitive inhibition of mouse H-2-I restricted immune
response to humanHLA-I restricted immune response (445). In this
stage, the mouse immune response is still dominant in the model,
which cannot reflect the function and role of humanHLAmolecules
alone in the immune response. Studies have shown that whenH-2 is
present in mice, the expression of HLA transgenic molecules on the
surface of mouse lymphocytes is significantly reduced (446). In the
second stage, the scientists improved the MHC humanized mouse
model through two methods. One is to transfer the gene fragment
encoding human CD4+ or CD8+ into the mouse genome so that the
mouse can express both murine and human CD4+ or CD8+

molecules (447), which can effectively improve the binding
efficiency of HLA and CD4 or CD8 accessory molecules, and
efficiently start the second signal of antigen presentation. Another
method is to optimize the structure of HLA transgenic molecules,
replace the transmembrane a3 functional region with murine a3
functional region, and construct a chimeric HLA molecule (HHM).
The murine a3 structure can promote HLA and mouse CD4 or
mouse CD8. Representative mouse models include the HLA-B27
(HHM)mice model (448, 449). After optimization of the above two
methods, the mouse model can produce a certain HLA-restriction-
specific response. However, most cellular immune response is still
regulated bymouseH-2molecules. In the third stage, the researchers
adopted a new construction strategy to design transgenic vectors and
constructed a chimeric transgenic vector (HHD) (450) of HLA and
H-2, including the promoter of HLA-I, light chain b2m, and heavy
chain. The a1 and a2 functional regions, the a3 functional region
and the transmembrane region of H-2-Db, and the important
components b2m and IAb of mouse H-2 are also knocked out. For
example, in the HLA-A11 humanized mouse model (451), the a3
functional area ofmouseH-2 is used to replace thea3 functional area
of human HLA-A11, which effectively enhances the binding force
between the human HLA-A11 molecule and the mouse CD8 and
avoids the complexity of transferring human CD8 into the mouse
genome. At the same time, knock out the important components
b2m and IAb (the b chain of the IAmolecule) of the mouse-derived
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H-2 I and II molecules, and replace themwith fragments larger than
the originals. Such pseudogene fragments of the gene achieving the
purpose of silencing the expression of mouse H-2 molecules.
Therefore, in this type of HLA-I humanized mice, the competitive
inhibition of the H-2-I restricted reaction is eliminated, and only the
HLA-I restricted immune response canbeproduced.Thehumanized
mousemodel ofHLA-IIwas also constructedusing the samestrategy.
The resulting HLA-I/II humanized mouse model was replaced with
humanHLAmolecules at the level ofMHC-I and IImolecules. HLA
exerts a restrictive function in antigen presentation, regulates the
immune response in mice, and enables MHC mice to be
“humanized” to a greater extent, which can more effectively
simulate human immune response at the HLA level. The
representative HLA-A2/DR1 and HLA-A11/DR1 transgenic
mouse models have been well applied in HIV、EBOV and SARS-
CoV-2 epitope screenings (451–453). Encouragingly, the MHC
humanized mouse model has been well used for TB peptide-based
vaccine research (2, 9, 198, 202, 203).

Although the MHC humanized mouse model can effectively
simulate the human immune restriction and affect the immune
function. However, as a better model for epitope vaccine research
and evaluation,MHChumanizedmousemodels have two problems
that need to be optimized in future development. On the one hand,
it makes MHC humanized mouse models sensitive to pathogens.
On the other hand, mice are not susceptible to many human
pathogens or cannot be infected due to differences in receptors.
For example, regular mice are not sensitive to SARS-CoV-2, SARS-
CoV, MERS-CoV, and many subtypes of influenza viruses.
Therefore, it requires changing the virus (constructing a mouse-
adapted strain) or changing the animal (pathogen-receptor
humanized mouse) to obtain a sensitive mouse model. Another
aspect is to combine MHC humanized mice with immunodeficient
mice for better humanized immune reconstitution. At present,
although NOD/SCID mice have played a critical role in the
research fields of immune transplantation and tumor immunity,
the transplanted human-derived cells have undergone development
and differentiation in the mouse thymus. However, the MHC
obtained restriction is still restricted by mouse H-2, and it is
impossible to carry out research on specific HLA-restricted CTL
and Th immune responses. Therefore, through the combination of
MHC humanized mice and immunodeficient mice, immune
reconstitution can be humanized, and a more real humanized
immune system can be realized.
6 CONCLUSIONS AND FUTURE
PERSPECTIVES

Vaccination has been considered as the most effective strategy to
eliminate TB infection. Accumulating studies have showed that
peptide-based vaccines are promising vaccine candidates for
preventing and controlling TB due to their advantages, such as
aggregation of immunodominant epitopes, preservation of peptide
structure, good stability, easy to store and transport, lower cost, and
decreased side effects. Furthermore, the rapid development of
bioinformatics technology provides a tool for predicting and
Frontiers in Immunology | www.frontiersin.org 27
constructing peptide-based vaccines, which dramatically saves
time and reduces the cost of peptide-based vaccine research.
Herein, we give a detailed description of how to design a peptide
vaccine using an immunoinformatics approach, including
determination of protective antigens, T and B cell epitope
prediction, screening of immunodominant epitopes, and selection
of selection linkers, adjuvant or helper peptides, codon
optimization, and in silico analysis. We further reviewed the
peptide-based vaccine candidates worldwide based on this basic
knowledge. We found that 150 previous articles related to peptide-
based vaccines for TB are being investigated in pre-clinical studies,
including 76 studies in epitope screening and prediction, 45 studies
in evaluating immunogenicity, 8 studies in peptide-based vaccine
construction, and 21 in assessing vaccine efficacy in animal models.
However, some drawbacks of peptide-based vaccines should not be
ignored, such as weak immunogenicity for a single peptide, MHC
restriction, and high requirements for animal models.

In the future, these disadvantages can be solved by the following
strategies: (1) a detailed understanding of the potential cellular and
molecular mechanisms involved in peptide-based vaccine immunity
is the key to improving its immunogenicity and protective efficiency
(454); (2) improving the vaccine construction techniques, including
broad antigen repertoire, SLPs, conjugation and palmitoylation of
peptides, grafting epitopes into a protective antigen; (3) using
appropriate linkers, helper peptides, TLR agonists, adjuvants, and
potential delivery systems to enhance the immunogenicity; (4)
primed with BCG and boosted with peptide-based vaccines; (5)
employing transgenic animal models with human HLA molecules
to evaluate peptide-based vaccines.
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Structural Summaries of PDB Entries. Protein Sci (2018) 27(1):129–34.
doi: 10.1002/pro.3289

93. Pollastri G, Przybylski D, Rost B, Baldi P. Improving the Prediction of Protein
Secondary Structure in Three and Eight Classes Using Recurrent Neural
Networks and Profiles. Proteins (2002) 47(2):228–35. doi: 10.1002/prot.10082

94. Sen TZ, Jernigan RL, Garnier J, Kloczkowski A. GOR V Server for Protein
Secondary Structure Prediction. Bioinformatics (2005) 21(11):2787–8.
doi: 10.1093/bioinformatics/bti408
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ADH adipic acid dihydrazide
ATRA all-trans retinoic acid
ANN Artificial neural network
APCs antigen presenting cells
AUCs areas under the curve
BCG Bacillus Calmette-Guérin
BMDCs bone marrow derived DCs
BMDMs bone marrow-derived macrophages
CAI Codon Adaptation Index
CFP-10 culture filtrate protein 10
CRKP carbapenem-resistant K. pneumoniae
CTB cholera toxin subunit B
CTL cytotoxic T-lymphocytes
COVID-19 coronavirus disease 2019
DCs dendritic cells
DosRs dormancy survival regulon antigens
ELISpot enzyme-linked immunospot
ESAT-6 early secreted antigenic target 6
GEM gram-positive enhancer matrix
HBD human b-defensin;
HBHA heparin binding hemagglutinin
HBsAg Hepatitis B virus surface antigen
HTL helper T lymphocytes
HIV human immunodeficiency virus
HLA human leukocyte antigen
HMM Hidden Markov Model
IEDB Immune Epitope Database and Analysis Resource
IFN-g interferon-g
IL Interleukin
IP-10 interferon gamma inducible protein 10
LTBI latent TB infection
MCC Matthew's correlation coefficient
MDR-TB drug-resistant and multidrug-resistant TB
MM6 MonoMac6 human monocytes
MHC major histocompatibility complex
NCBI National Center of Biotechnology Information
NMR nuclear magnetic resonance
NK natural killer
ODN oligonucleotides
OMVs Outer membrane vesicles
Pam2Cys dipalmitoyl-S-glyceryl cysteine
PA protective antigen
PAMPs pathogen associated molecular patterns
PBS phosphate buffer solution
pDCs plasmacytoid dendritic cells
PLS partial least squares
pMHC major histocompatibility complex presented antigenic peptides
PRP ribosylribitolphosphate
PSMa4 phenol-soluble modulin a4
QSAR Quantitative Structure Activity Relationship
RD region of difference
Rpfs resuscitation-promoting factors
RplL 50S ribosomal protein L7/L12
SCXRD single-crystal X-ray diffraction
SLPs synthetic long peptides
SMM Stabilized matrix method
SVM Support Vector Machine
TB tuberculosis
Th helper T-lymphocytes
TLR toll-like receptor
TMV Tobacco Mosaic Virus
TNF-a tumor necrosis factor-a
TST tuberculin skin test
VLPs virus-like particles
WHO World Health Organization
Frontiers in Immun
ology | www.frontiersin.org January 2022 | Volume 13 | Article 83049741

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Peptide-Based Vaccines for Tuberculosis
	1 Introduction
	2 The Development of Bioinformatics Technology Has Laid the Foundation for the Rise of Peptide-Based Vaccines for TB
	2.1 Epitope Prediction
	2.1.1 Determination of Protective Antigens and the Coverage of MHC Alleles
	2.1.2 T Cell Epitope Prediction Tools
	2.1.3 B Cell Epitope Prediction Tools
	2.1.4 Peptide Analysis and Screening Tools

	2.2 Construction of Peptide-Based Vaccines
	2.2.1 Linkers
	2.2.2 TLR Agonists and Helper Peptides
	2.2.3 Codon Optimization and Prediction of Structure and Function of Peptide-Based Vaccines


	3 Research Status of TB Peptide-Based Vaccines
	3.1 Peptide-Based TB Vaccines Evaluated for Immunogenicity
	3.2 Peptide-Based TB Vaccines Evaluated for Protective Efficacy in Animal Models
	3.2.1 Peptide-Based Vaccines Derived From ESAT-6 Family Proteins
	3.2.2 Peptide-Based Vaccines Derived From Ag85A and Ag85B Proteins
	3.2.3 Peptide-Based Vaccines Derived From 16-kDa Alpha-Crystallin (Acr, Rv2031c) Protein
	3.2.4 Peptide-Based Vaccines Derived From PE/PPE Family Proteins
	3.2.5 Peptide-Based Vaccines Derived From MPT64 (Rv1980c) Protein
	3.2.6 Peptide-Based Vaccines Derived From Rv1733c Protein


	4 Protein-Based Bacterial Vaccine Delivery System
	4.1 Self-Assembled Proteinaceous Nanoparticles
	4.2 Viral Vector
	4.3 Lactic Acid Bacteria Vector
	4.4 Outer Membrane Vesicles (OMVs)
	4.5 Liposome

	5 Animal Models for Peptide-Based Vaccines
	6 Conclusions and Future Perspectives
	Author Contributions
	Funding
	Supplementary Material
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


