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The outcome of viral infection depends on the interplay between host factors and the environ-
ment. Host factors, like the expression of viral receptors, convey permissiveness to infection,
define tropism, regulate antiviral immune responses, determine viral clearance, and spread.
The host microbiota, the constellation of microbes inhabiting an organism, also plays a key
role in the outcome of infection. Microbes and microbial products can directly interact with
viral particles. Our understanding of how the microbiota impacts virus infection is largely lim-
ited to the bacterial component of the microbiota. Although bacteria do not support eukary-
otic virus infection, they can promote viral fitness by enhancing virion stability, promoting
infection of eukaryotic cells, and increasing coinfection rates. Virus binding of bacteria can
also impact bacterial biology, including bacterial adherence to eukaryotic cells. These interac-
tions can also indirectly affect the host response to viral infection. In this Pearl, we focus on
how direct and indirect interactions between viruses and bacteria impact viral biology and
touch on recent findings that illustrate how bacterial biology can also be impacted by interac-
tions with eukaryotic viruses (Fig 1).

Direct interactions between mammalian viruses and the microbiota

The bacterial component of the microbiota can directly or indirectly impact the outcome of
infection by a range of different viruses. Direct interactions have been observed between bacte-
ria and influenza A virus (IAV) [1, 2] as well as several enteric viruses: picornaviruses (includ-
ing poliovirus [3, 4]); coxsackieviruses A21, B2, B3, Echovirus 30, Mengo, and Aichi viruses [5,
6]; human noroviruses (HNoV) [7, 8]; and mammalian orthoreovirus (reovirus) [9]. Although
bacteria can directly impact the outcome of infection by several viruses, the viral factors
involved in the interaction between bacteria and viruses are largely undefined.

In many cases, binding of viruses to bacteria is mediated through bacterial envelope com-
ponents lipopolysaccharide (LPS), the main component of the gram-negative bacterial enve-
lope, and peptidoglycan (PG), the main component of the gram-positive bacterial envelope.
Poliovirus binds to LPS and PG from several bacterial species [3-5, 10]. Although the bacterial
binding epitopes for poliovirus are unknown, the virus may bind LPS, PG, and chitin through
the monosaccharide N-acetyl-glucosamine (GlcNAc) [4]. HNoVs use histo-blood group anti-
gens (HBGAsS) to attach to eukaryotic cells [11] and can bind bacterial HBGAs [12]. Reovirus
thermostability is enhanced by LPS and PG independent of serotype, but lipoteichoic acid, a
major component of the gram-positive bacterial envelope, elevates the thermostability of only
one reovirus serotype [9]. As different viral strains and serotypes differ in their interactions
with bacterial envelope components, specific genetic determinants of norovirus, poliovirus,
and reovirus, likely determine the use of specific bacterial components.
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Fig 1. Virus interactions with the microbiota impact various aspects of microbial biology. (A) Binding of influenza A virus to bacteria enhances
bacterial adhesion to eukaryotic cells. (B) Binding of multiple poliovirus virions to bacteria results in enhanced coinfection and genetic recombination,
giving rise to reassortant viruses. (C) Poliovirus binding to LPS enhances its affinity for PVR and binding of human norovirus to bacterial histo-blood
group antigens promotes infection. (D) Binding of gram-positive and gram-negative bacteria by picornaviruses and mammalian reovirus enhances
virion thermostability. LPS, lipopolysaccharide; PVR, poliovirus receptor.

https://doi.org/10.1371/journal.ppat.1008234.g001

Molecular and structural determinants of interactions between
bacteria and viruses

Bacterial molecules like LPS and PG are large carbohydrate polymers, whereas HBGAs are
short carbohydrate motifs. Information on virus—carbohydrate interactions in the context of
eukaryotic cells [13] may inform how viruses engage bacterial cells. In general, carbohydrate
binding sites on viruses are shallow, water-exposed grooves on the virion surface, leading to
weak affinity of single binding sites [14-16]. Viruses use multivalent interactions engaging sev-
eral binding sites to recognize multiple receptor molecules on host cells. Small sequence varia-
tions in viral carbohydrate binding sites can result in big effects on viral tropism and spread [2,
17]. As LPS and PG consist of multiple repeats of smaller subunits, it is possible that viruses
engage these molecules at multiple binding sites. Although carbohydrates play an important
role in the binding of bacteria by eukaryotic viruses, the bacterial envelope contains other mol-
ecules beyond carbohydrates, including proteins [18]. As such, it is possible that other, as-yet-
unidentified molecules are involved in the interaction between viruses and bacteria.

The viral proteins that interact with bacterial surfaces have different structures and folds. A
residue in an exposed loop of the VP1 capsid protein of poliovirus influences LPS binding [4].
It is not known if the same binding site is used by poliovirus to bind LPS and PG. Reovirus
virions and cell entry intermediates (infectious subvirion particles [ISVPs]) are stabilized by
LPS and PG, suggesting the virus binds LPS and PG through the viral attachment fiber o1 [9].
In contrast to poliovirus VP1, which intimately interacts with other capsid proteins [19], reovi-
rus ol is a fibrous protein that protrudes up to 40 nm from the virion surface [20]. At least in
the context of poliovirus VP1 and reovirus o1, there is not a shared structure or fold that could
be used to predict bacterial envelope component binding.

Bacteria and bacterial components influence virion stability

Virion stability is tightly controlled. The virion needs to be stable enough to protect the viral
genome from environmental exposure during transmission but malleable enough to allow dis-
assembly and viral genome release during cell entry. Enteric viruses use components of the
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bacterial envelope to enhance virion stability. Direct binding to gram-positive and gram-nega-
tive bacteria enhances the thermostability of poliovirus [10], Coxsackievirus B3 [5], HNoV [7,
8], and reovirus [9], whereas the thermostability of Mengo and Aichi picornaviruses is
strengthened by gram-positive and gram-negative bacteria, respectively [5]. Interestingly, both
gram-positive and gram-negative bacteria also provide protection from bleach treatment to
Aichi, Mengo, and poliovirus [5]. Moreover, binding of HNoV to HBGAs protects the virus
from heat stress [8].

The stabilizing effects of bacteria extend to viral interactions with host cells. Bacteria
enhance poliovirus attachment to host cells [10], and LPS strengthens attachment of poliovirus
to poliovirus receptor (PVR) in a dose-dependent manner [4]. Picornaviruses undergo breath-
ing motions, reversible and concerted conformational changes of the capsid at physiological
temperatures [21]. PVR binding catalyzes capsid expansion by similar motions during uncoat-
ing [22-24]. It is possible that LPS binding increases PVR binding by influencing the confor-
mational equilibrium of the capsid. In the case of reovirus, the attachment fiber 01 undergoes
conformational changes following binding to sialic acid [25]. Although bacteria or bacterial
components do not impact reovirus attachment to cells [9], the interaction with bacteria or
envelope components may promote a more thermostable o1 conformation.

Bacteria and their products can also detrimentally impact virion stability and infectivity.
Segmented filamentous bacteria protect mice from rotavirus infection independent of inter-
feron, IL-17, and IL-22 [26]. Fecal transfer from mice bearing segmented filamentous bacteria
also protects susceptible animals from infection with IAV, vesicular stomatitis virus, and reovi-
rus. Bacterial products can also impact viral infectivity. Surfactin, a cyclic lipopeptide with
membrane disruptive properties produced by Bacillus subtilis [27], disrupts coronavirus virion
integrity and impairs the infectivity of several enveloped viruses, including Chikungunya, Cri-
mean-Congo hemorrhagic fever, Dugbe, Ebola, IAV, Mayaro, Nipah, Una, and Zika [28]. It is
conceivable that as-yet-unidentified metabolites and natural products produced by the bacte-
rial component of the microbiota impact viral infectivity.

Microbial effects on coinfection and tropism

The binding of poliovirus to bacteria enhances coinfection by promoting the delivery of multi-
ple virions to a single cell [3]. Coinfection results in enhanced rates of recombination, which
can increase fitness of the viral progeny. These data indicate that poliovirus not only gains
higher thermostability during transmission from its interaction with bacteria but also raises its
effective multiplicity of infection by more efficiently binding PVR and increasing the rates of
superinfection. The resulting rates of genetic recombination from superinfected cells results in
enhanced viral fitness.

Infectivity and tropism of HNoV and murine norovirus (MNoV) are impacted by bacteria
and bacterial products [12, 29]. Whereas Ruminococcaceae and Faecalibacterium spp. nega-
tively affect HNoV infection through the modulation of virus-specific antibody titers [30],
commensal bacteria that produce HBGAs promote infection of B cells [12]. NoV infection in
the gut is modulated by bile acids, which are modified by the intestinal microbiota to second-
ary bile acids [31]. Bile acids directly bind HNoV [32] and enhance MNoV cell attachment by
promoting engagement of its receptor CD300If [33] through the regulation of capsid confor-
mational changes [34]. CD300If is expressed on tuft cells in the gut, and the presence of enteric
bacteria, IL-4, or IL-25 regulate the number of tuft cells in the gut [35]. As such, cytokines pro-
duced in response to microbes in the gut can impact MNoV infection by affecting the number
of cells that are susceptible to infection. It is also clear that caliciviruses have evolved distinct
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mechanisms to utilize bacteria, bacterial components, or bacterial-modified components to
enhance infectivity.

The interaction of viruses with bacteria can also impact bacterial biology. IAV directly
binds gram-positive Streptococcus pneumoniae and Staphylococcus aureus, as well as gram-neg-
ative Moraxella catarrhalis and Haemophilus influenzae [1, 2]. These interactions lead to
enhanced bacterial adherence to epithelial cells and increased uptake by macrophages [1, 2].
The interaction of IAV with bacteria also enhances the translocation of bacteria into the mid-
dle ear and results in higher mortality in mice than either agent alone [2]. These data provide a
mechanistic understanding of clinical observations showing synergistic morbidity and mortal-
ity during S. pneumoniae and IAV coinfections [36]. Similar to IAV, respiratory syncytial virus
directly binds S. pneumoniae via penicillin-binding protein 1a on the bacterial cell and
this binding results in increased bacterial adherence to epithelial cells in vitro and in a small
animal model [37, 38]. These data suggest that the interaction of viruses with bacteria can
potentially benefit both microbes and is likely to extend to other sites where viruses and bacte-
ria interact.

Modulation of innate and adaptive immune responses by the
microbiota

Commensal bacteria are essential for the development of a mature innate and adaptive
immune system [39, 40]. Not surprisingly, viruses can use the microbiota and microbial com-
ponents to modulate the innate immune response to infection. Mouse mammary tumor virus
(MMTV) incorporates LPS-binding molecules, including the innate immune Toll-like recep-
tor 4 (TLR-4), into its envelope to bind bacterial LPS [41]. MMTV-bound LPS stimulates
TLR-4 signaling in the host and creates an IL-10-dependent immunosuppressive environment
that allows viral persistence [42]. Another key component of the innate immune response,
Type III interferon (IFN), plays a crucial role in regulating MNoV infection. Enteric bacteria
counteract the Type III IFN response, enabling the establishment of persistent infection [29].
Interestingly, the induction of Type III IFN by murine astrovirus can provide protection
against MNoV [43], indicating that the interplay between viruses and microbiota extends
beyond bacteria.

Commensal bacteria can influence the production of secretory immunoglobulins (sIG),
which are secreted into the intestinal lumen and act as the first line of mucosal defense against
enteric pathogens [44]. Surprisingly, sIGs promote acute MNoV and reovirus infection
through the regulation of IFNYy and inducible nitric oxide synthase (iNOS) levels in the gut
[45]. Also, the antibody response to rotavirus infection is impaired by the presence of enteric
bacteria [46] and the presence of bacteria can influence vaccine efficacy. Coadministration of
inactivated IAV and pneumococcal vaccines enhances pneumococcal- and IAV-specific
immune responses in the lung [1, 47]. The mechanism that underlies the enhanced response
to pneumococci and IAV is not completely clear, although it is at least in part due to increased
viral uptake by antigen-presenting cells.

Over the last decade, our understanding of the various ways that the bacterial component
of the microbiota impact viral biology has greatly expanded. Despite these efforts, we still lack
a mechanistic understanding of how bacteria and bacterial components influence viral stabil-
ity, infectivity, and pathogenesis. Although there is overlap in themes of how viruses use bacte-
ria to their advantage, future studies are likely to identify mechanistic differences between
viruses that may help explain the varied outcomes of infection observed between viruses.
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