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Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an
atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical
age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies,
however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes
neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical
aspects of brain maturation using 3-T proton magnetic resonance spectroscopy (1H-MRS) with single voxel in the medial
prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-
socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated
significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F¼ 4.83, P¼ 0.033). The low
NAA level showed a significant positive correlation with advanced age in the TD group (r¼ � 0.618, P¼ 0.001), but was not
evident among the ASD individuals (r¼ 0.258, P¼ 0.223). Fisher’s r-to-z transformation showed a significant difference in the
correlations between the ASD and TD groups (Z¼ � 3.23, P¼ 0.001), which indicated that the age–NAA relationship was
significantly specific to people with TD. The current 1H-MRS study provided new evidence that atypical age-related change of
neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood.
Translational Psychiatry (2012) 2, e178; doi:10.1038/tp.2012.108; published online 23 October 2012

Introduction

Atypical growth trajectory has been recognized in individuals
with autism spectrum disorders (ASDs), both at the behavioral
and neural levels. Previous meta-analyses have repeatedly
reported that overall brain size is slightly reduced at birth,
dramatically increases within the first year of life, but then
gradually plateaus into adulthood.1,2 It has been suggested
that there is a dynamic curve of atypical trajectory during the
first year of life, and the latest longitudinal studies have shown
different developmental curves in brain structure between
infants with ASDs and typical development (TD) during this
period.3,4 The aberrant brain growth has been shown to occur
in many brain areas, but particularly in the frontal lobe.1,5,6

Several studies employing neuroimaging have shown that
among many other functions,7,8 the PFC is critically important
in mentalizing,9 empathy,10 irony comprehension,11 social
judgment12 and self-referencing,13,14 which are impaired and
constitute a core feature of ASDs.

Although the period of dynamic change in infantile autistic
brain has been investigated so far, cumulative data from
structural and functional neuroimaging studies have demon-
strated that those atypical age-related changes expand

beyond childhood. Emerging studies that recruited adoles-
cents with ASDs showed different aging effects on brain
structure between subjects with ASDs and TD.15 Further-
more, several studies have demonstrated atypical age-related
changes in brain structure and function, especially in the
frontal lobe16–18 and tract involving the frontal lobe,19 even
during adulthood in people with ASDs. Although these atypical
age-related changes at the neural level may constitute
substrates for lifelong behavioral difficulty in people with
ASDs,20 such changes during adulthood have rarely been
reported on brain neurochemical aspects.

1H-magnetic resonance spectroscopy (1H-MRS) is a non-
invasive neuroimaging technique that estimates specific
chemical metabolite measures in vivo.21 Although what the
measured metabolite levels reflect is an area of debate,
previous studies have used 1H-MRS to quantify glutamine/
glutamate (referred to collectively as ‘Glx’); N-acetylaspartate
(NAA), a marker of neuronal density, plasticity and function;
choline-containing compounds (Cho), a measure primarily
reflecting the constituents of cell membranes; creatine and
phosphocreatine (Cre), a measure of cellular energy meta-
bolism; and myo-inositol (mI), a major osmolite precursor
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for phosphoinositides involved in the second messenger
system.22,23

Consistent with atypical age-related brain morphological
change in people with ASDs, our recent meta-analysis of 1H-
MRS studies involving ASD individuals also robustly demon-
strated age-related diminishment of NAA reduction in the
frontal lobe.24 The meta-analysis showed a significant frontal
NAA reduction in groups with ASDs compared with TD during
childhood, and further demonstrated a significant linear
correlation between older age and a smaller magnitude of
the frontal NAA decrease. Thus, the meta-analysis showed no
significant difference in NAA level between ASD and TD
subjects during adulthood. However, because of a lack of
sufficient number of studies recruiting adults with ASDs in the
meta-analysis, it remains unclear whether this atypical
relationship between NAA and age continues during adult-
hood. In contrast, in people with TD, age-dependent NAA
reduction in the frontal lobe during adulthood has been
revealed by a number of cross-sectional 1H-MRS studies25–29

and a meta-analysis of 1H-MRS studies.30

Taken together, it was expected that adults with ASD would
show atypical age–NAA relationship (that is, lack of age-
related decrease in frontal NAA) in the PFC. As a result, an
absence of decrease, or even increase, in prefrontal NAA
level would be predicted in adults with ASD compared with the
matched TD controls, while previous studies have demon-
strated a significant decrease in the prefrontal NAA of children
with ASD.24 To test these hypotheses with minimizing
potential confounders, the present study utilized 3-T 1H-
MRS to examine differences in the medial prefrontal NAA
levels between non-medicated high-functioning adult males
with ASD and age-, IQ- and parental-socioeconomic (SES)-
background-matched TD male subjects. Then, we examined
correlations between the medial prefrontal NAA levels and
age in the diagnostic groups separately. The statistical
significance of diagnostic difference in the correlation coeffi-
cients was further examined.

Materials and methods

Participants. The inclusion and exclusion criteria, diag-
nostic protocols and clinical assessments of study partici-
pants were the same as our previous study.12 In all, 24 adult
males (mean age¼ 29.5, range¼ 20–44 years) with a
clinical diagnosis of high-functioning ASDs were recruited
from the outpatient services of The University of Tokyo
Hospital. The ASD participants met the following criteria to
be included: no psychotropic medication and IQ 480. The
ASD participants were diagnosed according to the strict
criteria included in the Diagnostic and Statistical Manual-
Revision IV, requiring consensus based on more than 2
months of longitudinal follow-up examinations by at least
two trained child–adolescent psychiatrists with more than 10
years of clinical experience (HY and NK). The diagnoses
were further confirmed using the validated Japanese
version of Autism Diagnostic Interview-Revised (ADI-R) by
another trained child adolescent psychiatrist (HK).31,32 Of
the participants not reaching the threshold in the ADI-R
social domain, the Childhood Autism Rating Scale33 was

employed to confirm the diagnosis of ASDs. Previous
studies have suggested that individuals classified as autistic
according to both ADI-R and Childhood Autism Rating Scale
had significantly lower IQ than those classified with the
Childhood Autism Rating Scale only.34 It is reasonable that
the current high-functioning ASD participants who did not
meet the ASD criteria based on ADI-R, which was rated
based on descriptive information by caregivers, could be
classified as ASDs based on the Childhood Autism Rating
Scale, which was rated by clinicians based on direct
observations on behavior.35 All of the ASD participants
were interviewed by a trained psychiatrist (HY) to screen for
the presence or absence of comorbid neuropsychiatric
disorders using the Structured Clinical Interview for Diag-
nostic and Statistical Manual-Revision IV axis I disorder. In
all, 25 age-, IQ- and parental-SES-matched, TD adult
males were employed as controls. The ethics committee
of The University of Tokyo Hospital approved this study (No.
397). After a complete explanation of the study to the
subjects, written informed consent was obtained from every
participant.

The exclusion criteria for both groups were: current or past
neurological comorbidity, traumatic brain injury with any
known cognitive consequences or loss of consciousness for
more than 5 min, a history of electroconvulsive therapy and
substance abuse or addiction. An additional exclusion
criterion for the control group was a history of psychiatric
disease in the subjects themselves or a family history of axis I
disorder in their first-degree relatives.

To detect the diagnostic difference in age–NAA relation-
ship, power was based on previous MRS studies comparing
correlation between NAA level in volume of interest (VOI) at
the similar location and its functional or behavioral substrates
of adults with ASDs with those with TD.36,37 Since the effect
size q for difference between Pearson’s correlation coefficient
of these previous studies ranged from 0.75 to 1.26, the
required total sample sizes for 80% power at a 0.05 level of
significance ranged from 26 to 62. Thus, in the current study,
we collected data from more than 44 individuals, which is the
median of the calculated range.

Questionnaire measures. Handedness was determined
using the Edinburgh Handedness Inventory,38 with a
laterality index of 40.5 used as the cutoff for right-
handedness. Participants whose laterality index score
ranged from � 0.5 to 0.5 were defined as mixed-handed-
ness. All of the ASD and TD participants completed valid
Japanese translations39 of the 50-item Autism-Spectrum
Quotient.40 The maximum total score of Autism-Spectrum
Quotient was 24 in the controls, while the cutoff threshold
was defined as 34 points.40 The IQ of the TD controls was
estimated using the Japanese version of the National Adult
Reading Test.41 Although the National Adult Reading Test
can represent the full IQ in TD participants, it is problematic
for ASD participants because of their well-known imbalanced
intellectual abilities. Therefore, IQ was evaluated using the
full scale of the Wechsler Adult Intelligence Scale Revised
Japanese version42 for participants with ASDs. The SES of
participants and their parents were assessed using the
Hollingshead Scale.43
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MRI acquisition. Magnetic resonance imaging (MRI) data
were obtained using a 3-T scanner (GE Signa HDxt,
Waukesha, WI, USA). All the participants from both the
diagnostic groups were scanned during the same period,
between January 2010 and November 2011. There was no
upgrade of MRI scanner or software version in this period. An
8-channel brain-phased array coil was used for both MRI and
1H-MRS. A sagittal localizer scan was obtained first, followed
by the axial T2-weighted images (echo time (TE)¼ 82.32 ms,
repetition time (TR)¼ 4400 ms, field of view¼ 240� 240 mm2,
matrix¼ 256� 256, slice thickness¼ 2.5 mm, number of axial
slices¼ 62) for positioning the voxel of interest (VOI). Three-
dimensional fast-spoiled gradient recalled acquisition with
steady state (TE¼ 1.94 ms, TR¼ 6.80 ms, field of view ¼
240� 240 mm2, matrix¼ 256� 256, flip angle¼ 201, slice
thickness¼ 1.0 mm, number of axial slices¼ 176) was acquired
for tissue segmentation correction. Trained neuroradiologists
(OA, WG, HS, MM, MK, HT or YN) evaluated the MRI scans
and found no gross abnormalities in any of the subjects.

1H-MRS acquisition. The stimulated echo acquisition mode
(TR¼ 3000 ms, TE¼ 15 ms, mixing time¼ 13.7 ms, 128
water-suppressed and 8 water-unsuppressed averages)
was applied to obtain proton MR spectrum. The definition
of positioning of the VOI was based on our previous study.44

Briefly, in the mid-sagittal slice based on the T2-weighted
image, the VOI (20� 20� 20 mm3) was placed closest to the
most anterior part of the genu of the corpus callosum with the
center of the VOI, containing predominantly the gray matter
of the medial PFC (mainly anterior cingulate and paracingu-
late gyri) bilaterally (Figure 1a).

Spectrum quantification. All spectra were quantified with
an LCModel (ver. 6.1-4F). The raw spectral data were read
into an LCMgui by which spectrum processing were
performed automatically. Based on the comparison of
in vitro spectra with its measurements analyzed with the
LCModel basis set, the absolute levels for 17 metabolites,
such as NAA, N-acetylaspartylglutamate, alanine, g-amino-
butyric acid, aspartate, choline, creatine (total), glutamate,
glutamine, glutathione, glycerophosphocholine, glycine,
myo-inositol, scyllo-inositol, lactate, phosphocholine and
taurine, were estimated from in vivo spectra. Among the 17
metabolites, the current study focused on NAA, Cre, Glx
(glutamine plus glutamine), mI and Cho (glycerophosphocho-
line plus phosphocholine). Representative spectra of ASD
and TD are shown in Figures 1b and c.

Spectrum quality. All of the metabolite spectra that showed
%s.d.420% were excluded from the analysis. In addition,

Figure 1 Location of volume of interest (VOI) and representative spectra of 3-T proton magnetic resonance spectroscopy (1H-MRS). (a) A T2-weighted brain image in
orthogonal slices in a control subject. The square indicates the VOI (20� 20� 20 mm3) voxel in the medial prefrontal cortex, including mainly the pregenual anterior cingulate
and paracingulate gyri. (b and c) Representative medial prefrontal 1H-MRS spectra of autism spectrum disorder (ASD) subject (b) or typical development (TD) subject (c) as fit
by the LCModel.
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full-width at half-maximum o0.16 p.p.m. and signal-to-noise
ratio (S/N) 43 were used as determinants of spectrum
quality required for inclusion. For all the participants, all five
metabolites satisfied the criteria for spectrum quality.

Tissue segmentation. Three-dimensional fast-spoiled gra-
dient recalled acquisition with steady state images were used
to calculate the volumes of different tissue types (gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF)) by
the new segmentation tool of SPM8 (www.fil.ion.ucl.ac.uk/
spm). By the tag information of the header of each spectrum
file, the center point of VOI was identified. Then, the VOI was
reconstructed in the fast-spoiled gradient recalled acquisition
with steady state images by tracing the center point. Using
SPM8, we co-registered T2-weighted and three-dimensional
fast-spoiled gradient recalled acquisition with steady state
images, and calculated the volume of GM, WM and CSF.
Subsequently, to obtain tissue-contamination-corrected
metabolite intensities, each metabolite value was corrected
for the CSF content of the VOI using the formula: corrected
level¼ uncorrected level/(1�C), where C was the fractional
CSF content of the VOI.45

Statistical method. All statistical analyses were conducted
using SPSS 18.0 (SPSS, Chicago, IL, USA). Demographic
variables, including age, height, body weight, self-SES,
parental-SES, handedness, total Autism-Spectrum Quotient
score and IQ, volumes of each tissue component within the
VOI (GM, WM and CSF volumes) and indices representing
MRS quality (that is, full-width at half-maximum, %s.d. and S/N
ratio), were compared using independent two-tailed t-tests
between ASD and TD subjects. To assess strictly the effect of
potential confounders or MRS quality control, significance level
was set at Po0.05 without correction for multiple comparisons.

For the group comparison of metabolite levels, we
employed multivariate analyses of covariance, treated cor-
rected level of each metabolite as a dependent variable (NAA,
Cre, Glx, mI and Cho) and diagnosis as a main factor. As the
CSF components had already been accounted for by
calculating the corrected level, GM and WM components
were additionally treated as covariates in the multivariate
analyses of covariances to account for the significant
difference in the GM within VOI and WM tissue water content
between ASD and TD subjects.46,47 The level of statistical
significance was defined as Po0.05. As we have a priori
hypothesis that NAA level in ASDs is deviated from that in TD
in adulthood, we did not apply correction for multiple
comparisons.

Associations between NAA level and age were analyzed
with Pearson’s correlation analysis in ASD and TD groups,
respectively, and differences in correlations between groups
were examined with the Fisher r-to-z transformation. The
significance was reported when P-value was o0.05.

The associations between clinical scores, such as ADI-R
scores and NAA levels, which showed significant effect of
diagnosis, were explored for significance using Pearson’s
correlation coefficient in the ASD subjects. The significance
level was set at Po0.05. In addition, Pearson’s correlation
coefficient between the demographical information (height,
body weight, self-SES, parental-SES and IQ) and the NAA

levels was also calculated in each group separately. We
considered Po0.05 as denoting statistical significance to
detect effects of potential confounders.

Results

Group difference in demographic characteristics. There
were no significant differences between the ASD and control
groups in age, body weight, parental-SES and IQ, although
the ASD group had significantly lower self-SES and shorter
height than controls. The ASD subjects had significantly
higher GM (P¼ 0.006) and lower CSF (P¼ 0.003) contam-
inations within the VOI (Table 1).

Diagnostic differences in spectral quality and metabolite
level. The quality of the spectra obtained from 1H-MRS was
good, with a mean (s.d.) S/N ratio reported by the LCModel
at 9.96 (2.85) and 11.12 (2.67) in the ASD and TD groups,
respectively. Full-width at half-maximums recorded by the
LCModel in subjects with ASDs and TD were 0.075 (0.003)
and 0.064 (0.019), respectively. %s.d.’s reported by the
LCModel in individuals with ASDs and TD were 4.04 (0.93)
and 4.67 (1.20) in Cre, 5.84 (1.65) and 6.46 (1.61) in mI, 5.08
(2.23) and 5.08 (1.79) in NAA, 4.08 (1.22) and 4.04 (0.75) in
Cho and 7.40 (2.04) and 7.46 (1.56) in Glx, respectively.
Independent t-tests demonstrated that there were no
significant differences in spectral quality between the ASD
and TD groups in S/N ratio (P¼ 0.147) and full-width-at-half-
maximum (P¼ 0.107). With regard to %s.d.’s, independent t-
test demonstrated no significant difference in mI (P¼ 0.192),
NAA (P¼ 0.995), Cho (P¼ 0.896) and Glx (P¼ 0.911).
Conversely, independent t-test showed a significant differ-
ence in %s.d. of Cre between ASD individuals and TD
subjects (P¼ 0.047).

The multivariate analyses of covariances controlling the
effect of structural differences between the ASD and TD
subjects showed that the medial prefrontal NAA level was
significantly higher in the ASD individuals than in the TD
subjects (F¼ 4.832, P¼ 0.033). Moreover, the statistical
conclusions did not change when the mixed- and/or left-
handed subjects were excluded from the analysis. No
significant difference was found in the other metabolite
measures (Table 2).

Diagnostic differences in the relationships between age
and NAA levels. A significant negative correlation between
age and NAA levels was demonstrated in the TD group
(r¼ � 0.618, P¼ 0.001), whereas no significant correlation
between these indices was shown in the ASD individuals
(r¼ 0.258, P¼ 0.223). These correlations were significantly
different between the ASD and TD groups (Z¼ � 3.23,
P¼ 0.001), indicating that the typical relationship between
NAA level and age was absent in the ASD individuals
(Figure 2). Furthermore, these statistical conclusions were
totally preserved when the mixed- and/or left-handed
subjects were excluded from the analysis.

Correlations with clinical indices. No significant correla-
tion between the NAA and the ADI-R scores was found in the
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ASD group. There was also no significant correlation
between the NAA level and height, body weight, SES,
parental-SES and IQ.

Discussion

The present study, utilizing 3-T 1H-MRS, demonstrated
significantly high medial prefrontal NAA in the non-medicated
high-functioning adult males with ASDs compared with the
demographically matched TD male subjects. Of note, while a
significant negative correlation between age and medial
prefrontal NAA levels was found in the TD group, such a
correlation was absent in the ASD group. The difference in
age–NAA relationships between the ASD and TD groups was
reached at the statistically significant level.

The currently found atypical age-related NAA change in
adult ASD subjects is in line with previous structural and
functional imaging and post-mortem studies, which have

reported different age-related trajectory in brain maturation
between ASDs and TD during adulthood.16,17,19,48–50 In
particular, Murphy and his co-researchers, by their well-
designed sequential studies, have repeatedly demonstrated
an atypical relationship between age and brain structure, such
as whole-brain GM volume,49 cortical volume and cortical
thickness (CT),17 hippocampus volume50 and streamline
measured by diffusion tensor imaging,19 in adolescence and

Table 1 Demographic characteristics of the participants

Subjects with ASD (N¼ 24) TD controls (N¼ 25) T-test

Variables Mean s.d. Mean s.d. t-Value P-value

Age (range) (years) 29.5 (20–44) 6.9 29.4 (20–41) 6.2 �0.10 0.923
Height (cm) 170.3 5.0 174.0 6.1 2.29 0.027
Body weight (kg) 67.6 13.2 67.6 10.5 0.00 0.999
SESa 2.8 1.1 1.6 0.5 �5.13 0.000
Parental-SESa 2.3 0.7 2.2 0.4 �1.08 0.284
Handedness: right/mixed/left 19/3/2 25/0/0 w2 0.032

IQ
FIQ 104.2 11.6 108.5 7.5 1.53 0.134
VIQ 111.3 14.0
PIQ 91.3 14.6

HFA**/Asperger/PDD-NOS 24/1/0

Autism Diagnostic Interview-Revised
Social 15.0 5.9
Communication 12.4 3.3
Repetitive 4.7 2.3

Autism spectrum quotient 39.0 5.2 15.2 5.0 � 15.76 0.000
Gray matter volume within VOI 5.2 0.3 4.9 0.4 �2.87 0.006
White matter volume within VOI 0.6 0.3 0.6 0.3 �0.25 0.801
Cerebrospinal fluid within VOI 2.2 0.3 2.5 0.3 3.14 0.003

Abbreviations: ASD, autism spectrum disorder; FIQ, full IQ; HFA, high-functioning autism; IQ, intelligence quotient; PDD-NOS, pervasive developmental disorder not
otherwise specified; PIQ, performance IQ; SES, socioeconomic status; TD, typical development; VIQ, verbal IQ; VOI, volume of interest.
aSocioeconomic status, assessed using the Hollingshead index. Higher scores indicate lower status.

Table 2 Metabolite concentrations of participants

MANCOVAs

Metabolites
d.f. Effect

size (f)
F-value P-value

N-acetylaspartate 47 1.26 4.83 0.033
Creatine 47 0.71 0.33 0.570
Choline-containing compounds 47 0.73 0.39 0.534
Glutamineþglutamate 47 1.00 1.82 0.184
Myo-inositol 47 0.73 0.39 0.534

Abbreviations: MANCOVA, multivariate analyses of covariance;d.f., degrees of
freedom.
*Statistically significant after Bonferroni correction.

Figure 2 Relationships between age and N-acetylaspartate (NAA) level in the
autism spectrum disorder (ASD) and typical development (TD) subjects. Scatter
plots depicting correlations between frontal NAA levels and age of participants in
individuals with ASDs and TD. The diagnostic difference of these correlations was
statistically significant (Fisher’s r-to-z transformation; Z¼ � 3.23, P¼ 0.001).
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adults with ASDs compared with TD. Regarding functional
aspects of brain aging, a functional MRI study demonstrated
that brain activity during face processing task augments with
age in adults with ASDs, but it decreases with age in TDs, and
that the age-related increase in activity was correlated with
changes in gaze behavior and improvements in social
functioning.18 One post-mortem study demonstrated atypical
age-related change of microglial density both in GM and WM
regions of brains in subjects with ASDs compared with TD.48

Thus, there are accumulated evidences that have demon-
strated atypical brain structural and functional age-related
changes in individuals with ASDs during adulthood, which
might underlie well-established age-related autistic symptom
changes beyond childhood.51–55 The current study further
added new evidence that showed absence of age-related
frontal NAA decline in people with ASDs during adulthood.

Although what NAA reflects is an area of debate, one
possible explanation for the current findings is based on the
notion that NAA, at least partially, reflects structural aspects
such as neuron density or volume.56 As hippocampal NAA
reduction was reported to be correlated with volume reduction
in adults with TD,57 the current findings that NAA was
negatively correlated with age in TDs, but not in ASDs, are
partially concordant with a previous study that reported
significant age-related frontal cortical volume and cortical
thickness reduction in TDs, and less such relationship in the
ASD group.17 However, another well-designed study reported
that CT in the temporal and parietal lobes, but not in the frontal
lobes, was negatively correlated with age in the ASD group
but not in the TD group.15 Thus, the presence or absence of
age–CT relationship in diagnostic groups and regions of brain
are controversial among the various studies.15,17 One
potential explanation for the discrepancy is the influence of
differences in ranges of ages between the studies (that is,
ages from 12 to 24 years; Wallace et al.15 vs 10 to 60 years;
Raznahan et al.17). Although there are compelling pieces of
evidence that frontal and temporal lobes have a key role in
abnormal brain growth trajectory in ASD,16,58 abnormal
enlargement and subsequent normalization of frontal and
temporal lobes in ASDs were suggested to not occur
simultaneously.16,24,58 Thus, the two previous studies may
yield inconsistent results because of the different age range of
participants as well as different brain areas examined.

Based on the notion that NAA also reflects functional
aspects of neuronal tissues, one potential interpretation for
the relationship between age and NAA is the age-related
change of mitochondrial function. As NAA is synthesized from
aspartate and acetyl-coenzyme A in mitochondria of neurons,
and inhibitors of the mitochondrial respiratory chain decrease
NAA levels, NAA has also been recognized as a marker of
mitochondrial activity.59,60 A recent meta-analysis demon-
strated that biomarkers of mitochondrial dysfunction, such as
lactate, pyruvate, carnitine and ubiquinone, were significantly
deviated in individuals with ASDs from those with TD, and that
the values of some of these markers correlated with autistic
symptom severity.61 In addition, prevalence of mitochondrial
disease was shown to be much higher in ASD (approximately
5%) than in TDs (o0.01%).61 Post-mortem studies have
shown that mitochondrial respiratory chain activity was
increased in brains of ASDs compared with TD, which may

result in an increase of NAA).62,63 Overall, this evidence
supports the idea that mitochondrial dysfunction is associated
with ASDs (reviewed in Rossignol and Frye).61 The concept of
aging in mitochondrial function in TD individuals is well
established by previous studies.64 Taken together, age-
related NAA reduction in TD subjects can reflect age-related
decline of mitochondrial function, and ASD individuals may
show atypical age-related change in frontal NAA levels due to
dysfunctional mitochondria.

The current results seem to be at least partially different
from one previous 1H-MRS study, which revealed age-related
NAA reduction in the amygdala–hippocampus complex in
children and adults with ASDs but not in TD.37 The
discrepancy in the findings between the previous and current
studies can be explained by considering the difference in age
range of the study participants. The previous study examined
the relationship between age and NAA levels in the combined
group consisting of child and adult subgroups.37 Age-related
NAA decrease in TD subjects was not found in their study
participants including children and adults. Thus, the previous
study successfully examined age–NAA relationship during a
period from childhood to adulthood, but they did not address
the age-related change of NAA during adulthood.

The current study also identified significantly high frontal
NAA levels of ASD individuals compared with the TD controls,
which is concordant with results from the previous 1H-MRS
studies that located VOIs in the similar location in adults with
ASDs.65,66 Increased NAA level can result from not only
increased synthesis but also decreased metabolism of
NAA.67 As NAA is synthesized in the mitochondria of neurons,
neurons have been recognized to contribute significantly to
NAA levels. ‘NAA trapping theory’ also suggests that NAA
may increase even with dysfunction of metabolism of
astrocytes or oligodendrocytes,67 as recent studies have
revealed that both astrocytes and oligodendrocytes are also
involved in metabolism of NAA.68 For example, patients with
Canavan’s disease, which is caused by mutations in the gene
that codes for the enzyme aspartoacylase, which is necessary
for NAA metabolism, demonstrates increased NAA without
increased neuron density.69 In addition, one experimental
study showed that intravenous ethanol infusion, which
enhances the activity of acetylaspartylase, a glial enzyme
that degrades NAA, dynamically decreases cortical NAA
measured by 1H-MRS.70 Thus, both increased NAA synthesis
(for example, increased mitochondrial function in neuron) and
decreased NAA metabolism (for example, depressed function
of glia cell) can increase NAA in adults with ASD.

Several limitations and methodological considerations
could be noted in the current study. First, though the current
study was able to address the relationship between age and
NAA measure across age span of 24 years (from 20 to 44
years), which is too wide to conduct a longitudinal study, the
current cross-sectional study design could not directly
address the individual aging effect. Second, compared with
previous cross-sectional studies (for example, from 10 to 60
years; Raznahan et al.17 and O’Brien et al.37), the age range of
the current study participants was relatively narrow; thus, the
current findings might not be generalized beyond young
adulthood. As the pathophysiology of ASDs can be varied
among different life stages, confinement to young adulthood
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in the current study participants increased homogeneity of the
neural mechanisms underlying ASDs. However, future
studies should examine different stages during adulthood.
Third, although the single VOI model yields high S/N,71 the
current study with no control VOI could not conclude whether
this atypical age-related change in NAA is specific to medial
PFC or was general to other brain regions. Fourth, although
recruiting only male subjects in the current study decreased
the heterogeneity of study participants and increased the
reliability of results, it is unclear whether typical age–NAA
relationship in TD subjects or absent of such relationship in
ASD people can be generalized to female subjects.

In conclusion, the present findings demonstrated an
absence of typical age-related medial prefrontal NAA decre-
ment in ASD individuals during adulthood. Such an atypical
relationship between age and NAA levels might contribute to a
significant NAA increase in the ASD subjects compared with
the TD adults. Although future studies should examine
potential localization of atypical age-related NAA change
and longitudinal course of autistic NAA abnormality, the
current study has provided a new suggestion with regard to a
role of atypical age-related NAA changes in the pathophysiol-
ogy of ASD.
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