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Abstract
Sepsis is a major cause of mortality among hospitalized patients worldwide. Shorter 
time to administration of broad- spectrum antibiotics is associated with improved out-
comes, but early recognition of sepsis remains a major challenge. In a two- center co-
hort study with prospective sample collection from 1400 adult patients in emergency 
departments suspected of sepsis, we sought to determine the diagnostic and prog-
nostic capabilities of a machine- learning algorithm based on clinical data and a set 
of uncommonly measured biomarkers. Specifically, we demonstrate that a machine- 
learning model developed using this dataset outputs a score with not only diagnostic 
capability but also prognostic power with respect to hospital length of stay (LOS), 30- 
day mortality, and 3- day inpatient re- admission both in our entire testing cohort and 
various subpopulations. The area under the receiver operating curve (AUROC) for 
diagnosis of sepsis was 0.83. Predicted risk scores for patients with septic shock were 
higher compared with patients with sepsis but without shock (p < 0.0001). Scores 
for patients with infection and organ dysfunction were higher compared with those 
without either condition (p < 0.0001). Stratification based on predicted scores of the 
patients into low, medium, and high- risk groups showed significant differences in 
LOS (p < 0.0001), 30- day mortality (p < 0.0001), and 30- day inpatient readmission 
(p < 0.0001). In conclusion, a machine- learning algorithm based on electronic medi-
cal record (EMR) data and three nonroutinely measured biomarkers demonstrated 
good diagnostic and prognostic capability at the time of initial blood culture.
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INTRODUCTION

Sepsis, a dysregulated immune response to infection result-
ing in organ dysfunction, is responsible for significant mor-
bidity and mortality worldwide.1 Early therapy— particularly 
antibiotics— leads to improved outcomes.2– 6 However, vague 
presenting symptoms make the recognition of sepsis difficult 
and lead to increased mortality.7 The initial recognition and 
treatment of sepsis often occur in the emergency departments 
that can be chaotic and understaffed, complicating recogni-
tion of this syndrome.

The timely treatment of sepsis remains a widespread chal-
lenge. In 2015, the Centers for Medicare and Medicaid Services 
(CMS) established a sepsis quality measure (SEP- 1) that aims 
to improve outcomes through 3- h and 6- h treatment bundles, 
including serum lactate measurement, blood culture collection, 
broad- spectrum antibiotic administration, and intravenous flu-
ids and vasopressors when indicated. Compliance with these 
goals has varied widely among 2851 hospitals reporting SEP- 1 
data with a mean of only 48.9% of patients receiving all bundle 
components in the designated timeframe.8 Failure to meet these 
quality measures represents suboptimal treatment that likely re-
sults in increased sepsis morbidity and mortality.9

Multiple factors contribute to delayed interventions in 
sepsis. In patients presenting with vague symptoms, the 
need for antibiotics may go unrecognized. Meanwhile, anti-
biotics cannot be administered indiscriminately as potential 
benefits must be weighed against risks, including direct ad-
verse effects of antibiotic agents and the growing problem 
of antimicrobial resistance.10 Therefore, each patient requires 
evaluation by a healthcare provider to assess for the appropri-
ateness of antibiotics.

In this context, multiple factors contribute to delayed 
interventions in sepsis. In patients presenting with vague 
symptoms, the need for antibiotics may go unrecognized. 
Meanwhile, treatment may get delayed while waiting for an 
initial evaluation by a primary provider, processing labora-
tory tests, or as a result of distraction by other urgent cases 
in overburdened emergency departments. Even after ade-
quate data are available and a presumptive diagnosis is made, 
alerting everyone on the healthcare team (e.g., nurses and 
pharmacists) to prioritize treatment may reduce time to in-
tervention relative to usual care. Each step in the healthcare 
team’s workflow (examples depicted in Figure S1) is a po-
tential opportunity for swifter action relative to when occult 
sepsis is unrecognized.

The prevailing wisdom has been that more reliable 
recognition of sepsis may lead to earlier treatment and 
improved outcomes. Numerous methods have been de-
scribed to screen for sepsis and facilitate early response— 
particularly timely antibiotic administration. These range 
from simple scoring systems to complex multivariable al-
gorithms. The availability of large volumes of electronic 
medical record (EMR) data has led to the development 
of machine- learning methods for identifying these pa-
tients.11– 13 Although these tools may provide the ability 
to identify the patients in whom sepsis should be strongly 
considered, they do little else to inform the risks- benefits 
dilemma the clinician must weigh when deciding to initiate 
antibiotics.

Tools that solely dichotomize patients (sepsis vs. not) 
fail to embrace the reality that sepsis encompasses a het-
erogeneous group of poorly defined disorders exhibiting 
a complicated spectrum of severity.14,15 No tool currently 
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identifies or predicts where a patient falls on this spectrum; 
yet, such information, if reliable, may be extremely valu-
able for the clinician considering the risks and benefits of 
initiating antimicrobial therapy and for prioritizing actions 
leading to the administration of antibiotics in patients who 
need them most. For example, lower severity of illness may 
afford more judicious use of antibiotics, whereas a bleak 
prognosis may not only inspire earlier antimicrobial ther-
apy but also prompt the multidisciplinary healthcare team 
to swifter action.

We previously applied machine- learning using EMR 
data and 15 novel biomarkers to identify patients with 
sepsis and demonstrated improved diagnostic perfor-
mance with the addition of novel biomarker measure-
ments to standard clinical data.16 Given that diagnostic 
performance alone does not address the entire dilemma 
facing healthcare providers today, we now present a more 
holistic analysis of a subset of NOSIS, a large, multi- 
center, novel data set comprised of three plasma proteins 
(procalcitonin [PCT], interleukin- 6 [IL- 6], and C- reactive 
protein [CRP]) and routinely measured EMR parameters. 
We specifically selected these three biomarkers because 
numerous studies, including one we previously con-
ducted, have consistently demonstrated that PCT, IL- 6, 
and CRP have strong predictive power with regard to sep-
sis and sepsis- related outcomes.16– 21 Furthermore, they 
are readily availability in commercial immunoanalyzers, 
suggesting that a model incorporating such parameters 
can be readily translatable.

METHODS

Participants and source of data

We performed a prospective observational cohort study of 
all adult inpatients with a blood culture ordered at Carle 
Foundation Hospital (CFH), a 413- bed regional hospital 
in central Illinois, and OSF Saint Francis Medical Center, 
a 616- bed regional hospital also in central Illinois. Data 
and specimens were collected between February 2018 and 
September 2019 according to standards approved by the 
CFH institutional review board (IRB) and OSF IRB with 
informed consent, when required. De- identified clinical 
data from the EMRs were extracted by data engineers.

Clinical samples

Plasma samples were obtained from remnant clinical blood 
specimens prior to disposal. At both sites, samples were ob-
tained from Lithium Heparin PST tubes used in routine clini-
cal testing.

Sample pre- processing steps

Lithium heparin plasma samples included in the study were 
aliquoted into a 2 ml microcentrifuge tube and centrifuged 
at 1200  g for 10 min at 4°C. After centrifugation, the su-
pernatant was aliquoted into a new 1.5 ml microcentrifuge 
tube and vortexed for 5 s to ensure the sample was homog-
enous. Then up to 600 µL of each sample was aliquoted into 
four 150 µL aliquots and the remainder of the sample was 
left in the 1.5 ml microcentrifuge tube. After processing, all 
aliquots were stored at −80°C before being transported on 
dry ice to Prenosis’ central laboratory where they were im-
mediately placed into −80°C storage.

Biomarker measurement process

Plasma protein biomarkers were measured using the 
Magnetic Luminex Assay technology, a bead- based mul-
tiplex assay. For each assay, 37 patient plasma samples, 3 
quality controls (QCs; high, mid, and low), and a 7- point 
calibration curve were prepared in duplicate and run on a 
96- well plate. Appropriate calibrator diluent served as the 
blank. Prior to running the assay, all samples including 
the QCs were diluted using appropriate calibrator diluent. 
Optimal dilutions for each plasma protein were determined 
according to the US Food and Drug Administration (FDA)’s 
fit- for- purpose guidelines for ligand binding assays. Each 
plasma protein was measured using the Luminex MAGPIX 
CCD Imager.

Biomarker assay validation

Biomarker assay validation was conducted following the 
principles and procedures of the FDA’s Bioanalytical Method 
Validation guidance document. The validation consisted of 
pre- analytical validation (i.e., sample collection, handling, 
and storage) and analytical validation (i.e., accuracy, pre-
cision, and reproducibility of biomarker measurements). 
Incurred sample re- analysis and multilevel QC monitoring 
were used to identify erroneous measurements.

Sepsis definitions

We used criteria for sepsis grounded in the Sepsis- 3 frame-
work, which formally defines sepsis as life- threatening organ 
dysfunction caused by a dysregulated host response to infec-
tion.1 Strengths of the Sepsis- 3 definition rest on its ability to 
provide a standardized conceptual framework, capture cur-
rent consensus in sepsis pathophysiology, and predict out-
comes relevant in the context of sepsis, such as intensive care 
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unit (ICU) admission or death. In this study, we defined a 
patient as septic if they had a suspected infection and life- 
threatening organ dysfunction.

Life- threatening organ dysfunction was defined as an 
acute change in total Sequential Organ Failure Assessment 
(SOFA) score by two or more points consequent to infection.1 
Baseline SOFA was adjudicated by two physicians. A patient 
was considered to have suspected infection if a blood culture 
was obtained (all of study cohort) and more than 4 qualifying 
antimicrobial days (QADs) were given within ±  2  days of 
blood culture.22 We utilized the list of antimicrobials in the 
Centers for Disease Control and Prevention (CDC)’s Hospital 
Toolkit for Adult Sepsis Surveillance to define QAD.23 The 
methodology was validated by an adjudication process on a 
subset of patients. Detailed methodology of the adjudication 
is presented in Supplementary Text S1.

A patient was considered in septic shock if they sat-
isfied our criteria for sepsis and had a lactate greater than 
2.0  mmol/L and were administered norepinephrine, dopa-
mine, epinephrine, phenylephrine, or vasopressin at any time 
during their hospitalization.

Because we independently defined life- threatening organ 
dysfunction and suspected infection, a patient can be catego-
rized into one of four categories: (1) no organ dysfunction 
and no infection, (2) infection without organ dysfunction, (3) 
organ dysfunction without infection, (4) and organ dysfunc-
tion present alongside infection. The presence or absence of 
each event is determined in the context of the patient’s entire 
hospital stay.

Subpopulation definitions

To examine the pragmatic utility of this risk score, subgroup 
analyses were performed among clinically interesting sub-
populations. Specifically, patients who did not meet at least 
two of four systemic inflammatory response syndrome (SIRS) 
criteria at the time of blood culture collection (SIRS- negative 
patients), and patients whose SOFA score was greater than 
or equal to two with respect to baseline at the time of blood 
culture collection were examined (SOFA- positive patients).

Algorithms and predictors

Features

Three biomarkers (not routinely measured in standard sepsis 
clinical care) were included in the machine- learning analysis: 
PCT, IL- 6, and CRP. Biomarkers were log- transformed prior 
to being input into the model.

The following EMR parameters were included in the 
machine- learning analysis: patient age, sex, Glasgow Coma 

Scale, vital signs, and standard laboratory measurements. 
Vital signs included systolic blood pressure, diastolic blood 
pressure, temperature, respiratory rate, heart rate, and blood 
oxygen saturation. Hematology parameters included white 
blood cell count, absolute monocyte count, absolute neutro-
phil count, and platelet count. Chemistry parameters included 
plasma albumin, blood urea nitrogen, creatinine, potassium, 
lactate, glucose, sodium, and total bilirubin. For each EMR 
parameter, the value used was the one that was drawn nearest 
to the draw time of the sample associated with the measure-
ment of the three biomarkers within a certain timeframe. For 
vitals and assessments, the timeframe was any time prior to 
the draw time of the sample and 30 min after the draw time 
of the sample. For laboratories, the timeframe was any time 
prior to the draw time of the sample and 1 h after the draw 
time of the sample.

Inclusion criteria

Patients were included in the analysis if (1) a blood culture 
was drawn during their hospital stay and (2) a blood sample 
for a basic or complete metabolic panel was drawn within 3 
h of their first culture being ordered and prior to the initial 
administration of antimicrobials; if multiple samples satis-
fied this condition, the sample drawn nearest to the time of 
the ordering of the first culture was used. The latter condition 
was imposed because we wanted the sample that served as 
the source of our biomarker measurements to be drawn at 
a clinically relevant timepoint. In Figure S2, we report the 
distribution of the sample draw time minus the first blood 
culture order time.

Train and test split

We performed a 2:1 split of the data that was conducted as 
follows: we ordered our patients sequentially in terms of their 
inclusion date in our study on a site- by- site basis and then 
assigned every third patient to be in the testing set while as-
signing the remaining patients to be in the training set.

Based on our inclusion criteria, 1400 patients were in-
cluded in the analysis, 933 of which were in the training set 
and 467 of which were in the testing set.

Label

A patient was assigned a positive label if they were adminis-
tered four of more qualifying antimicrobial days (a surrogate 
for suspected infection) and exhibited an increase in SOFA 
score by two points or greater from baseline within 12 h of 
emergency department presentation. These criteria serve as 
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our surrogate for a patient having sepsis, which is grounded 
in the Sepsis- 3 framework.

Algorithm

We utilized random forests to build our predictive models using 
the R ranger package.24 Random forest modeling was used due 
to its ability to model nonlinear relationships and its inherent 
mechanisms of random sampling and ensemble strategies that 
tend to enable better generalization performance.25 To demon-
strate the relative value of random forests, we also provide re-
sults derived from a logistic regression model for comparison.

Missing data

Biomarker measurements were missing either due to inad-
equate volume from the plasma sample or if a measurement 
did not pass our quality control criteria. EMR parameters 
were missing if they were not available in their respective, 
requisite timeframe (specified in the “Features” descrip-
tion). We report missing data statistics for all parameters in 
Figure S3 for both the training and test sets. In the test set, the 
biomarkers all have less than 7% missing measurements. If 
the value of a subject’s covariate was missing, it was imputed 
with its median value from the training cohort.

Hyperparameters

Using the R caret package,26 the number of variables ran-
domly sampled at each split was optimized via 10 repeats of 
5- fold cross- validation in the training cohort. The optimized 
value of this parameter was two. The number of trees used 
was set to a value of 1000.

Output

A random forest model was fit on the training dataset using 
fixed hyperparameters derived as above. The model was then 
evaluated on the testing cohort, yielding a probability rang-
ing between 0.0 and 1.0 per patient. Details regarding how 
predictions were generated for patients in the training cohort 
are provided in Supplementary Text S2.

Feature importance

Feature importance was determined according to a 
permutation- based method, outlined by Altman et al.27 
Briefly, this method calculates the distribution of each 

feature’s importance under the null hypothesis of no associa-
tion to the response by repeatedly permuting the outcome.

Risk category determination

To assess the prognostic power of the score, the score was 
discretized into three risk groups (low, medium, and high). To 
define the first threshold to categorize a patient as low- risk, 
the threshold closest to the top- left of the receiver operat-
ing characteristic (ROC) plot in the training cohort was used 
(defined as the threshold satisfying min((1- sensitivities)2 
+(1- specificities)2)), as it provides a balance between opti-
mal sensitivity and specificity with respect to a patient being 
septic or not. The second threshold used to define a patient 
as medium/high- risk was defined based on the prevalence of 
septic shock in the training cohort. Specifically, if the preva-
lence of septic shock in our dataset is defined as pshock, the 
(1- pshock)

th percentile of the scores of all patients was used as 
the threshold.

Survival analysis

To evaluate prognostic capabilities of the algorithm, survival 
curves were generated for low, medium, and high- risk groups 
with respect to length of stay (LOS), 30- day mortality, and 
30- day inpatient re- admission. Survival estimates were based 
on the Kaplan- Meier method, and comparisons of survival 
distributions were based on the log rank test. Details regard-
ing the construction of censored outcomes are presented in 
Supplementary Text S3.

Probability distribution group comparison

Comparisons of probability distributions between the two 
groups were performed using the Wilcoxon rank- sum test, 
and multigroup comparisons were performed using the 
Kruskal- Wallis test.

RESULTS

Patients

Twenty- nine percent of the 1400 patients in our analysis 
met the primary diagnostic outcome of sepsis based on the 
QAD/SOFA definition. Demographics and relevant clinical 
characteristics of the entire cohort are presented in Table 1. 
Demographics and relevant clinical characteristics are also 
presented for the training and testing cohort (Tables S1 and 
S2).
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Diagnostic performance

Diagnostic performance of the algorithm in the testing cohort 
with regard to sepsis is described in Figure 1 and Figure 2. 
The 12- h constraint on the positive sepsis label was imposed 
to enable a more standardized comparison to other machine- 
learning based sepsis prediction algorithms discussed in the 
literature.13,28 Among the testing cohort the area under the 

ROC curve (AUROC) was 0.83 (Figure 1a) and the area under 
the precision recall curve (AUPR) was 0.61 (Figure 2a).

Subgroup analyses for previously defined, clinically 
challenging patient populations are presented in Figure 1b,c 
and Figure  2b,c. Among 227 SOFA- positive patients at 
the time of culture, the algorithm achieved an AUROC of 
0.71 (Figure 1b) and an AUPR of 0.70 (Figure 2b). Among 
236 patients not meeting at least 2 of 4 SIRS criteria, the 

All patients No sepsis Sepsis Septic shock

N 1400 990 350 60

Age (median, IQR) 65 (54– 75) 65 (53– 75) 67 (55– 76) 64 (55– 76)

Gender (male) 51% 50% 55% 55%

Race

White 85.5% 85.7% 83.9% 91.7%

Black 10.5% 10.8% 10.6% 6.7%

Other 2.9% 2.7% 4.0% 0%

Patients from site 1 
(Carle), patients 
from Site 2 (OSF)

59%, 41% 56%, 44% 67%, 33% 58%, 42%

Blood culture order 
time [minutes] 
(median, IQR)

35 (17– 87) 35 (17– 93) 34 (17– 76) 25 (10– 81)

Discharge time [days] 
(median, IQR)

4.17 
(2.67,7.25)

3.14 (2.11, 
5.35)

6.85 (4.92, 
9.96)

8.65 (5.14, 
14.36)

Patients with >= 1 
30- day inpatient 
re- admission

30.1% 26.0% 40.9% 33.3%

30- day mortality 5.1% 2.9% 6.0% 36.7%

Comorbidities

Diabetes 38% 37% 38% 40%

COPD 20% 21% 19% 12%

Congestive heart 
failure

16% 15% 16% 27%

Chronic kidney 
disease

19% 18% 23% 15%

Chronic liver disease 5% 4% 7% 7%

Cancer 3% 2% 3% 3%

Presenting features at time of blood culture

SIRS 1.0 (1.0– 2.0) 1.0 (1.0– 2.0) 2.0 (1.0– 2.0) 2.0 (1.0– 2.0)

SOFA 1.0 (0.0– 3.0) 1.00 (0.0– 2.0) 3.0 (2.0– 4.0) 5.0 (2.0– 8.0)

Lactate >= 2 41% 37% 43% 100%

SOFA- positive 48% 34% 80% 82%

SIRS- negative 53% 58% 43% 33%

Note: Demographic characteristics, comorbidity information, and statistics of relevant features at the time of 
blood culture are presented for the entire population, non- septic patients, patients with sepsis without shock, 
and patients with septic shock.
Abbreviations: COPD, chronic obstructive pulmonary disease; IQR, interquartile range; OSF, OSF Saint 
Francis Medical Center; SIRS, systemic inflammatory response syndrome; SOFA, Sequential Organ Failure 
Assessment.

T A B L E  1  Baseline data of the entire 
cohort
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algorithm achieved an AUROC of 0.83 (Figure 1c) and an 
AUPR of 0.60 (Figure 2c).

Sensitivity, specificity, positive predictive value, and neg-
ative predictive value at the threshold used to categorize a 
patient as low risk (see Methods) is presented in Table S3. 

AUROC, AUPR, and F1 score for each population is pre-
sented in Table S4.

Importance designated to each feature by random forest 
placed PCT and IL- 6 among the top three features. Figure 3 
displays a ranking of all incorporated features.

F I G U R E  1  ROC curves of the 
algorithm in the testing cohort for (a) 
all patients, (b) SOFA- positive patients, 
and (c) SIRS- negative patients. In all 
subpopulations, the algorithm demonstrates 
a strong ability to differentiate patients who 
satisfied the criteria for sepsis within 12 h 
of emergency department presentation from 
those who did not. AUROC, area under the 
receiver operating curve; ROC, receiver 
operating characteristic; SIRS, systemic 
inflammatory response syndrome; SOFA, 
Sequential Organ Failure Assessment

F I G U R E  2  PR curves of the algorithm 
in the testing cohort for (a) all patients, (b) 
SOFA- positive patients, and (c) SIRS- 
negative patients. Recall (also known 
as sensitivity) is displayed on the x- axis 
and precision (also known as positive 
predictive value) is displayed on the y- 
axis. PR, precision recall; SIRS, systemic 
inflammatory response syndrome; SOFA, 
Sequential Organ Failure Assessment
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Figure 4 depicts algorithm output (probability of sepsis) for 
subgroups of the primary outcome. In the comparison of non-
septic patients, patients with sepsis without shock, and patients 
with septic shock, median probability was 0.22, 0.44, and 0.53, 
respectively. In the comparison of patients with no organ dys-
function and no infection, organ dysfunction only, infection 
only, and organ dysfunction and infection, median probability 
was 0.16, 0.23, 0.31, and 0.43, respectively. For the compari-
son among patients who were nonseptic, septic, and with septic 
shock, results were statistically significant for all pairwise com-
parisons (p < 0.0001, Wilcoxon) and the aggregate groupwise 
comparison (p < 0.0001, Kruskal- Wallis). For the comparison 
between patients with/without organ dysfunction and/or with/
without infection, results were statistically significant for all 
pairwise comparisons (p < 0.0001, Wilcoxon) and the aggre-
gate groupwise comparison (p < 0.0001, Kruskal- Wallis).

Analogous diagnostic results for the training cohort are 
presented in Figures S4– S6 and Tables S5 and S6. For refer-
ence, we also report the distributions of the IL- 6, PCT, and 
CRP among nonseptic patients, patients with sepsis without 
shock, and patients with septic shock in the training cohort 
(Figure S7). Last, Figures S8 and S9 display analogous di-
agnostic results for the testing cohort derived from a logistic 
regression model. We observe that the random forest model 
consistently outperforms the logistic regression model.

Prognostic performance

Secondary outcomes were compared among low, medium, 
and high- risk groups in the testing cohort and the entire 

cohort. Survival curves for LOS, 30- day mortality, and 30- 
day inpatient re- admission are depicted for the testing cohort 
in Figure 5 and for the entire cohort in Figure S10. In the 
testing cohort, median LOS was 3.2 days for 273 patients in 
the low- risk group, 5.0 days for 164 patients in the moderate- 
risk group, and 8.5 days for 30 patients in the high- risk group 
(p < 0.0001). Mortality rates were higher among higher se-
verity risk groups as a function of time within a 30- day win-
dow (p  <  0.0001). Re- admission rates were higher among 
higher severity risk groups as a function of time within a 30- 
day window (p  <  0.0001). Detailed statistics for each risk 
category and secondary outcome in the testing cohort and the 
entire cohort are provided in Table 2.

DISCUSSION

The challenge facing timely treatment of sepsis lies at many 
levels of the clinical care process. Some patients with sepsis 
may be missed early in their presentation due to vague signs 
and symptoms. Other patients, even with concern for infec-
tion, may not manifest illness in ways that sway the obliga-
tory risk- benefit analysis toward an immediate commitment 
to broad- spectrum antibiotics. Even after commitment to 
broad- spectrum antibiotics, some cases may harbor an occult 
risk for decompensation which, if revealed with an adequate 
tool, would compel providers toward swift action. We have 
described an approach, evaluated at two separate clinical 
sites, which uniquely incorporates a large volume of clinical 
data and three nonroutinely measured plasma biomarkers in 
a machine- learning model to rapidly identify patients with 
sepsis and stratify them based on severity at the time a first 
clinical specimen is acquired.

One of the largest barriers in developing predictive 
models for sepsis lies in the lack of a gold standard.29 
Fully appreciating the difficulty (and arguably futility) 
of defining a gold- standard for this syndrome, the Third 
International Consensus Definitions Task Force defined 
sepsis in a manner that would enable standardization, cap-
ture our current conceptual understanding of the disease, 
and have high predictive validity with respect to clinically 
relevant end points. When decomposing each aspect of the 
Sepsis- 3 definition, it becomes clear that some lend them-
selves to a more robust quantification more than others. 
Life- threatening organ dysfunction, defined as an acute 
change in total SOFA score by 2 or more points conse-
quent to infection, can be accurately quantified through a 
combination of curating relevant parameters in the EMR 
and a targeted physician adjudication. Meanwhile, no tool 
exists which is broadly sensitive and specific for identify-
ing infection and we rely on the judgment of clinicians as 
indicated by the surrogate developed by Rhee et al.22 and 
embraced by the CDC. Utilizing this surrogate for infection 

F I G U R E  3  Feature importance outputted by random forest. PCT 
and IL- 6 emerge as the most important features
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and SOFA- based definition of organ dysfunction, our final 
sepsis label exhibited a false- negative rate around 30% and 
a false- positive rate around 15% with respect to an adjudi-
cation conducted by three physicians on a subset of patients 
in our analysis (Supplementary Text S1).

Despite this error in our label, our intention is not to build 
a tool which correlates to the imperfect “gold- standard” for 
sepsis but rather an acuity score demonstrating a signal with 
respect to a wide variety of outcomes. An imperfect label 
does not preclude one from building a useful score based on 

F I G U R E  4  Algorithm- determined 
probability of sepsis for specific population 
subgroups in the testing cohort. (a) 
Subgroups of sepsis based on the Sepsis- 3 
definition. (b) Subgroups of nonseptic 
patients based on the presence of infection 
and/or organ dysfunction (OR). In both 
subgroups, a trend of increasing probability 
with increasing disease severity emerges

F I G U R E  5  Risk group analysis for three outcomes in the testing cohort: (a) length of hospital stay, (b) 30- day mortality, (c) 30- day inpatient 
readmission. For each risk group and outcome, survival estimates were generated based on the Kaplan- Meier method, and comparisons of survival 
distributions were based on the log- rank test. Statistically significant differences between each of the risk groups are observed for all three 
outcomes
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that label, but it does likely impose a ceiling on diagnostic 
performance30 and impose limitations on the set of actions 
that can take place based on the score (e.g., deciding whether 
or not to prescribe antibiotics for a patient).

Despite the noise in our label, we demonstrate good pro-
spective diagnostic performance in a heterogeneous popu-
lation with respect to the Sepsis- 3 surveillance definition. 
Robust diagnostic performance in the subgroup with vague 
or confounding presentation is a novel aspect of these results: 
the algorithm is no less capable of identifying sepsis in those 
patients who lack obvious features of infection (i.e., SIRS- 
negative) or exhibit features potentially caused by an infec-
tion (i.e., SOFA positive) on initial presentation. This tool 
may therefore be capable of effectively identifying the prob-
lematic patient population with vague presentation in need 
of prompt broad- spectrum antibiotics earlier than clinical 
gestalt. Meanwhile, the comparison of subgroups based on 
the presence or absence of organ dysfunction and infection 
suggest that the algorithm distinguishes septic patients (i.e., 
patients with both infection and organ dysfunction) from pa-
tients with either feature present independently. This suggests 
the approach is less likely to misclassify patients who either 
have uncomplicated infection or have organ dysfunction due 
to a noninfectious process.

We also present evidence that the score is reflective of dis-
ease severity. The analysis stratifying patients into subgroups 
with and without shock shows a significantly higher probabil-
ity score produced by the algorithm corresponding to patients 
with shock. This pattern was observed without providing the 
algorithm a label for shock. This suggests that the algorithm 
output may not simply correspond to the dichotomy of sepsis 
versus not sepsis, but rather a higher score may reflect greater 
severity of illness. We were similarly interested in how the 
model output would relate to LOS— a surrogate for sever-
ity of illness and major determinant of cost of care, 30- day 
mortality, and 30- day inpatient readmission. Our hypothesis 
was that higher probability scores will correspond to greater 
severity of illness, which drive longer hospital stays, greater 
mortality rates, and greater re- admission rates. Figure 5 and 
Figure S10 support this conclusion and provide evidence for 

prognostic capabilities of the model. Again, this pattern was 
observed without providing the algorithm any of this direct 
information.

PCT and IL- 6 are among the most important features in 
the model, suggesting these biomarkers are useful in differ-
entiating patients with organ dysfunction and infection from 
those satisfying either condition. We note that this is a de-
parture from the more “Sepsis- 2 grounded” claim that host 
response markers are useful in differentiating inflammatory 
responses from noninfectious and infectious stimuli.

There are multiple limitations to this study. In the testing 
cohort, the analysis would benefit from larger sample sizes 
when looking at diagnostic results in subpopulations and 
prognostic results in the high- risk group for 30- day mortal-
ity and 30- day inpatient re- admission. With that said, we do 
provide subpopulation diagnostic results in the training co-
hort and prognostic results in the entire cohort for reference. 
Another limitation of this study is that it includes only two 
level- one trauma clinical centers in the central Illinois re-
gion. Including more geographically and socioeconomically 
diverse sites is crucial to better capture the heterogeneity of 
the suspected sepsis population.

A final potential limitation to this study is that it is re-
stricted to patients for whom blood cultures were ordered 
in the inpatient or emergency department environment. It 
is our experience that blood cultures indicate a high clini-
cal suspicion for infection, even if a commitment to broad- 
spectrum antibiotic therapy has not yet been made by the 
clinician. It is clear from our data that even among these 
patients, who have a higher pre- test probability for sepsis, 
a significant portion still do not receive broad- spectrum 
antibiotics within 3 h. Therefore, there is clinical value 
to be gained from implementation of an algorithm which 
quantifies appropriateness of broad- spectrum antibiotics in 
the “blood cultured” population. Tools to identify sepsis 
among patients for whom concern for infection has been 
completely missed are needed. However, studies that focus 
on broad patient populations with low prevalence of disease 
face methodological challenges as traditional machine- 
learning algorithms optimize for overall error rate, weigh 

Risk category Cohort N
Median 
LOS

30- day 
Mortality rate

30- day Re- 
admission rate

Low Testing 273 3.2 2.9% 23%

Medium Testing 164 5.0 7.9% 36%

High Testing 30 8.5 13.3% 57%

Low Entire 859 3.4 2.2% 22%

Medium Entire 464 5.3 6.9% 41%

High Entire 77 8.1 27.3% 60%

Note: Median length of hospital stay, 30- day mortality rate, and 30- day inpatient readmission rate are 
presented as a function of risk category for each cohort a function of risk category for each cohort.
Abbreviation: LOS, length of stay.

T A B L E  2  Prognostic characteristics for 
the testing cohort and entire cohort
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positives, and negatives equally, and generally lead to a low 
positive predictive value.31,32

On the other hand, blood cultures represent a simple 
inclusion criteria that leverages clinical expertise yet is 
still broader than commonly applied criteria such as SIRS- 
positive33 or ICU- only patients.34 Roughly 50% of our patient 
population is SIRS- negative (25% of which were septic) and 
the majority of our patients (>85%) were never transferred to 
the ICU, so more restrictive inclusion criteria would severely 
limit the population our tool could be useful for.

Methods for identifying patients in need of broad- 
spectrum antibiotic therapy and facilitating prompt initiation 
of that therapy are among the greatest immediate needs for 
the reduction of morbidity, mortality, and healthcare costs in 
the United States. The challenge of sepsis, which can pres-
ent with vague and confounding signs and symptoms, is that 
a decision to administer antibiotics is typically made with a 
great deal of uncertainty. A tool identifying patients with— or 
soon to develop— sepsis may facilitate appropriate treatment 
significantly. We have demonstrated the ability of a machine- 
learning based score using clinical data from the EMR and 
three nonroutinely measured biomarkers trained on a sur-
veillance definition of sepsis to both differentiate between 
various strata of sepsis and reflect severity of illness when 
discretized into three risk categories. An early identification 
tool based on this approach may be used to guide clinicians 
and staff across the care team and facilitate prioritization of 
broad- spectrum antibiotic administration for medium or high- 
risk category patients, leading to improved clinical outcomes.
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