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Extracellular vesicles (EVs) are important mediators in the intercellular communication,
influencing the function and phenotype of different cell types within the tumor micro-milieu
and thus promote tumor progression. Since EVs safely transport packages of proteins,
lipids and also nucleic acids such as miRNAs, EVs and their cargo can serve as diagnostic
and prognostic markers. Therefore, the aim of this study was to investigate EV embedded
miRNAs specific for melanoma, which could serve as potential biomarkers. In contrast to
previous studies, we not only analysed miRNAs from EVs, but also included the miRNA
profiles from the EV-secreting cells to identify candidates as suitable biomarkers. While the
characterization of EVs derived from normal melanocytes and melanoma cells showed
largely comparable properties with regard to size distribution and expression of protein
markers, the NGS analyses yielded marked differences for several miRNAs. While miRNA
load of EVs derived from normal human epidermal melanocytes (NHEMs) and melanoma
cells were very similar, they were highly different from their secreting cells. By
comprehensive analyses, six miRNAs were identified to be enriched in both melanoma
cells and melanoma cell-derived EVs. Of those, the accumulation of miR-92b-3p, miR-
182-5p and miR-183-5p in EVs could be validated in vitro. By functional network
generation and pathway enrichment analysis we revealed an association with different
tumor entities and signaling pathways contributing melanoma progression. Furthermore,
we found that miR-92b-3p, miR-182-5p and miR-183-5p were also enriched in EVs
derived from serum of melanoma patients. Our results support the hypothesis that
miRNAs derived from EVs can serve as prognostic or diagnostic liquid biopsy markers
in melanoma. We identified EV-derived miRNAs and showed that those miRNAs, which
were enriched in melanoma cells and EVs, are also found elevated in serum-derived EVs of
patients with metastatic melanoma, but not in healthy subjects.
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INTRODUCTION

Melanoma is one of the most aggressive malignant tumors
worldwide with a still increasing incidence. The endogenously
controlled processes that drive tumor growth and cancer
progression have long been studied. A second important aspect
is the influence of cell-cell communication within the tumor
microenvironment. Here intercellular crosstalk occurs direct by
cell-to-cell contact via adhesion molecules or electrical coupling,
and indirectly through classical signaling via cytokines, growth
factors, and extracellular vesicles (EVs). The latter are attracting
increasing interest as potent mediators of intercellular signaling,
since they protect proteins, lipids and especially nucleic acids
against degradation and because they present potential
prognostic and diagnostic biomarkers.

EVs are lipid-membrane bound, cell-derived nanoparticles
secreted by all cells under physiological and pathological
conditions. They are distinguished by size and biogenesis into
exosomes, microvesicles and apoptotic bodies (1, 2).

Exosomes are very small (50 – 150 nm) lipid vesicles derived
from the endosomal compartment. They are formed in
multivesicular bodies (MVB) and released in the extracellular
space by fusion with the cell membrane (1–4). They transport
lipids (e.g. cholesterol), proteins (e.g. ALIX, HSP70), DNA as
well as coding and non-coding RNAs (e.g. miRNAs) (2, 4).

Microvesicles are larger in size (100 – 1000 nm) than
exosomes. They are membrane-derived vesicles released in the
extracellular environment by budding (shedding) or fission of
the plasma membrane (1, 2, 4, 5). Similar to exosomes,
microvesicles are loaded with lipids, proteins and nucleic acids
(2, 4).

Apoptotic bodies are the largest extracellular vesicles (1000 -
2000 nm). They are released during the disassembly of dying
cells. Because of their size apoptotic bodies contain larger
amounts of lipids, proteins and nucleic acids, but also cellular
components such as parts of cytosol, micronuclei or intact
organelles. In contrast to microvesicles and exosomes,
apoptotic bodies are not known to mediate intercellular
communication, but are incorporated and degraded by
phagocytic cells (e.g. macrophages) (1, 2, 4, 5).

The updated guideline of the international society for
extracellular vesicles states that i) EVs should now be defined
as natural particles with a lipid double layer secreted by cells and
unable to replicate (not containing a nucleus) (6); ii) they should
be differentiated according to size, density, biochemical content
and surface markers. Exosomes and small microvesicles (100 -
200 nm) are also often referred to as small EVs (50 - 200 nm),
because they both express typical surface markers such as
tetraspanins CD63, CD81 and CD9 (1, 2, 4, 5), which
distinguish them from apoptotic bodies.

One of the important distinct function of EVs is the transport
of microRNAs (miRNAs), since in contrast to lipids and proteins
most RNAs are rapidly degraded in the extracellular space.
Protected by EVs, miRNAs are able to impact cell-cell
communication in a way which has long been neglected.

MicroRNAs are small (~22 nt) single stranded non-coding
RNAs, which post-transcriptionally regulate protein expression
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by interacting with target mRNAs. They are transcribed by RNA
polymerase II and processed in several steps (7). The mature
miRNA single strand is incorporated into the RNA-induced
silencing complex (RISC) and functions as guide for binding to
the complementary seed regions in the 3’ untranslated region
(3’UTR) of target mRNAs (7, 8). The binding of RISC to the
3’UTR inhibits protein translation by the repression of
translational initiation process and ribosome assembly as well
as degradation of mRNA (7).

Posttranslational regulations by miRNAs are involved in
physiological processes as embryogenesis, differentiation and
development, but also in pathological events as cancer
development and other diseases (7).

We and others have provided evidence that cell-cell
communication within the tumor microenvironment and e.g.
modifying macrophages is partially mediated by miRNAs
transported in EVs (2, 9–13). Some of these miRNAs modify
cancer cells, by e.g. mediating drug resistance (12, 14–16) or
promoting metastasis (15, 17) in different cancer entities (e.g.
breast cancer, glioma, small cell lung cancer and cervical
squamous cell carcinoma).

miR-155 from melanoma-derived EVs induces matrix
reprogramming and promotes angiogenesis by inducing the
activation of carcinoma-associated fibroblasts (CAFs) (18). We
revealed that the exosomal miR-125b-5p secreted by melanoma
cells induces pro-inflammatory tumor-associated macrophages
(TAMs) by targeting LIPA, resulting in increased M1 phenotype
marker expression, e.g. IL-1b, CCL1, CCL2 (9).

Since their secretion is increased in malignancies and the
miRNA cargo differ between normal and cancer cells, miRNAs
embedded in EVs are intended to be used as liquid biobsy
markers in cancer (19–22).

Therefore, the aim of this study was to investigate EV
embedded miRNAs specific for melanoma, which could serve
as potential biomarkers. In contrast to previous studies, we not
only analysed miRNAs cargo of EVs, but also included the
miRNA profiles from the EV-secreting cells to identify
candidates as suitable biomarkers.

We revealed six miRNAs that were significantly enriched in
EVs from melanoma cell lines and in the corresponding cells.
Functional Network analyses predicted an association of these
miRNAs in various cancer entities and tumor-promoting
signaling pathways.

The in vitro enrichment in EVs could be validated, in EVs
derived from patient samples, for the three miRNAs: miR-92b-
3p, miR-182-5p and miR183-5p. Therefore, these EV loaded
miRNAs may serve as potential novel prognostic or diagnostic
liquid biopsy markers in melanoma.
MATERIALS AND METHODS

Cell Cultures
Melanoma cell lines (WM9, WM902B, WM35, BLM, MV3 and
A375) were cultured in DMEM, supplemented with 10% fetal
calve serum (FCS) (Sigma Aldrich, Taufkirchen, Germany) and
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1% penicillin-streptomycin (Sigma Aldrich, Taufkirchen,
Germany). Cell lines, used in the NGS analyses, represent
melanoma in different progression stages (WM35 radial
growth phase (RGP), WM902B vertical growth phase (VGP)
and WM9 metastatic melanoma). Melanoma cell lines were
provided from the Department of Dermatology, University of
Münster, Germany. Primary normal human epidermal
melanocytes (NHEM) were isolated in our laboratory from
juvenile foreskins and cultured in medium 254 (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) including human
melanocyte growth supplement (HMGS) and 1% penicillin-
streptomycin. All cells were incubated at 37°C and 5% CO2.

Isolation and Analysis of Small
Extracellular Vesicles
EVs were isolated and characterized according to the 2018
consensus statement on minimal information for studies of
extracellular vesicles (MISEV2018) (6). Cells were cultured for
48 h in DMEM supplemented with 10% exosome depleted FCS
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) and
1% penicillin-streptomycin. Supernatants (30 ml) were collected
and centrifuged for 10 min at 300 g to remove cells and cell
debris, followed by 30 min at 10000 g to remove larger vesicles.
Afterwards the supernatants were filtered through a 0.2 µm filter
and centrifuged at 100000 g for 1.5 h. Pelleted EVs were washed
with PBS and centrifuged for another 1.5 h at 100000 g.
Centrifugation was performed using a Sorvall WX+ Ultra
Centrifuge, with SureSpin 632 rotor (k-factor 194) (Thermo
Fisher Scientific, Waltham, Massachusetts, USA). EVs were
resuspended in PBS. EV analysis was performed by
nanoparticle tracking analysis (NTA) using a NanoSight
NS300 (Malvern Panalytical, Kassel, Germany). Therefore, EVs
were isolated or samples were diluted (conditioned media (1:100)
or patient serum (1:1000)) without isolation and analysed from
three independent biological samples. Measurements were
performed at a controlled temperature of 22°C. For each
sample, three measurements of 30 s were performed. EV
concentration and size was calculated by the NanoSight software.

Isolation of Human Serum-Derived EVs
For the initial testing of miRNA enrichment in serum-derived
EVs, melanoma patients were included without special criterias.
Serum of melanoma patients (8) and healthy donors (8) was
collected at the Department of Dermatology and Venereology
(University Hospital Halle (Saale), Germany). Patient
characteristics are summarized in Supplementary Table 1. All
patients were bearing advanced metastatic melanoma (stage IIIC
– IV) while healthy donors had no known malignancies or
atypical moles, at the timepoint when samples were collected.
To remove cells and cell debris the collected sera were
centrifuged at 300 g for 10 min, followed by another
centrifugation step at 10000 g for 30 min. Then EVs were
isolated from 100 µl serum by size exclusion chromatography
(sec) using Exo-spin colums according manufactures
instructions (Cell Guidance Systems, Cambridge, UK). Serum
derived EVs were analyzed by western blot and NTA (Figure
Frontiers in Oncology | www.frontiersin.org 3
S1). The study was conducted in accordance with good clinical
practice guidelines and the declaration of Helsinki. All patients
gave their written informed consent. The ethical committee of
the medical faculty of the Martin-Luther-University Halle-
Wittenberg approved the study.

Transmission Electron Microscopy
To prepare TEM-samples 3 µl of the dispersion were spread onto
Cu-grids coated with a formvarfilm. After 1 min of adsorption,
excess liquid was blotted off with filter paper. Subsequently the
grids were air-dried for 15 sec, washed with water (3 times for
1 min), placed on a droplet of 2% aqueous uranyl acetate and
drained off after 1 min. The dried specimens were examined with
an EM 900 transmission electron microscope (Carl Zeiss
Microscopy, Jena, Germany) at an acceleration voltage of 80
kV. Electron micrographs were taken with a Variospeed SSCCD
camera SM-1k-120 (TRS, Moorenweis, Germany).

Immunoblot Analyses
Cells and EVs were lysed by RIPA buffer for 30 min at 4°C. 20 µg
of protein extracts were resolved by SDS–PAGE and blotted to
nitrocellulose membranes and probed with the following
antibodies: anti-CD81 (5A6) (1:200), anti-CD63 (MX-49.129.5)
(1:500), anti-HSP70 (3A3) (1:500), anti-ALIX (1A4) (1:250),
anti-CANX (AF18) (1:500) (Santa Cruz, Dallas, USA) and
anti-CD9 (CGS12A) (1:1000) (Cell Guidance Systems,
Cambridge, UK). Antibody incubation was performed in 5%
milk at 4°C over night. For antibody detection, blots were
incubated for 1 h at room temperature with m-IgGk BP-HRP
(1:5000) (Santa Cruz, Dallas, USA) or anti-mouse IgG-HRP
(1:2000) (Cell Signaling Technology, Leiden, Netherlands).
Chemiluminescent detection was performed using Amersham
ECL Prime (GE Healthcare, Amersham, UK).

RNA Isolation and Analyses
Total RNA was extracted from cells or extracellular vesicles using
TriFast™ reagent (Peqlab, Erlangen, Germany), according
manufacturer’s protocol. RNA quality and quantity was
analysed by Agilent bioanalyser (Agilent, Santa Clara,
California, USA). MiRNA quantification was performed by
qRT-PCR using TaqMan® MicroRNA Reverse Transcription
Kit and TaqMan® Universal Master Mix II according
manufacturer’s instructions (Thermo Fisher Scientic). Values
were normalized by RNUB6 for cells, while for extracellular
vesicles values were normalized by miR-16, because it was highly
and stably expressed in our NGS analysis and it was earlier
reported as endogenous normalization miRNA in exosomes (23).
Relative fold changes were calculated by 2-DDCt method (24),
comparing the values to the mean of the control group. MiRNA
assays were purchased from Thermo Fisher Scientific (Thermo
Fisher Scientific, Waltham, Massachusetts, USA).

Small RNA-Seq
10 ng (EVs) or 50 ng (cells) of total RNA was used in the small
RNA protocol with the NEXTflex Small RNA-seq Kit v3 (Bioo
Scientific) according to the instructions of the manufacturer. A
pool of libraries was used for sequencing at a concentration of 10
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nM. Sequencing of 1x75 bp was performed with an Illumina
NextSeq 550 sequencer at the sequencing core facility of the
IZKF Leipzig (Faculty of Medicine, University Leipzig) according
to the instructions of the manufacturer. Demultiplexing of raw
reads, adapter trimming and quality filtering was done according
to Stokowy et al. (25), using the adapter sequences of the
NEXTflex kit containing random bases next to the library
insert. Mapping against the human reference genome (hg38)
and miRbase reference sequences (v22) was done using Bowtie2
(26). Read counts were calculated with the R bioconductor
package Rsamtools (http://bioconductor.org/packages/release/
bioc/html/Rsamtools.html) and normalised using the DESeq2
(27) and EdgeR (28) R bioconductor packages.

Heatmaps and Statistics
For the statistical analyses and graphical representation, Qlucore
Omics Explorer and Graph Pad Prism software was used. Venn
diagram was created using FunRich software (29). Differential
expression fold-changes and p-values of the NGS data were
calculated by Qlucore Omics Explorer. Significant altered
miRNAs with p ≤ 0.05 were selected and Benjamini-Hochberg
adjustment was used to adjust p-values. Adjusted p-values ≤ 0.05
were considered significant. To prove the statistical significands
of the data, two tailed Student’s t-test or Mann-Whitney U-test
was performed, depending on Gaussian distribution, which was
evaluated by the Levene test. A p-value ≤ 0.05 was considered as
statistical significant.

miRNA Pathway Analysis
For computational miRNA pathway analysis we used
MIENTURNET (MIcroRNAENrichmentTURnedNETwork)
(30). Pathway analyses were performed for miR-92b-3p, miR-
Frontiers in Oncology | www.frontiersin.org 4
125b-5p, miR-182-5p, miR-183-5p and miR-221-3p by the
default settings, using KEGG and Reactome. For miRNA-target
network analysis, targets validated as strong based on
miRTarBase were used.
RESULTS

Isolation and Characterization of Small
Extracellular Vesicles Derived From
NHEMs and Melanoma Cells
In order to reveal the peculiarities of tumor-derived EVs,
comparative analyses of miRNAs loaded into EVs from normal
melanocytes and melanoma cells as well as the endogenous
miRNA expression inside these cells were performed. For this
purpose, primary normal human epidermal melanocytes
(NHEM) from three different donors and three melanoma cell
lines (WM35, WM9 and WM902B) were briefly cultured (48 h).
EVs were isolated and characterized according to the 2018
consensus statement on minimal information for studies of
extracellular vesicles (MISEV2018) (6). The separation of EVs
from conditioned medium (CM) was performed by different
centrifugation steps, including ultracentrifugation as previously
described (9, 31). TEM confirmed the size distribution of the
isolated EVs (~ 100 nm) and characteristic ultrastructure
(Figure 1A). In western blot analyses an accumulation of the
EV surface markers CD9, CD81 and CD63 as well as the
cytosolic proteins HSP70 and ALIX were found in the lysates
of EVs (6). In contrast, no accumulation in the EV fraction was
found for Calnexin (CANX). Since CANX originates from the
endoplasmic reticulum, enrichment would indicate cellular
A B

D EC

FIGURE 1 | Isolation and characterization of extracellular vesicles. (A) Representative image of transmission electron microscopy (TEM) analyses of isolated EVs
from melanoma cell line conditioned medium. Scale bar represents 100 nm. (B) Western blot analyses for EVs and corresponding cells investigated CD63, CD81,
CD9, HSP70, ALIX and CANX. (C) Exemplary nanoparticle tracking analyses (NTA) for EVs derived from NHEMs and melanoma cells. (D) NTA showed a similar size
distribution of EVs derived from NHEMs and melanoma cells. (E) NTA revealed that melanoma cells release higher concentrations of EVs. Graph represents EV
concentrations of at least three biological independent experiments (*p ≤ 0.05; ***p ≤ 0.001).
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contamination of the EV fraction (Figure 1B). Nanoparticle
tracking analysis (NTA) showed a similar size distribution of
isolated EVs (± 150 nm) derived from NHEMs or melanoma cell
lines (Figures 1C, D). To analyse the quantity of EVs derived
from melanoma cells or melanocytes, cells were incubated for
24 h and EVs were measured by NTA. Melanoma cell-derived
EVs were significantly increased compared to the EVs from
normal melanocytes. The supernatant of the metastatic cell line
WM9 showed the highest concentration of EVs (Figure 1E).

EVs derived from normal melanocytes and melanoma cells
show largely comparable properties with regard to size
distribution and surface marker expression.

NGS Analysis of miRNA Cargo in EVs and
miRNA Profiles of Corresponding Cells
To investigate the miRNA cargo in EVs and the miRNA
expression in the corresponding cells, total RNA was isolated
and analysed by Bioanalyser system (Figure 2A). While the cell-
derived RNA shows a high enrichment for rRNAs, EV isolated
RNA shows no rRNA, which suggests the absence of
contaminations by cellular RNA, as shown previously (32, 33)
(Figure 2A). Principal component analysis (PCA) was
performed to determine the overall differences between all
miRNAs loaded into EVs and endogenous miRNAs from the
cells. The greatest differences were found in miRNA profiles of
NHEMs and melanoma cells. The miRNA load of EVs derived
from NHEMs and melanoma cells was very similar, but highly
different from the corresponding cells (Figure 2B). These results
were confirmed by correlation analyses, which showed the
strongest correlation of miRNA load between EVs derived
from melanoma cells and NHEMs (R2 = 0.9587) (Figure 2C).
In contrast, the endogenous (intracellular) miRNA expression of
Frontiers in Oncology | www.frontiersin.org 5
NHEMs and melanoma cells revealed the lowest correlation (R2

= 0.6470).
These results indicate a great difference in the expression of

endogenous miRNAs between NHEMs and melanoma cells, but
a higher similarity of the miRNA load between EVs from
NHEMs and melanoma cells.

Differential miRNA Abundance in EVs and
Corresponding Cells
Comparison between EVs and corresponding cells revealed
marked differences of miRNA abundance between EVs and the
cells they derived from. For NHEMs, 52 miRNAs were
significantly enriched in EVs, while 34 miRNAs showed a
higher expression inside the cells (Figure 3A, Table 1). EVs
derived from melanoma cells showed a significant accumulation
for 44 miRNAs, while the corresponding melanoma cells showed
a higher frequency for eight miRNAs (Figure 3B, Table 2).
When comparing cells and their secreted EVs, six miRNAs (let-
7d-3p, miR-106b-3p, miR-335-5p, miR-379-5p, miR-92b-3p,
and miR-93-5p) were found to be enriched in EVs from both
NHEMs and melanoma cells. In contrast, no miRNAs were
found to be more abundant inside NHEMs as well as in
melanoma cells.

The comparison of the absolute values (reads per million
(RPM)) of the top 10 expressed miRNAs in NHEMs (Figure 3C)
or in melanoma cell lines (Figure 3D) to the miRNA load of the
corresponding EVs revealed large differences in the amount of
single miRNAs (Figures 3C, D). The top 10 expressed miRNAs
represents more than 50% of all detected miRNAs inside of the
cells as well as in the EVs (Figures 3C, D). However, a large
variation was found when comparing miRNAs in cells and in
their released EVs. miR-21-5p was found with approximately
A B

C

FIGURE 2 | NGS analyses of miRNA cargo in EVs and miRNA profiles of corresponding cells. (A) Representative Bioanalyser quality control of RNA derived from
whole cells and EVs. (B) Principle component analysis (PCA) of the miRNA profiles of NHEMs, melanoma cells and the corresponding EVs. (WCs: whole cells; EVs:
extracellular vesicles) (C) Scatter plots showing the correlation of miRNA profiles between the average expressions of three biological replicates of cells and EVs.
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similar abundance in cells and EVs from NHEMs as well as from
melanoma cells. In contrast, compared to corresponding EVs,
let-7f-5p and let-7i-5p were highly enriched in NHEM cells,
while let-7a-5p showed a 2.5 fold enrichment in melanoma cells.

These different quantitative distributions of miRNAs between
cells and EVs thus preclude a stochastic distribution or a mere
compartmentalization of cytoplasm, but rather indicate a specific
loading mechanism of EV.

Specific miRNA Enrichment in Melanoma
Cell-Derived EVs
In order to identify melanoma-specific signaling pathways for
this type of cell-cell communication, miRNA profiles of EVs
derived from NHEMs were compared to those derived from
melanoma cells. Overall, most miRNAs in EVs derived from
Frontiers in Oncology | www.frontiersin.org 6
NHEMs and melanoma cells showed a similar distribution.
However, by differential enrichment analysis, 16 miRNAs were
found to be significantly enriched in melanoma cell-derived EVs,
while 24 miRNAs were enriched in EVs released by NHEMs
(Figure 4A, Table 3). The most frequently occurring and
significantly enriched miRNAs in EVs from melanoma cells
showed a clear increase in absolute quantities (RPM)
compared to EVs from melanocytes. Especially miR-24-3p,
miR-221-3p and miR-125b-5p were found highly enriched in
the melanoma cell-derived EVs (Figure 4B), representing 5.6%
of all reads, mapped to 490 identified miRNAs.

In order to identify a melanoma-specific signature, miRNAs
enriched in melanoma cells and melanoma EVs were aligned.
Only six miRNAs (miR-17-3p, miR-92b-3p, miR-125b-5p, miR-
182-5p, miR-183-5p and miR-221-3p) were identified to be
A B

DC

FIGURE 3 | Differential miRNA abundance in EVs and corresponding cells. Heatmaps represent the hierarchical clustering of significantly different miRNAs,
comparing NHEMs (A) or melanoma cells (B) to their corresponding EVs. Pie charts show the absolute quantification (reads per million (RPM)) of the top 10
expressed miRNAs in NHEMs (C) or melanoma cells (D) compared to their corresponding EVs. Data shown as average of RPMs of three biological replicates.
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enriched in both melanoma cells and melanoma-derived EVs
(Figure 4C) and further analysed (e.g. since miR-24-3p was only
enriched in melanoma-derived EVs, but not in melanoma cells, it
was excluded). Since miR-17-3p was very low expressed, it was
excluded from further investigations. To confirm the enrichment
for the five remaining miRNAs (miR-92b-3p, miR-125b-5p,
miR-182-5p, miR-183-5p and miR-221-3p) in melanoma cell
lines as well as in melanoma EVs, qRT-PCRs were performed.
Therefore, EVs where isolated from conditioned medium of
various melanoma cell lines (A375, WM35, WM9, WM902B,
MV3 and BLM) or NHEMs of different donors. A significant
enrichment was found for miR-92b-3p, miR-125b-5p, miR-182-
Frontiers in Oncology | www.frontiersin.org 7
5p and miR-183-5p in melanoma cell-derived EVs, as well as in
the corresponding cells compared to NHEM-derived EVs and
cells (Figures 4D, E). For miR-221-3p the enrichment was not
significant. These findings mostly correlated with the results of
the previous NGS analyses.

Functional Networks and Biological
Pathways of Melanoma Cell and EV
Enriched miRNAs
For the five investigated miRNAs (miR-92b-3p, miR-125b-5p,
miR-182-5p, miR-183-5p and miR-221-3p) an in silico network
was generated, based on miRTarBase target predictions, using
TABLE 1 | Top ten most differential enriched miRNAs in NHEM and NHEM-derived EVs.

miRNA RPM cells RPM EVs log2 fold enrichment adj. p-value

enriched in NHEM EVs
hsa-miR-486-5p 27.73 7920.17 8.16 0.0072
hsa-miR-223-3p 1.78 345.59 7.60 0.0051
hsa-miR-451a 26.06 3113.14 6.90 0.0333
hsa-miR-122-5p 24.25 2310.82 6.57 0.0134
hsa-miR-335-5p 8.16 718.49 6.46 0.0366
hsa-miR-9-3p 7.55 516.16 6.10 0.0058
hsa-miR-23a-5p 14.38 918.05 6.00 0.0186
hsa-miR-92a-1-5p 20.84 900.46 5.43 0.0357
hsa-miR-125b-1-3p 17.48 661.36 5.24 0.0204
hsa-miR-296-3p 14.21 446.87 4.97 0.0124
enriched in NHEM cells
hsa-miR-513b-5p 1044.94 221.92 -2.24 0.0121
hsa-miR-506-3p 909.44 173.27 -2.39 0.0155
hsa-miR-513a-5p 1976.22 351.60 -2.49 0.0277
hsa-miR-508-5p 780.43 125.31 -2.64 0.0150
hsa-miR-1296-5p 20.71 2.79 -2.89 0.0134
hsa-miR-508-3p 7454.42 867.43 -3.10 0.0232
hsa-miR-514a-3p 2596.72 273.98 -3.24 0.0146
hsa-miR-509-5p 396.49 36.52 -3.44 0.0267
hsa-miR-514a-5p 227.58 17.64 -3.69 0.0056
hsa-miR-146a-3p 72.94 3.49 -4.38 0.0430
July 2022 | Volume 12 | A
TABLE 2 | Top ten most differential enriched miRNAs in melanoma cells and melanoma-derived EVs.

miRNA RPM cells RPM EVs log2 fold enrichment adj. p-value

enriched in melanoma EVs
hsa-miR-1246 12.88 40442.23 11.62 0.0418
hsa-miR-7704 7.54 1846.05 7.94 0.0379
hsa-miR-493-5p 4.02 292.05 6.18 0.0398
hsa-miR-369-3p 13.08 577.75 5.46 0.0349
hsa-miR-941 8.27 169.51 4.36 0.0317
hsa-miR-143-3p 108.13 1662.16 3.94 0.0353
hsa-miR-30c-1-3p 18.19 210.16 3.53 0.0468
hsa-miR-3615-3p 18.33 146.52 3.00 0.0393
hsa-miR-514a-5p 1.53 11.03 2.85 0.0375
hsa-miR-29c-3p 20.32 104.19 2.36 0.0468
enriched in melanoma cells
hsa-miR-130b-5p 739.48 391.29 -0.92 0.0342
hsa-miR-23b-5p 106.32 26.46 -2.01 0.0405
hsa-miR-3605-3p 110.25 27.41 -2.01 0.0413
hsa-miR-148a-5p 42.92 7.19 -2.58 0.0406
hsa-miR-1285-3p 8.54 n.d. n.c. n.c.
hsa-miR-548a-3p 15.34 n.d. n.c. n.c.
hsa-miR-3176-3p 28.49 n.d. n.c. n.c.
hsa-miR-4458 74.81 n.d. n.c. n.c.
n.d., not detected; n.c., not calculated.
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the MIENTURNET (MIcroRNAENrichmentTURnedNETwork)
tool (Figure 5A). The network included 37 validated target genes
for these five miRNAs (Table 4). KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway analysis showed strong associations
of the identified miRNAs with several cancer entities (e.g.
gastrointestinal cancer, hepatocellular carcinoma and melanoma),
as well as various signaling pathways (e.g. EGFR, PI3K-AKT,WNT
and p53 signaling pathways) (Figure 5B). Reactome pathway
analysis enriched for apoptosis and cell death associated
Frontiers in Oncology | www.frontiersin.org 8
pathways, oncogene induced senescence and cell cycle associated
pathways, as well as signaling pathways includingWNT and PI3K/
AKT (Figure 5C). Similar pathway enhancements were found by
KEGG and Reactome analyses using target prediction based on
TargetScan, including putative targets (Figure S2). The signal
pathways found and the possible targets of the miRNA candidates
identified here, show the potential of EV-transported miRNAs to
influence cells in the tumormicroenvironment and thus topromote
tumor progression.
A B

D E

C

FIGURE 4 | Specific miRNA enrichment in melanoma cell-derived EVs. (A) Heatmap presents the hierarchical clustering of significant differential enriched miRNAs in
EVs derived from NHEMs and melanoma cells. (B) Graph shows the absolute quantification (reads per million (RPM)) of the top enriched miRNAs in melanoma-
derived EVs in comparison to NHEM released EVs. (C) Venn diagram of miRNAs enriched in melanoma cells and melanoma-derived EVs. The heatmap shows
miRNAs enriched in both, melanoma cells and EVs. (D) Validation by qRT-PCR of miRNA enrichment in EVs derived from melanoma cell lines and NHEMs.
(E) Validation of endogenous miRNA expression of NHEMs and melanoma cell lines. Box and whiskers represents median and 5 – 95 percentile of at least five
individual NHEM donors and at least two biological replicates from six different melanoma cell lines (A375, WM35, WM9, WM902B, MV3 and BLM) (**p ≤ 0.01; ***p
≤ 0.001; n.s., not significant).
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Enrichment of miR-92b-3p, miR-182-5p
and miR-183-5p in EVs Derived From
Serum of Melanoma Patients
To investigate the relevance of the identified miRNAs in
melanoma, an initial analysis was performed in a small study
cohort (Supplementary Table 1). EVs were isolated from serum
of 8 patients exclusively with advanced metastatic melanoma and
of 8 healthy donors and compared for enrichment of these
miRNA by qRT-PCR. In comparison to healthy donors, miR-
182-5p and miR-183-5p and to some extent also miR-92b-3p
were found to be significantly enriched in EVs derived from
melanoma patients (Figure 6), while miR-125b-5p and miR-
Frontiers in Oncology | www.frontiersin.org 9
221-3p showed no significant differences between healthy donors
and melanoma patients. Especially miR-183-5p was clearly
increased and showed an average enrichment of 5.9 fold
compared to the healthy donors. These results agree with the
previous in vitro analyses of this study.
DISCUSSION

The characterization of isolated EVs derived from normal
melanocytes and melanoma cell lines showed high similarities
for marker expression and size distribution, while the amount of
TABLE 3 | miRNAs significantly enriched in melanoma-derived EVs compared to NHEM originated EVs.

miRNA RPMNHEM EVs RPMmelanoma EVs log2 foldenrichment adj. p-value

hsa-miR-181c-5p n.d. 72.44 n.c. n.c.
hsa-miR-7704 22.46 1846.05 6.36 0.0285
hsa-miR-941 8.88 169.51 4.26 0.0340
hsa-miR-17-3p 26.68 110.37 2.05 0.0382
hsa-miR-140-5p 241.76 652.42 1.43 0.0499
hsa-miR-125b-5p 4714.05 12372.22 1.39 0.0280
hsa-miR-221-3p 9615.86 20975.48 1.13 0.0271
hsa-miR-374a-5p 332.45 711.86 1.10 0.0458
hsa-miR-24-3p 10575.16 22418.29 1.08 0.0325
hsa-miR-183-5p 1767.06 3678.38 1.06 0.0379
hsa-miR-92b-3p 1770.45 3612.54 1.03 0.0141
hsa-miR-30a-3p 672.22 1365.21 1.02 0.0380
hsa-miR-584-5p 924.33 1794.89 0.96 0.0455
hsa-miR-182-5p 2785.11 4923.31 0.82 0.0290
hsa-miR-99b-5p 3726.77 5271.35 0.50 0.0135
hsa-miR-574-5p 782.71 1078.30 0.46 0.0386
July 2022 | Volume 12 | A
n.d., not detected; n.c., not calculated.
A B

C

FIGURE 5 | Functional networks and biological pathways of melanoma cell and EV enriched miRNAs. (A) Regulatory network based on miRTarBase validated
miRNA target prediction. KEGG (B) and Reactome (C) pathway enrichments for mentioned miRNAs.
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TABLE 4 | Validated miRNA targets of melanoma cell and EV enriched miRNAs based on miRTarBase.

miRNA-target miRTarBase

has-miR-125b-5p hsa-miR-221-3p hsa-miR-182-5p hsa-miR-183-5p hsa-miR-92b-3p

EIF4EBP1 BMF FOXO3 FOXO1 CDKN1C
BAK1 FOXO3 FOXO1 PDCD4 DKK3
BMF CDKN1C PDCD4 LRP6 PTEN
E2F3 TMED7 BCL2 DKK3 RECK
BBC3 DDIT4 PFN1 GSK3B
BCL2 ARIH2 SNAI2 SNAI2
ETS1 BBC3 RECK SMAD4
DGAT1 ICAM1 SMAD4 RECK
SMAD4 PTEN PTEN UVRAG
EIF5A2 ETS1 GSK3B
PIK3CD RECK TIAM1
GSS MMP2 UQCRFS1
IKZF2 MBD2
VPS4B
VPS51
MMP2
IGF1R
DKK3
PODXL
Frontiers in Oncology | www.frontiers
in.org
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FIGURE 6 | Enrichment of miR-92b-3p, miR-182-5p and miR-183-5p in EVs derived from serum of melanoma patients. Box and whiskers (median and 5 – 95
percentile) represents results of qRT-PCR analyses of indicated miRNAs in EVs derived from serum of individual healthy donors (n = 8) or individual melanoma
patients (n = 8) (*p ≤ 0.05; **p ≤ 0.01; n.s., not significant).
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released EVs was increased for the melanoma cell lines compared
to melanocytes. This difference was most prominent for the
metastatic cell lineWM9. Previous studies revealed that secretion
of EVs by several cancer cells is enhanced compared to normal
cells (34, 35). A possible reason for higher release of EVs by
malignant cells could be an increased expression and activity of
regulators of EV secretion. As such this has been shown in some
cancers for e.g. ESCRT components, syntenin, heparanase, small
GTPases (such as Rab27A and Rab27B), SNARE proteins (such
as SNAP23) (36–39).

By next generation sequencing analysis we revealed that
melanoma cell lines and melanocytes showed a very different
endogenous miRNA expression profile. miRNA load showed a
stronger correlation between EVs derived from melanocytes and
EVs from melanoma cells, than EVs with their corresponding
cells. The enrichment of certain miRNAs in EVs compared to
cytosol indicates that loading of EVs with miRNAs is not just a
stochastic distribution, but must be the result of actively
regulated processes. This is further confirmed when comparing
those miRNAs which are most highly expressed in the cells with
their concentration in corresponding EVs (e.g. miRNA let-7a-5p
was highly expressed in melanoma cells, but only lowly
accumulated in EVs of these cells) (Figure 3C, D). Similar
results have also been reported in canine melanoma, showing
different frequencies of individual miRNAs in cells and EVs (40).

Some mechanisms for selective loading of miRNAs to EVs
have recently been suggested. As such, RNA binding proteins
[e.g. A2B1 (41, 42), Ago2 (43), YBX1 (44, 45), MEX3C (46),
MVP (47), HNRNPA1 (48) or SYNCRIP (49)] were shown to
regulate sorting of specific miRNAs into EVs. Besides, membrane
proteins CAV1 (50), nSMASE2 (51) and VPS4A (52) contribute
to miRNA loading into EVs. In addition, the autophagy
associated LC3-conjugation machinery mediates miRNA
abundance in EVs, by specific loading of RNA-binding
proteins into EVs (53). Several factors involved in the loading
machinery of EVs have already been described, but more
research needs to be done to understand the specific selection
of components for individual EVs.

Assuming that miRNAs are selectively loaded into EVs, the
miRNA cargo in EVs derived from melanocytes and melanoma
cells was compared to identify melanoma specific enrichment of
miRNAs. 24 miRNAs were significantly enriched in melanocyte-
derived EVs, while in EVs from melanoma cells 16 miRNAs
were increased.

These results are consistent with a previous report on
malignant melanoma, comparing miRNA profiles in exosomes
from HEMa-LP and A375 cell line (54). It identified nine
miRNAs (miR-574-5p, miR-584-5p, miR-140-5p, miR-221-3p,
miR-182-5p, miR-92b-3p, miR-17-3p, miR-125b-5p and miR-
30a-3p) to be enriched in exosomes derived from A375, these
findings being consistent with the significantly accumulated
miRNAs in EVs from melanoma cells in our report. The
limitation of that study was the comparison of melanocytes
from only one donor with only one cell line (A375). In
contrast, we compared three different melanoma cell lines
representing melanoma in different progression stages with
Frontiers in Oncology | www.frontiersin.org 11
human primary melanocytes from three different donors,
which better eliminates inter-individual differences.

In order to find general melanoma-specific miRNAs that are
enriched in EVs of most malignant melanomas, miRNAs were
searched that are more strongly expressed in melanoma cells and
more enriched in melanoma EVs than in melanocytes and their
EVs. This approach identified six miRNAs (miR-17-3p, miR-
92b-3p, miR-125b-5p, miR-221-3p, miR-183-5p and miR-182-
5p). Because miR-17-3p had very low expression values, it was
excluded for further analysis. For the miRNAs: miR-92b-3p,
miR-125b-5p, miR-183-5p and miR-182-5p significant higher
levels in melanoma cells and their derived EVs could be validated
by qRT-PCR (Figure 4). These results confirm our NGS data,
although the differences in the qRT-PCRs appear to be stronger,
which could be explained by different normalization methods
and additionally included melanoma cell lines. Our findings also
agree with a study, showing that miR-182-5p as well as miR-183-
5p was strongly upregulated in cells originated from primary
melanoma tumors compared to normal melanocytes (55).

One of the most abundant miRNAs in EVs derived from
melanoma cells was miR-24-3p. Although it was found to be
two-fold enriched in melanoma cell-derived EVs compared to
EVs released from NHEMs, it was not expressed at a higher level
in melanoma cells compared to NHEMs. For this reason, we
excluded this miRNA from further analyses in this study.
Patients with oral squamous cell carcinoma also showed
accumulation of miR-24-3p in salivary exosomes compared to
healthy donors. In contrast to our study, oral squamous cell
carcinoma tissue also showed an enrichment for miR-24-3p
compared to peritumoral tissue (56). Furthermore, the
enrichment of miR-24-3p could be found in EVs derived from
nasopharyngeal carcinoma cell lines and patient sera (57), head
and neck cancer cell lines (58) and classical Hodgkin’s
lymphoma (59).

Functional analyses of miR-24-3p in the mouse melanoma
cell line B16F10 showed that it acts as a tumor suppressor by
inhibiting migration, invasion and proliferation by directly
targeting p130Cas (60).

KEGG and Reactome pathway analysis for the miRNAs that
met our selection criteria showed associations with different
cancer entities and cancer signaling pathways (Figure 5).

For these in silico analyses of functional networks and
biological pathways miRTarBase was used because it accesses
experimentally validated miRNA targets. This procedure offers a
more precise generation of the biological function of the respective
miRNAs than the use of TargetScan, a procedure based on
putative target prediction by sequence complementarity.

When comparing our results with data obtained from other
malignant tumors, one finds that the miRNAs identified here, are
also enriched in EVs derived from cancer cells of other entities
(Table 5). These results further indicate that the miRNAs
contained in EVs could present liquid biopsy markers in
different cancer entities.

With regard to predicted or proven functions and their
potential in the tumor microenvironment, the six miRNAs
identified here, were mainly linked to angiogenesis when
July 2022 | Volume 12 | Article 935816
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transported by cancer cell-derived EVs. Several functional
studies in different entities have shown that miR-183-5p, miR-
182-5p, miR-221-3p and the miR-17-92 cluster induce
angiogenesis when taken up by epithelial or endothelial cells.
This was achieved through the inhibition of factors as FOXO1
(71), CMTM7 (69), VASH1 (17), THBS2 (73), SOCS3 (75),
PIK3R1 (76), TSP-1 and CTGF (77).

Some of the identified miRNAs in addition have the potential
to mediate the function of tumor associated immune cells, either
stimulating the inflammatory response or suppressing them. We
reported earlier that miR-125b-5p delivered by melanoma cell
line-derived EVs into macrophages induces a pro-inflammatory
phenotype by targeting LIPA (9). In addition, it was shown that
in gd T-cells miR-125b-5p mediates downregulation of activation
and cytotoxicity (78). Further, miR-221-3p drives M2
macrophages to a pro-inflammatory function by directly
targeting JAK3 in rheumatoid arthritis (79). Similarly,
exosomal miR-183-5p derived from mouse breast cancer cells
induces a pro-inflammatory cytokine profile in macrophages,
contributing to tumor progression in a mouse model (80).

Taken together, these results demonstrate the potency of
miRNAs transported by cancer cell-derived EVs to mediate a
variety of cells (e.g. macrophages) within the tumor
microenvironment to drive tumor progression.

Besides their biological functions, there is consensus that
some miRNAs transported by EVs, can be used as diagnostic
or prognostic liquid biopsy markers for melanoma (81). We
therefore performed qRT-PCR analyses for the previous
validated miRNAs and found the miR-92b-3p, miR-182-5p
and miR-183-5p to be significantly enriched in EVs derived
from melanoma patients in comparison to healthy donors
(Figure 6). These miRNAs have not been yet described as
potential liquid biopsy markers in melanoma. It is noteworthy
that in our cohort, even despite the small sample size, miR-183-
5p were higher in each patient than in any control. Due to the
limitations in the cohort of patients analyzed, such as the age
differences in the groups and the small number of samples, the
Frontiers in Oncology | www.frontiersin.org 12
results obtained are only to be seen as an indication and should
therefore be validated in an additional cohort. To our knowledge,
miR-182-5p and miR-183-5p have only been reported as
potential exosomal biomarkers in glioma (20, 70), while
exosome embedded miR-92b-3p is described as biomarker in
synovial sarcoma (21) and gastric cancer (64).

So far, the number of studies on EV embedded miRNAs of
melanomas as biomarkers is limited. miR-1180-3p was reported
as potential exosomal diagnostic marker, but in contrast to the
miRNAs reported here, this miRNA was shown to be reduced in
melanoma patients (72). The miR-222 was proposed as a
diagnostic marker in melanoma, but it has not been analysed
in patient-derived EVs, but only in cell lines derived from
patients (82). The miR-17, miR-19a, miR-21, miR-126, and
miR-149 were found to be enriched in plasma-derived
exosomes from melanoma patients (83), but since were
isolated directly from plasma by ExoQuick reagent without
excluding larger vesicles or free plasma circulating RNAs, the
detected concentrations of miRNAs may not all reproducibly
originate only from EV as defined in our study.

Our results support the hypothesis that miRNAs derived from
EVs can serve as prognostic or diagnostic liquid biopsy markers
in melanoma. We identified EV-derived miRNAs and showed
that those miRNAs, which were enriched in melanoma cells and
EVs, are also found elevated in serum-derived EVs of patients
with metastatic melanoma, but not in healthy subjects.

Its verification by clinical trials is beyond the scope of this
study, but provides a worthwhile outlook.

For miR-125b-5p a significant enrichment could only be
shown in EVs derived from melanoma cell lines, but not for
melanoma patients. A possible explanation for these contrasting
results could be, that the patients analysed here, mostly had an
advanced melanoma, while miR-125b-5p accumulation in EVs
was reported to be reduced in advanced melanoma stages (65).

Albeit, high levels of serum circulating miR-221-3p were
examined as new prognostic marker in melanoma patients
(84), here no different enrichment of miR-221-3p could be
TABLE 5 | miRNAs significantly enriched in melanoma cells and EVs are also enriched in EVs derived from other cancer entities.

EV enriched miRNA cancer entity references

hsa-miR-17-3p ovarian cancer cells
lung cancer patients

(61)
(62, 63)

hsa-miR-92b-3p lung cancer patients
synovial carcinoma cell lines and patients
gastric cancer patients

(16)
(21)
(64)

hsa-miR-125b-5p melanoma cells
prostate cancer cell lines
chemoresistant diffuse large B-cell lymphoma patients

(9, 54, 65, 66)
(67)
(68)

hsa-miR-182-5p breast cancer cells
glioblastoma patients

(69)
(70)

hsa-miR-183-5p glioma patients
colorectal cancer cells
prostate cancer cells
melanoma patients

(20, 70)
(71)
(67)
(72)

hsa-miR-221-3p cervical carcinoma cells
colorectal cancer cells
oral squamous cell carcinoma cells

(17, 73, 74)
(75)
(76)
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found in EVs of melanoma patients and healthy donors. Taken
together, this indicates that there are strong differences in the
significance of potential biomarkers depending on origin.

The here identified miRNAs enriched in melanoma EVs as
well as in melanoma cells, are functionally associated with
different tumor entities and signaling pathways involved in
cancer progression. Furthermore, three miRNAs (miR-92b-3p,
miR-182-5p and miR-183-5p) could be confirmed enriched in
EVs derived from serum of melanoma patients. Taken together,
the accumulation of cancer associated miRNAs in melanoma-
derived EVs, even in patients, emphasizes their potential as novel
prognostic or diagnostic liquid biopsy markers.
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