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Head direction cells fire to signal the direction in which an animal’s head is pointing. They
are able to track head direction using only internally-derived information (path integration)
In this simulation study we investigate the factors that affect path integration accuracy.
Specifically, two major limiting factors are identified: rise time, the time after stimulation
it takes for a neuron to start firing, and the presence of symmetric non-offset within-layer
recurrent collateral connectivity. On the basis of the latter, the important prediction is made
that head direction cell regions directly involved in path integration will not contain this type
of connectivity; giving a theoretical explanation for architectural observations. Increased
neuronal rise time is found to slow path integration, and the slowing effect for a given
rise time is found to be more severe in the context of short conduction delays. Further
work is suggested on the basis of our findings, which represent a valuable contribution to
understanding of the head direction cell system.
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1. INTRODUCTION
Head direction (HD) cells respond to the animal’s HD in the
horizontal plane (Ranck, 1985; Taube et al., 1990a,b). They are
influenced by both visual and self-motion (idiothetic) cues, yet
are able to sustain and correctly update firing through idiothetic
information alone (Goodridge and Taube, 1995; Taube, 1995;
Blair and Sharp, 1996; Goodridge et al., 1998; Zugaro et al., 2002;
Stackman and Zugaro, 2005), a process known as path integration
(Mittelstaedt and Mittelstaedt, 1980; Etienne and Jeffery, 2004).

Most path integration models are based on a continuous
attractor neural network (CANN) layer of HD cells. External
input shifts a packet of activity representing current HD through
the HD layer (Skaggs et al., 1995; Redish et al., 1996; Sharp, 1996;
Goodridge and Touretzky, 2000; Stringer et al., 2002; Stringer and
Rolls, 2006; Stratton et al., 2011). This external input originates
in the output of angular head velocity (AHV) cells (Bassett and
Taube, 2001; Sharp et al., 2001).

Path integration must happen at the correct speed for the sys-
tem to accurately track true HD. However, the factors governing
path integration speed have not been fully investigated. One the-
ory of how time-accurate path integration is achieved (Walters
et al., 2013) uses the idea of forming associations over axonal
conduction delays naturally found in the brain. This strengthens
connections between a starting HD and a predicted HD after head
rotation at a particular speed over a known delay. During path
integration, this connectivity shifts activity through the HD layer.

1.1. HYPOTHESIZED PATH INTEGRATION MECHANISM
The model used in this paper is based on the path integration
mechanism of Walters et al. (2013), and is pictured in Figure 1.
It consists of a ring of HD cells influencing each other via recur-
rent connectivity containing an axonal conduction delay �t. It

can operate either as a system that self-organizes through training,
or as pre-wired system with ideal connectivity. We present results
from both cases.

During training, in the case of the self-organizing network,
activity moves through the HD layer at constant velocity V. There
is a delay �t in the learning rule, such that recurrent con-
nections will be strengthened between post-synaptic cells and a
pre-synaptic cell �t in the past. The resulting asymmetric connec-
tivity profile will be such that a given pre-synaptic cell will project
most strongly to the post-synaptic cell representing the location of
the activity packet after starting at the pre-synaptic cell and mov-
ing through the HD cell layer at velocity V over a time interval
of �t.

During testing, pre-synaptic neurons influence post-synaptic
neurons via recurrent collateral connections, which contain a
conduction delay�t. Given the learned profile of connectivity,
pre-synaptic cells will drive up post-synaptic cells at the correct
location based on the training speed and the conduction delay. A
given post-synaptic cell will become active �t after its maximal
projecting pre-synaptic cell, giving a test packet speed

packet speed = (|xi − xj|)/�t

where |xi − xj| is the difference in preferred firing directions xi

and xj of post- and pre-synaptic HD cells i and j, respectively.
Given that the angular separation of cells i and j has either been
learned or pre-wired on the basis of a particular training velocity,
this velocity will be replicated during testing.

Path integration during testing has only reached a maxi-
mum of 81% accuracy in previous work utilizing this mechanism
(Walters and Stringer, 2010; Walters et al., 2013). This paper
presents a detailed investigation into factors limiting the accuracy
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of path integration speed. Here we show two potential sources of
error: neuronal rise time and symmetric recurrent connections
within neuronal layers.

1.2. ERRORS DUE TO RECURRENT CONNECTIVITY
One potential source of inaccuracy comes from within-layer sym-
metrical recurrent collateral connectivity, which has been used in
past CANNs to stabilize HD cell activity in the dark. In such mod-
els, the layer of HD cells receives two peaked weight profiles: an
offset profile representing idiothetic input required for path inte-
gration, and a non-offset profile originating from the same layer
to stabilize HD activity in the dark. However, non-offset within-
layer connectivity will reduce the effect of any offset weight profile
projecting into that layer. The resultant weight profile will be a
combination of these offset and non-offset components, and thus
a given pre-synaptic cell will project most strongly to a different
post-synaptic cell than in the case of a fully asymmetrical weight
profile. This will change the value of |xi − xj| in the above equa-
tion, which can reduce packet speed. Results demonstrating this
effect are given in Section 3.2.

1.3. ERRORS DUE TO RISE TIME
Another factor is the time neurons take to fire in response to
input, known as rise time. Rise time would mean that even with
purely asymmetrical connectivity, path integration will not be
100% accurate. The mechanism given above does not quite work,
as post-synaptic cells will not begin firing instantaneously. There
will instead be a short time lag, rise time, between when they first
receive input and when they begin firing. This rise time, tR, will
make conduction delay too long, as the new effective conduc-
tion delay will be �t + tR. Thus, by the time an activity packet
is driven up, it should already be in a different place. Looking to
the above equation, we can see that observed packet speed will
be slower given the addition of rise time to conduction delay.
Thus, error is introduced into path integration. If the system self-
organizes a weight profile, neuronal rise time will not have an
effect. This is because both pre- and post-synaptic HD cells would
be driven up, dynamically, by the same visual input, generating
the same rise time. Thus, neuronal rise time does not affect the

FIGURE 1 | Hypothesized path integration mechanism (left) and

resulting firing times of HD cells (right). Cell 1 projects most strongly to
cell 2, with delay �t. If cell 1 is active at time t, cell 2 will therefore become
active at time t + �t. The angular separation between cells 1 and 2 will
therefore govern the observed activity packet speed i.e., how far the
activity packet has moved after a delay of �t.

system’s ability to self-organize a correct weight profile. Results
demonstrating this effect are given in Section 3.3.

Rise time will act in the context of a given conduction delay.
The accuracy of observed packet speed is proportional to the ratio
of conduction delay to the sum of the conduction delay and rise
time. This relationship can be expressed as

observed packet speed = (�t/(�t + tR)) × expected packet speed

The coefficient �t + tR is maximized, and the difference between
expected and observed packet speeds minimized, for either large
�t or small tR. Therefore, path integration accuracy will be
reduced with increasing tR for a given value of �t, and with
decreasing �t for a given value of tR. Results demonstrating this
relationship between rise time and conduction delay are given in
Section 3.3.1.

The neural network model in this paper utilizes a single layer of
HD neurons, with recurrent connections that can contain both an
offset component, representing idiothetic path integration input,
and symmetric non-offset recurrent collaterals. The inclusion
of non-offset recurrent collateral connectivity is shown to have
a slowing effect on path integration speed, preventing accurate
reproduction of a target velocity. The architectural prediction is
made that HD areas of the rat brain involved in processing idio-
thetic signals for path integration will not contain within-layer
recurrent collateral connectivity for this reason. Also demon-
strated is the slowing effect of neuronal rise time, specifically in
relation to axonal conduction delays. These findings represent a
major contribution to understanding of time-accuracy in path
integration and shed light on the architecture of the HD system.

2. METHODS
Here we provide details of model governing equations and simu-
lation protocol.

2.1. MODEL DESCRIPTION AND SIMULATION
The model used for this paper, based on a CANN, is pictured
as a schematic in Figure 2. It consists of a single ring of HD
cells. Each cell is pre-specified with a preferred firing direction,
with these preferred firing directions being distributed evenly
around the ring from 0 to 360◦. HD cells are arranged topograph-
ically: cells with similar preferred firing directions are located

FIGURE 2 | Basic model architecture. HD cells are connected with a
recurrent weight profile that is an additive mixture of offset (dashed) and
non-offset (solid) components.
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next to one another. Thus, a Gaussian packet of activity in the
HD cell layer represents the current HD of the agent. Individual
HD cells are modeled using a leaky-integrator firing rate model,
described in more detail below. Individual spikes or spike trains
are not modeled, and instead neuronal firing is represented as an
instantaneous average firing rate for each cell.

All cells influence one another via excitatory recurrent collat-
eral connections. Recurrent weights are pre-wired with Gaussian
profiles to have either an offset profile or a combination of an
offset profile with an added non-offset component of varying
strength. These are constructed in a Gaussian configuration: off-
set weights have an included term, such that each cell projects
maximally not to itself but to an offset cell in the same layer.
This offset acts to drive activity through the network at a fixed
speed, intended to match a target speed, V◦/s. In some sim-
ulations, this offset profile will have added to it a non-offset
Gaussian weight profile. This additive profile is initialized in the
same way, but is centered so that each cell will project maximally
back onto itself. It should be noted then, that the combined pro-
file from adding an offset and non-offset weight profile will result
in a profile where individual cells project maximally neither onto
themselves or onto the expected cell given the offset weight pro-
file alone, but rather onto an intermediate cell between these two
locations. The exact location of this intermediate cell is deter-
mined by the relative strength of the offset and non-offset weight
components.

Recurrent collateral connections contain a delay �t. This rep-
resents a delay inherent in axonal conduction, the time it takes for
action potentials to be conveyed along the length of an axon from
near the soma to axon terminals. Incorporating an axonal con-
duction delay into the model means that post-synaptic cells are
activated by pre-synaptic firing only after a time delay of �t. This
delay is crucial for the model to shift a packet of activity around
the HD ring.

2.2. MODEL EQUATIONS
The activation level hi

HD of HD cell i is given by

τHD dhHD
i (t)

dt
= − hHD

i (t) + ei(t)

− 1

NHD

∑
j

w̃HDrHD
j (t)

+ φ1

CHD→HD

∑
j

w1
ij(t)rHD

j (t − �t) (1)

where hHD
i (t) is the activation level of HD cell i at time t. The

term −hHD
i (t) represents a decay term, whereby in the absence

of pre-synaptic input, the activation of HD cell i will fall to zero
as determined by the time constant τHD. The term ei(t) repre-
sents external visual input to HD cell i at time t − �t. This
input term is used to generate an initial packet within the HD
cell layer. It is determined by a Gaussian profile described in

the simulation protocol. The term 1
NHD

∑
j

w̃HDrHD
j (t) represents

inhibitory feedback within the HD cell layer, summed over all

pre-synaptic HD cells j. w̃HD is a global constant scaling the effect
of inhibitory interneurons, and NHD is the total number of HD

cells in the layer. The term φ1
CHD→HD

∑
j

w1
ij(t)rHD

j (t − �t) repre-

sents excitatory input from the HD cell layer back onto itself via
recurrent collateral synapses with an axonal conduction delay of
�t, summed across all pre-synaptic HD cells connected to cell i.
It consists of rHD

j (t), the firing of pre-synaptic cell j at time t, and

w1
ij(t), the synaptic weight from pre-synaptic HD cell j to post-

synaptic HD cell i at time t. It is important to note that this weight
is not updated during simulation, and thus remains at the same
initial value throughout. The entire term is scaled by the factor

φ1
CHD→HD , which controls the overall strength of recurrent synapses

with the HD cell layer where φ1 is a constant and CHD→HD is
the number of synapses each post-synaptic HD cell receives from
pre-synaptic HD cells.

The firing rate ri
HD(t) of HD cell i at time t is calculated as

the hyperbolic tangent function of the activation level of cell i
at time t. This function is naturally bounded in the interval [-1,
1]. However, real neurons cannot have a firing rate of < 0. Thus,
firing rate is bounded at zero, giving a firing rate equation of

rHD
i (t) =

{
tanh(hHD

i (t)) if tanh(hHD
i (t)) ≥ 0

0 otherwise
(2)

Recurrent collateral weights from HD cells back onto the HD cell
layer are pre-wired with mild variations depending on whether
they are to be purely offset or a mixture of offset and non-offset
components. Offset weights are initialized using the Gaussian
function

w1
ij = e

−(sRC
ij )2/2(σ RC)2

(3)

where w1
ij represents the synaptic weight from pre-synaptic HD

cell j onto post-synaptic HD cell i and σ RC is the standard devi-
ation of the Gaussian profile. sRC

ij is the difference between the
preferred HDs xi and xj of the post- and pre-synaptic HD cells i
and j, respectively. It is given by

sRC
ij = MIN(|xi − (xj + O)|, 360 − |xi − (xj + O)|) (4)

which creates a wrap-around effect, with weights between
HD cells as a population remaining continuous across the
360/0 ◦divide. Note that the pre-synaptic preferred directions are
incremented by a fixed offset, O. This offset O is calculated based
on the target packet speed V ◦/s and the axonal conduction delay
�t as

O = V�t (5)

which effectively pre-wires connectivity with an offset that
matches the amount by which a packet ought to have moved over
the course of the conduction delay, given a particular target packet
speed.

In some simulations, the weight profile is initialized with a
combination of offset and non-offset components. In this case,
the resulting weight profile is a simple addition of both off-
set weights, as calculated above, and non-offset weights. These
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non-offset recurrent collateral weights are pre-wired using the
same method, with the change that pre-synaptic preferred firing
directions are no longer incremented by an offset, such that the
previous equation is now calculated as

sRC
ij = MIN(|xi − xj|, 360 − |xi − xj|) (6)

The relative strengths of the offset and non-offset weight com-
ponents are modified by the parameter λNO, which acts as a
multiplier on the non-offset weight component. Thus, the λNO

parameter can be thought of as determining the degree of asym-
metry via its effect on the non-offset weight component: as
λNO decreases, the overall asymmetry of the weight profile tends
toward the offset O. In both situations (offset weights and mixed
weights), the weight profile is normalized after initialization. This
is achieved by ensuring that the square root of the sum of the
squares of afferent weights, for a particular post-synaptic cell i, is
limited to 1. This is computed as

√∑
j

(w1
ij(t))2 = 1 (7)

In cases where an offset weight profile must be self-organized,
synaptic weights are updated every timestep according to a local
associative Hebbian learning rule

dw1
ij(t)

dt
= krHD

i (t)rHD
j (t − �t) (8)

where w1
ij is the synaptic weight from pre-synaptic HD cell j with

firing rate rHD
j onto post-synaptic HD cell i with firing rate rHD

i ,
and k is the learning rate constant, which determines speed of
weight change.

The differential equations given for this model cannot
be solved analytically. Instead, they are implemented in the
computer model by making discrete approximations of their
solutions. A Forward Euler finite difference scheme is used to
approximate all differential equations during simulation, and the
value of the forward Euler timestep size used, δt is given in
Tables 1, 2.

2.3. SIMULATION PROTOCOL
At the beginning of each simulation, firing rates ri of all HD cells
are set to zero. If the network is self-organizing, recurrent col-
lateral weights are initialized to a uniform negligibly small value
of wij = 0.0001. Simulation is then split into two phases: training
and testing. During the training phase, a Gaussian packet of exter-
nal activation is applied to the HD cell layer through the input
ei(t). This packet of activation moves through the ring clockwise
at a constant velocity of V ◦/s. During this phase, cell activa-
tions and firing rates are updated as in Equations (1) and (2),
and recurrent collateral weights are updated and normalized as
according to the Equations (7) and (8). After this training phase,
the external input ei(t) is removed. The test phase then begins,
with the network continuing to update in the absence of any exter-
nal input. The recurrent collateral weight profile is fixed during

Table 1 | Network parameter values for pre-wired simulations.

Network parameters

Head direction cells 500

CHD→HD 500

φ1 200.0

σRC 10.0 ◦

τHD 0.001 s

w̃HD 0.005

δt 0.0001 s

λHD 10.0

σHD 20.0 ◦

V 180.0 ◦/s

�t 0.01 s

All simulations, except where explicitly stated, are run using these parameters.

All measures of time are given in seconds.

Table 2 | Network parameter values for self-organizing simulations.

Network parameters

Head direction cells 500

Training time 298.5s

Testing time 2.0s

CHD→HD 500

φ1 60.0

τHD 0.001s

w̃HD 0.01

IFF 50.0

δt 0.0001s

λHD 70.0

σHD 30.0◦/s

V 180.0◦/s

�t 0.01s

k 0.01

All simulations, except where explicitly stated, are run using these parameters.

All measures of time are given in seconds.

the test phase, and thus no further changes in synaptic strengths
occur. In some simulations, a symmetric non-offset weight pro-
file is overlaid onto the existing learned weight profile at the
beginning of the test phase. This is done identically to pre-wired
simulations, as described in Equation (6).

If the network is not self-organizing, recurrent collateral con-
nections are pre-wired as offset or a mixture of offset and
non-offset, as detailed in Equations (3–6). Synaptic weights are
then normalized as in Equation (7). An external input, ei in
Equation (1), is applied for 200 ms, and both the activation hHD

i (t)
and firing rate rHD

i (t) of all HD cells are updated according to
Equations (1) and (2). ei is calculated for each HD cell i by a
Gaussian profile

ei = λHDe−(sHD
i )2/2(σ HD)2

(9)

where λHD is a scaling factor determining the strength of this
input to HD cell i and σ HD is the standard deviation of the
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Gaussian profile. sHD
i is the difference between the true HD x and

the preferred direction xi of post-synaptic HD cell i. It is given by

sHD
i = MIN(|xi − x|, 360 − |xi − x|) (10)

which creates a wrap-around effect, with response profiles of
HD cells as a population remaining continuous across the
360/0◦divide.

This input acts solely to initialize an activity packet at loca-
tion x within the HD cell layer. After 200ms, external input is
removed, and the network is simulated for a further 2s. During
this latter phase, HD cell activations and firing rates continue to
be updated as in Equations (1) and (2). It is important to note
that, during this second phase of simulation, HD cell activity is
sustained solely through recurrent collateral activity. The speed at
which the HD cell activity packet moves in this latter phase is the
critical behavior to be observed, and to be compared to the target
speed V .

3. RESULTS
3.1. DATA ANALYSIS
3.1.1. Speed
In order to calculate the speed of motion of the HD layer activity
packet, the center of mass (i.e., location) of HD layer firing rates
is computed at each forward Euler timestep. This was calculated
using an established population vector scheme (Georgopoulos
et al., 1986; Song and Wang, 2005) and is as follows

θpop(t) = arctan

⎛
⎜⎜⎝

∑
i

ri sin (θi)

∑
i

ri cos (θi)

⎞
⎟⎟⎠ (11)

where θi is the preferred direction of HD cell i with firing rate ri.
However, because the ring effectively wraps around, it can pro-

vide problems for taking the mean of a set of locations spanning
the 360/0◦ mark. For example, the mean of three cells firing max-
imally at 310◦, 330◦, and 350◦ would be correctly calculated by
the above formula as 330◦. However, the mean of three cells firing
maximally at 350◦, 10◦, and 30◦ would be incorrectly calculated
as 130◦, rather than the correct value of 10◦. To account for this,
the following corrected formula is used instead

arctan

⎛
⎜⎜⎝

∑
i

ri sin (θi)

∑
i

ri cos (θi)

⎞
⎟⎟⎠ if

∑
i

ri sin (θi) > 0,

∑
i

ri cos (θi) > 0;

θpop(t) = arctan

⎛
⎜⎜⎝

∑
i

ri sin (θi)

∑
i

ri cos (θi)

⎞
⎟⎟⎠ + 180

if
∑

i

ri cos (θi) < 0;

arctan

⎛
⎜⎜⎝

∑
i

ri sin (θi)

∑
i

ri cos (θi)

⎞
⎟⎟⎠ + 360

if
∑

i

ri sin (θi) < 0,
∑

i

ri cos (θi) > 0; (12)

3.1.2. Weight offset
We set the offset of the asymmetric weight component to a
known value in pre-wired simulations. However, in cases where
a non-offset component is added to the offset component, the
new effective offset must be calculated. This is also true of self-
organizing simulations, where the offset is unknown and develops
as a result of training. In order to calculate the weight off-
set in the efferent recurrent weights for individual HD cells,
a similar center of mass, referred to as the weight vector xw

j ,
is computed for the recurrent weight profile at various points
during simulation. This is done similarly to the activity packet
population vector scheme, but using the recurrent weight pro-
file from the perspective of a projecting HD cell j. Thus, the
weight vector tells us the overall direction to which the project-
ing weights point for a given pre-synaptic cell. The center of
mass of the weight vector xw

j is calculated for each pre-synaptic
cell j as

xw
j (t) = arctan

⎛
⎜⎜⎝

∑
i

wij sin (xi)

∑
i

wij cos (xi)

⎞
⎟⎟⎠ (13)

where the sum is over pre-synaptic HD cells i.
Again, a corrected forumula (Batschelet, 1981; Fisher, 1993)

was used to account for data circularity

arctan

⎛
⎜⎜⎝

∑
i

wij sin (xi)

∑
i

wij cos (xi)

⎞
⎟⎟⎠ if

∑
i

wij sin (xi) > 0,

∑
i

wij cos (xi) > 0;

xw
j (t) = arctan

⎛
⎜⎜⎝

∑
i

wij sin (xi)

∑
i

wij cos (xi)

⎞
⎟⎟⎠ + 180

if
∑

i

wij cos (xi) < 0;

arctan

⎛
⎜⎜⎝

∑
i

wij sin (xi)

∑
i

wij cos (xi)

⎞
⎟⎟⎠ + 360

if
∑

i

wij sin (xi) < 0,
∑

i

wij cos (xi) > 0; (14)
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where wij is the strength of the synapse from post-synaptic HD
cell j onto post-synaptic HD cell i and each post-synaptic cell has
the preferred firing direction xi.

The new offset value is then calculated using the final project-
ing weight vector xw

j and the preferred firing direction xj for each
pre-synaptic cell j

Onew = MIN(|xw
j − xj|, 360 − |xw

j − xj|) (15)

which, similarly to activity packet speed calculations, accounts for
the circular nature of the data.

3.2. NON-OFFSET SYMMETRIC WITHIN-LAYER RECURRENT
CONNECTIVITY SLOWS PATH INTEGRATION

Figure 3 shows summary results for simulations run using off-
set connectivity overlaid with non-offset connectivity of varying
strengths (λNO). Both packet speed (dashed line with square
markers) and average HD layer offset (solid line) are plot-
ted as a percentage of that observed at λNO = 0. As λNO

increases we see a corresponding reduction in packet speed,
which is directly proportional to the reduction in average off-
set. This is true of both pre-wired (left) and self-organizing
(right) simulations. Thus, it seems that the addition of a sym-
metric non-offset weight profile limits packet speed during path
integration.

Figure 1 shows speed and offset as a percentage of their values
during simulations with λNO = 0 rather than as a percentage of
the target velocity. However, in both cases the highest value packet
speed at λNO = 0 does not match the target velocity of 180◦. Even
with perfectly pre-wired offset weights, top speed is only 165.14◦:
91.8% of the target velocity. In the self-organizing simulations
top speed was 162.26◦ (90.1%). This suggests that another factor
limits packet speed.

3.3. RISE TIME SLOWS PATH INTEGRATION
Figure 4A shows simulation results with varying values of the
simulated neuronal time constant τHD, which directly affects
the rise time of individual neurons, and λNO = 0. Packet speed
is plotted over all values of τHD for the pre-wired model.
Conduction delay is held constant at �t = 0.01. Increasing the
value of τHD, and thus increasing rise time, reduces packet speed.

FIGURE 3 | The effects of altering λNO on packet speed (black dashed

line with square markers) and average HD layer offset (solid black line)

as a percentage of their respective values at λNO = 0. For both pre-wired
(left) and self-organizing networks (right) these two lines correspond,
showing that introduction of within-layer non-offset connectivity always
causes a proportional reduction in path integration speed.

This trend was near-identical in the self-organizing model. In this
case, τHD did not affect self-organization, with offset remaining
constant with changing rise time (not shown).

3.3.1. Rise time acts in the context of axonal conduction delay
We hypothesize that the time taken for pre-synaptic neurons to
drive up a post-synaptic neuron will be too long by the amount
that post-synaptic neuronal rise time adds to the axonal con-
duction delay. If this is the case, a constant rise time should
be more or less severe in the context of varying �t. Figure 4B
shows packet speeds from simulations run with a constant value
of τHD = 0.001 and varying values of �t.

Consistent with this hypothesis, we see that packet speed is
slowest for small values of �t. This is because a constant error
introduced by rise time is proportionally larger in relation to
short conduction delays. Varying target speed with constant �t
and τHD(results not shown) did not affect packet speed as a
proportion of the target.

4. DISCUSSION
In this paper we identify, through simulation, two key hypothe-
sized sources of error in path integration. Firstly, the antagonism
between symmetrical (non-offset) recurrent collateral weights
and asymmetrical (offset) weights. Secondly, neuronal rise time.
Both of these factors are investigated in two variants of the model:
one with pre-wired synaptic weights and one which undergoes
training and accompanying self-organization of the offset weight
profile.

Here we show that packet speed is reduced in direct propor-
tion to the strength of the non- offset weight component, which
represents symmetrical recurrent collateral connectivity; a key
aspect of most continuous attractor neural networks (CANNs).
We therefore hypothesize that individual layers of the HD sys-
tem, which play a dominant role in combining allothetic and
idiothetic signals to perform path integration, do not contain
recurrent connections to help stabilize activity packets represent-
ing current HD, because these connections would slow down path
integration as soon as the animal begins to rotate. The fundamen-
tal problem is that the recurrent connections within a layer could

FIGURE 4 | (A) The effect of increasing values of τHD on packet speed with
constant �t = 0.01. As τHD increases, and with it neuronal rise time, there
is a reduction in packet speed. As τHD tends to zero, the packet speed
tends to the expected speed of 180◦. (B) The effect of varying values of the
axonal conduction delay �t on packet speed with a constant value of
τHD = 0.001. As �t gets smaller relative to rise time, packet speed is
reduced. As �t increases, the packet speed tends to the expected speed
of 180◦.
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only learn one specific rotation speed, whether this is either no
rotation or some fixed speed of rotation. If the animal rotates at
any other speed, these recurrent connections will introduce error
into the path integration. Specifically, error will be introduced if
signals for two different speeds (e.g., current head velocity and
no head velocity) co-occur in time, a necessary consequence of
within-layer recurrent connectivity.

Following the attractor hypothesis of Skaggs et al. (1995), the
majority of extant HD cell system models are based on CANN
architectures and therefore employ such connectivity (Touretzky,
2005). CANN-based models have been used to explain a large
range of HD cell phenomena, such as their ability, provided the
rat continues to face in the cells preferred direction, to fire persis-
tently without adaptation (Taube, 1998). However, the fact that
symmetrical connections have been shown in this model sys-
tem to impede path integration speed suggests a major shift for
HD modeling approaches away from the current form of CANN
architectures. Certainly, there has been a conspicuous lack of
any hard evidence for recurrent collateral connectivity in HD
cell regions such as the lateral mammillary nucleus (Allen and
Hopkins, 1989) and anterodorsal thalamic nuclei (Rubin et al.,
2001).

What, then, are the alternatives? We suggest that between-
layer rather than within-layer connectivity is crucial. This is based
on neurophysiological evidence demonstrating reciprocal con-
nectivity between excitatory lateral mamilliary nucleus (LMN)
cells and inhibitory dorsal tegmental nucleus (DTN) cells (Allen
and Hopkins, 1988, 1989); with this LMN-DTN complex being
a likely candidate substrate for the generation of the HD signal
(Taube and Bassett, 2003; Song and Wang, 2005; Taube, 2007).

We propose an architecture, shown in Figure 5, with a layer of
LMN HD cells which are reciprocally connected to a DTN layer
of combination (COMB) cells, in the manner of Walters and col-
leagues (Walters and Stringer, 2010; Walters et al., 2013), which
fire to a combination of HD and angular head velocity (AHV).
However, symmetric non-offset recurrent connections would be
omitted from the HD layer. The job of stabilizing HD cell activity
packets would be assumed by inputs from the COMB layer. The
COMB layer would receive input signaling head rotation from
angular head velocity (AHV) cells: it is known that the DTN
receives an AHV signal from the nucleus prepositus hypoglossi
(NPH) (Khalsa et al., 1987), which itself receives projections
from vestibular nuclei (McCrea and Baker, 1985), and from the
supragenual nucleus (Biazoli et al., 2006), which is critical for
generating a normal head directon signal in the anterior thala-
mus (Clark et al., 2012). Single-cell recordings confirm that DTN
contains both AHV cells and cells responding to combinations of
HD and AHV (Bassett and Taube, 2001; Sharp et al., 2001).

Some AHV cells show firing even when the head is not rotat-
ing (Bassett and Taube, 2001). This would allow a subset of cells
in the COMB layer to learn to respond to a combination of a
specific HD represented by the LMN layer and no rotation repre-
sented by AHV cells in the NPH. These COMB cells could then
form reciprocal back-connections with the same subset of HD
cells in the LMN layer. This connectivity would support a sta-
ble attractor state during periods of no rotation. Other subsets
of COMB cells could, using axonal conduction delays, learn to

FIGURE 5 | Proposed model architecture, with HD cell activity both

sustained and shifted by connectivity incoporation axonal conduction

delays �t. This connectivity is reciprocal with a layer of combination
(COMB) cells, which learn to respond to a particular combination of HD and
AHV through competitive learning. During no head rotation (A), HD activity
is stabilized through reciprocal connectivity with COMB cells representing
the combination of current head direction and no angular head velocity
(AHV = 0). When the head is rotating (B), activity is shifted through the HD
layer via connectivity with different COMB cells representing the
conjunction of current head direction with angular head velocity (AHV = x,
where x is some non-zero value). Connectivity from these COMB cells back
onto the HD layer projects with an offset from the original HD activity of
2�tx; causing HD cell activity to accurately track true head direction given
current angular head velocity.

respond to a combination of a current HD and head rotation
at a particular velocity. These COMB cells would form back-
connections onto the HD layer with an offset determined by
axonal conduction delay and current AHV. During path integra-
tion, no-rotation COMB cells would become quiescent, whilst
COMB cells responding to HD and rotation would begin fir-
ing and act to shift the HD cell activity packet. This architecture
would allow sustained HD cell firing without affecting path inte-
gration speed during rotation. The idea of reliance on ascending
vestibular information to generate a sustained HD representation
is particularly important, given that damage to the vestibular sys-
tem eliminates the HD cell signal (Stackman and Taube, 1997;
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Stackman et al., 2002; Bassett and Taube, 2005; Valerio and Taube,
2012).

Within the COMB layer, neurons learn to respond to spe-
cific combinations of HD and AHV. At any moment, only the
correct subset of COMB cells are activated corresponding to
the current rotation speed. This means that the bi-directional
connections between the two layers learn to encode specific
rotation speeds, with different connections encoding differ-
ent speeds and thus reducing error from interference of other
speeds. Consequently, the connectivity between the two layers
can implement accurate path integration across all of the trained
speeds, including stabilizing the HD activity packet during no
rotation.

We also show that a long neuronal rise time introduces error
in path integration: the longer the rise time for a given conduc-
tion delay, the greater the error in path integration. Rise time
also appears to reduce packet speed in relation to the axonal con-
duction delay used: the shorter the conduction delay for a given
rise time, the more severe the slowing effect. Rise time does not
appear to have an effect on the self-organization of offset connec-
tivity. This is because both pre and post-synaptic cells are driven
up dynamically by the same external input, and thus both have
the same rise time. Crucially, the post-synaptic cell is driven up
during training by external input rather than by the firing of the
pre-synaptic cell conveyed via recurrent connections as in testing.
During testing, post-synaptic cells will be driven up by the fir-
ing of pre-synaptic cells via connectivity containing a conduction
delay. This conduction delay used will have added to it the post-
synaptic rise time, constituting an error in path integration. Our
findings support the intuition that rise time causes signal trans-
mission between HD cells to be too long during testing but not
during training, with the correct offset self-organizing even with
long rise times.

Whilst rise time is a particular issue for a rate-coded neural
network as in this paper, it may be ameliorated by shifting to
a spiking network addressing the fine dynamics of neuronal fir-
ing. Such networks can update their representations very rapidly
(Brunel and Wang, 2001). Neurons may have a background level
of activation that is very close to firing threshold, thus reducing
the time taken for input to drive them up to firing (Fourcaud-
Trocme et al., 2003). This has been demonstrated in neural
network models (Tsodkys and Sejnowski, 1995; Brunel and Wang,
2001). It could thus be the case that a spiking network will allow
rise time to be minimized to an extent that no longer interferes
with path integration.

This paper focuses on an architectural approach to the issue
of path integration speed. Previous work involving within-layer
symmetric connectivity has suggested that path integration accu-
racy can be improved with neuronal mechanisms. One exam-
ple is short-term depression (STD) (Fung et al., 2012b). It has
been shown that STD is a workable mechanism for generating
real-time tracking states which could compensate for rise time
effects (Fung et al., 2012a). Interestingly, such a mechanisms
could account for the finding that some HD cell firing anticipates
actual HD (Blair and Sharp, 1995). However, this STD effect has
been shown in the “classic” CANN architecture, which is unlikely
to exist in the HD cell system. We suggest a move away from

such connectivity, but it remains to be shown whether this STD
effect operates within a multi-layer HD network of the sort we
hypothesize.

This model represents a simple, yet powerful, approach to
uncovering key factors affecting accuracy of path integration
speed. Several simplifications have been made in striving for max-
imum explanatory power. In this context, it is important to be
clear about what issues we are and are not addressing. Firstly, HD
cells are explicitly pre-designated with a preferred direction. In
reality, the preferred direction of individual HD cells must be cal-
ibrated in some way to establish the specific connectivity, both
between HD cells, and from visual areas onto HD areas. This
paper however, is not focused on answering how HD cells acquire
a preferred direction but rather how mature HD cells behave
during path integration.

We employ a single layer of recurrent connections with vary-
ing degrees of asymmetry. The final weight profile is an additive
combination of two components. This represents two sources of
input to HD cells: non-offset synapses from the HD layer back
onto itself, and offset out- put of some path integration system.
Reducing these two sources to one layer demonstrates clearly their
interaction. It is believed that the case in which HD cells receive
inputs from different sources would not be qualitatively different
provided they occur at the same time.

All simulations reported here were run with a target velocity of
V = 180.0◦/s. This was considered fair given previous anaylsis of
rat AHV as lying in the range of 0–1000◦/s (Stackman and Taube,
1998; Bassett and Taube, 2001; Sharp et al., 2001). There is how-
ever, no reason why the effects presented in this paper will not be
seen at different velocities. Indeed, simulations were carried out
with a variety of values of V in the range 45–360◦/s. Although this
is smaller than the experimentally-observed range of rat angular
head velocities, we note that our simulations use a continuous
rotation at a constant speed over a period of time, a movement
which a rat is unlikely to perform at the limits of possible rota-
tion velocities. An interesting further investigation might well be
to extend these simulations to more complex head rotations at
multiple speeds in multiple directions.

Here we investigate the issue of path integration speed in con-
tinuous attractor models of the HD cell system. Two major factors
were discovered to affect the replay speed of path integration sys-
tems: the presence of within-layer symmetric non-offset recurrent
collateral connectivity, and neuronal rise time. In the case of rise
time, it appears that this factor does not adversely affect the self-
organization of these path integration systems. We show that it
is possible to have perfect path integration accuracy if rise time is
negated and within-layer connectivity is purely offset. These find-
ings represent a major contribution to theoretical understanding
of the factors governing accuracy of path integration and result in
key architectural predictions. Future approaches to coping with
these speed-limiting factors are suggested.
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