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Alzheimer’s disease (AD) is a common memory-impairment disorder frequently
accompanied by olfactory identification (OI) impairments. In fact, OI is a valuable marker
for distinguishing AD from normal age-related cognitive impairment and may predict
the risk of mild cognitive impairment (MCI)-to-AD transition. However, current olfactory
tests were developed based on Western social and cultural conditions, and are not
very suitable for Chinese patients. Moreover, the neural substrate of OI in AD is still
unknown. The present study investigated the utility of a newly developed Chinese smell
identification test (CSIT) for OI assessment in Chinese AD and MCI patients. We then
performed a correlation analysis of gray matter volume (GMV) at the voxel and region-of-
interest (ROI) levels to reveal the neural substrates of OI in AD. Thirty-seven AD, 27 MCI,
and 30 normal controls (NCs) completed the CSIT and MRI scans. Patients (combined
AD plus MCI) scored significantly lower on the CSIT compared to NCs [F (2,91) = 62.597,
p < 0.001)]. Voxel-level GMV analysis revealed strong relationships between CSIT score
and volumes of the left precentral gyrus and left inferior frontal gyrus (L-IFG). In addition,
ROI-level GMV analysis revealed associations between CSIT score and left amygdala
volumes. Our results suggest the following: (1) OI, as measured by the CSIT, is impaired
in AD and MCI patients compared with healthy controls in the Chinese population; (2)
the severity of OI dysfunction can distinguish patients with cognitive impairment from
controls and AD from MCI patients; and (3) the left-precentral cortex and L-IFG may be
involved in the processing of olfactory cues.

Keywords: Alzheimer’s disease, mild cognitive impairment, olfactory disorder, Chinese smell identification test,
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INTRODUCTION

Alzheimer’s disease (AD) is the most common age-related
neurodegenerative disorder and is characterized by progressive
impairment of cognitive function, ultimately leading to
incapacitation and death (McKhann et al., 2011). Thus, AD
places a considerable emotional burden on families and
economic burden on society (McDade and Bateman, 2017).
Multiple studies have shown that neurobiological changes
associated with AD are present for many years before the
appearance of clinical symptoms. Many studies have focused
on identifying neurological and behavioral changes that can
predict AD onset and thereby allow early intervention. Mild
cognitive impairment (MCI) is an intermediate state between
normal age-related cognitive decline and dementia (Petersen,
2007); about 3 – 15% of MCI patients progress to AD annually
(Petersen et al., 2001). Although there is still no effective
treatment for AD (Miller, 2012), a previous study suggested
that timely intervention can alleviate early symptoms, and delay
AD progression (Baazaoui and Iqbal, 2018). Therefore, early
detection of MCI is important for the short-term prognosis of
AD. To this end, it is critical to identify biomarkers that can
distinguish among AD, MCI, and healthy aging.

Previous studies have indicated that olfactory perception
is frequently disrupted in the early stages of AD (Djordjevic
et al., 2008; Silva et al., 2018), especially when preceded
by MCI (Devanand, 2000; Larsson et al., 2000; Roalf et al.,
2017). Impairments of olfactory perception involve deficits in
several domains, including odor detection threshold, olfactory
identification (OI), olfactory discrimination, and olfactory
memory (Mesholam, 1998; Silva et al., 2018). Many studies have
shown that olfactory dysfunction can accurately detect cognitive
impairment (Graves et al., 1999; Peters, 2003; Schubert et al.,
2008), differentiate AD from normal aging with high sensitivity
(0.88) and specificity (0.91) (Ewers et al., 2012; Ritchie et al.,
2014), and predict the potential for the progression of MCI to
AD (Devanand et al., 2000, 2014; Roberts et al., 2016; Tahmasebi
et al., 2019). Mounting evidence suggests that OI deficits are the
predominant factor contributing to olfactory dysfunction in AD,
as OI deficits occur earlier, and are more strongly correlated with
memory impairments than deficits in other olfactory domains
(Djordjevic et al., 2008). Moreover, impaired OI has been linked
to accelerated decline in cognitive function (Dintica et al., 2019).
Therefore, OI may be a valuable biomarker for preclinical AD.

There are many OI tests, such as the University of
Pennsylvania Smell Identification Test (UPSIT), Connecticut
Chemosensory Clinical Research Center (CCCRC) olfactory test,
and “Sniffin Sticks” olfactory test. Each includes odors common
in the local culture; however, performance may be affected
by various semantic and cultural factors (Schab, 1991; Ayabe-
Kanamura et al., 1998; Kobayashi et al., 2006). For instance, some
items familiar to Western patients may not be easily recognizable
by the Chinese population (and vice versa). Based on this
consideration, Zhou developed the Chinese smell identification
test (CSIT) (Feng et al., 2019), which adopts odor items that are
familiar to and identifiable by most Chinese people. As such, the
CSIT provides an effective tool (test-retest reliability of 0.92) for

the assessment of olfactory function in the Chinese population.
To our knowledge, however, there are few studies investigating
OI dysfunction among AD and MCI patients using Chinese
olfactory tests. In the present study, we examined whether CSIT
can distinguish between normal aging, MCI, and AD in the
Chinese population.

The neural substrates of OI dysfunction in AD and MCI
patients are still unclear. Several neuroimaging studies have
found associations between OI dysfunction and structural
abnormities in brain regions that contribute to olfactory
processing, such as the olfactory cortex (OC). The OC is the
center of olfactory processing and functional and structural
anomalies are strongly implicated in OI dysfunction (Thomann
et al., 2009b; Servello et al., 2015; Vasavada et al., 2017).
Hippocampal atrophy is a well-known pathological feature of
AD and MCI (Prestia et al., 2010), and so may also contribute
to OI dysfunction in AD and MCI. Indeed, several studies have
reported a positive relationship between OI performance and
hippocampal volume in patients with MCI or AD (Kjelvik et al.,
2014). The amygdala is a key node linking the olfactory and
hippocampal cortices (Price, 2003; LeDoux, 2007). Amygdala
nuclei receive inputs from and send outputs to multiple brain
regions subserving olfactory-associated functions, including
emotional salience (Hamann, 2001). Thus, it is possible that
the amygdala plays a key role in OI dysfunction among AD
patients. Indeed, an vivo MRI study found that the amygdala was
closely related to the olfactory loop in AD (Cavedo et al., 2011).
The amygdala also has abundant neural connections with the
hippocampus, and modulates both the encoding and the storage
of hippocampal-dependent memories (Phelps, 2004).

Although several neuroimaging studies have implicated OC,
hippocampal, and (or) amygdala abnormalities in OI dysfunction
among AD and MCI patients, multiple studies have also reported
contrary results. For example, Servello and colleagues (Feng et al.,
2019) found no correlation between OC volume and olfactory
function in AD, MCI, and NC. In contrast, several groups have
found a correlation between the decline in OI and structural
degeneration of the OC among AD patients (Claire Murphy,
2003; Thomann et al., 2009a; Marigliano et al., 2014; Servello
et al., 2015). These discrepancies may be attributed to factors such
as sample heterogeneity and differences in OI tests. In addition,
neuroimaging analysis based on regions of interest (ROIs) may
contribute to variability as the coordinates of specific ROIs
differ markedly across studies (Ji et al., 2017). Thus, voxel-based
analysis may help mitigate such inconsistencies.

In this study, we first compared OI performance among AD,
MCI, and normal aging in the Chinese population using the
CSIT. Subsequently, we conducted correlational analysis of CSIT
scores and regional GMV at both ROI and whole-brain voxel
levels to explore the neural substrates of OI.

MATERIALS AND METHODS

Study Subjects
A total of 94 right-handed participants (37 AD, 27 MCI, and 30
age-matched cognitively NCs were enrolled in this study. The AD
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and MCI patients were recruited from the Dysmnesia Outpatient
Department at the First Affiliated Hospital of Anhui Medical
University, Anhui Province, China. The NCs were recruited from
the local community through advertisement or were the spouses
of the study patients. The present study was approval by the
Research Ethics Committee of the First Affiliated Hospital of
Anhui Medical University. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Patients With AD
The AD subjects were clinically diagnosed by a specialist in
accordance with NINCDS-ADRDA (McKhann et al., 1984)
criteria: (a) Meeting criteria of possible or probable AD
(McKhann et al., 2011), (b) mini-mental state examination
(MMSE) score < 24, and (c) clinical dementia rating (CDR) score
ranging from 0.5 to 2.

The exclusion criteria were as follows: (a) sudden onset, (b)
early occurrence of gait disturbances, seizures, or behavioral
changes, (c) focal neurological features such as hemiparesis,
sensory loss, or visual field deficits, and (d) early extra-
pyramidal signs or other severe disorders such as trauma,
major depression, severe cerebrovascular disease, or metabolic
abnormalities (Dubois et al., 2007).

Patients With MCI
Participants with MCI were clinically diagnosed by experts
according to Peterson’s criteria (Petersen et al., 1999) and
NINCDS-ADRDA criteria as follows: (a) complaints of memory
loss/other cognitive decline (including from the patient’s family
or doctor), (b) unexpectedly poor performance on one or
more cognitive functions given the patient’s age and educational
background, (c) ability to maintain independence of daily living
(i.e., no dementia) (Albert et al., 2011), (d) MMSE score > 24, (e)
CDR score of 0.5. The exclusion criteria were the same as defined
for AD patients.

Normal Controls
The NCs fulfilled the following criteria: cognitively normal,
no neurological or psychiatric disorders, no psychoactive
medication use, MMSE score of 28 or higher, and CDR score of 0.

Common Participant Criteria
White mater hyper-intensities (WMHs) were graded according
to the Fazekas scale (Fazekas et al., 1987) based on visual
assessment of both periventricular and subcortical areas
(Helenius et al., 2017). However, as the presence of mild to
moderate WMH frequently accompanies normal aging as well as
neurodegenerative diseases (Wardlaw et al., 2013), this was not
considered a criterion (Liu et al., 2011).

In order to rule out any confounds that could adversely
influence the study results, we excluded subjects who engaged in
long-term smoking and drinking as these behaviors have been
shown to affect cognition and olfaction (Frye, 1990). We also
checked for complications specific to olfactory dysfunction (e.g.,
nasal polyps, nasal obstruction, respiratory distress, head trauma,
active sinus/upper respiratory infection, and allergies) and for
contraindications to MRI (e.g., not-MRI-safe metal implants,

severe claustrophobia). However, no participants were excluded
from the study based upon these criteria.

Finally, 37 AD and 27 MCI patients with initial diagnosis
and currently not treated with a cholinesterase inhibitor
(donepezil, galantamine, or rivastigmine) were enrolled. Detailed
background information on all groups is summarized in Table 1.

Neuropsychological Assessment
All participates underwent a clinical evaluation
and neuropsychological assessment. The following
neuropsychological test battery was administered to each
subject for the purpose of establishing a clinical diagnosis
as described previously (Lezak et al., 2004; Woodward et al.,
2017). (i) General cognitive function was assessed with the
Mini Mental State Examination (MMSE) (Burns, 1998) and
the (global) Clinical Dementia Rating Scale (CDR) (Morris,
1993) as a proxy for disease severity. (ii) The Chinese version of
the auditory verbal learning test (AVLT) was used to evaluate
memory. (iii) The Hamilton Depression Rating Scale (HAMD)
was used to assess depressive symptoms. (iv) Daily function was
assessed using the Lawton-Brody activities of daily living (ADL)
scale (Salmon and Bondi, 2009). Testing was administered by
board-certified neuropsychologists and research staff under the
supervision of neuropsychologists.

Olfactory Identification Assessment
The Chinese smell identification test (CSIT) developed by the
Institute of Psychology, Chinese Academy of Sciences, was
applied to evaluate OI performance (Feng et al., 2019). The
CSIT consists of two parts. The first part is a self-assessment
questionnaire (CSIT-self) that surveys medical factors that
may confound olfactory function (septal deviation, difficulty
breathing through one side of the nose, history of radiation or
chemotherapy, history of nasal surgery) (Tabert et al., 2005).
Participants were asked to rate their sense of smell relative to
others on a 5-point scale as follows: 1 = poor, 2 = low, 3 = normal,
4 = good, and 5 = superior (to others).

The second part (CSIT-OI) includes olfactory tests of 40
familiar and easy to recognize odors such as strawberry, jujube,
haw, and sesame oil. Subjects were required to name each odor
from a list of four alternatives. The CSIT-OI test method is
similar to the 40-item UPSIT (Doty et al., 1984), but CSIT is
more suitable for people with a Chinese cultural background.
Odorants of the CSIT were presented in felt-tip pens (Hummel
et al., 1997), each filled with 1 ml of liquid. The cap of the pen was
removed and the pen tip was placed approximately 2 cm in front
of the subject’s nostrils. Participants were requested to sniff the
presented odor for 5 s then to pick the correct response. The tests
were carried out in an environment with efficient air circulation
and no other odors. The CSIT-IO score is the total of correct
choices for the 40 odors.

Imaging Data Acquisition
Structural MRI images were acquired on a General Electric
HD 750 w 3.0 T MRI scanner with an 8-channel head-coil
(General Electric, Waukesha, WI, United States). Structural
imaging included T1-weighted three-dimensional (3D-T1), axial
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TABLE 1 | Demographics of the patients and normal controls.

AD (mean ± SD) MCI (mean ± SD) NC (mean ± SD) χ2/F p

Number 37 27 30

Age (years) 66.86 ± 10.27 68.04 ± 7.58 67.23 ± 6.71 0.150 0.861

Gender (male/female) 17/20 13/14 11/19 0.896 0.639

Family history (yes/no) 3/34 2/25 1/29 0.699 0.795

Education (years) 6.78 ± 5.26 8.48 ± 5.53 12.20 ± 4.44 9.559 0.00ab

WMH score 1.51 ± 1.10 1.37 ± 1.15 1.30 ± 0.84 0.371 0.691

ap < 0.05, post-hoc when AD compared to NC, bp < 0.05, post-hoc when MCI compared to NC, cp < 0.05, post-hoc when AD compared to MCI.
Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control; WMH, White Matter Hyper-intensities.

T2-weighted, and fluid-attenuated inversion recovery images.
According to axial T2-weighted and fluid-attenuated inversion
recovery images, subjects with abnormalities other than atrophy,
or leukoaraiosis were excluded. The 3D-T1 images were collected
using a fast-spoiled gradient recalled echo sequence [TR = 8.5 ms,
TE = 3.2 ms, Inversion time (TI) = 450 ms, Matrix 256 × 256,
FOV 256 mm × 256 mm, flip angle = 12◦, and slice thickness
of 1.0 mm without intervals]. The total scan duration for 3D-T1
image acquisition was 4 min, 30 s.

Image Processing and VBM Analyses
The VBM8 toolbox1, a software package based on statistical
parametric mapping software (SPM 82) was used for VBM
analyses. VBM8 was used to calculate GMV corrected for
total intracranial volume, age, sex, and education level. T1-
weighted images were segmented into GM, white matter,
and cerebrospinal fluid using a fully automated algorithm in
SPM 8. Images were normalized by diffeomorphic anatomical
registration through exponentiated Lie algebra normalization,
and transformed to Montreal Neurological Institute space to
preserve local differences in anatomy across subjects, thereby
allowing quantification. Finally, the normalized GM images were
smoothed for statistical analysis (Wang et al., 2017).

For ROI-level analysis, we used SPM 8 for automatic anatomic
segmentation and volumetric measurement of brain structures.
We adopted the anatomical automatic labeling (AAL)-based
structural ROI method for ex vivo measurement of each
individual ROI signal (Tzourio-Mazoyer et al., 2002), and used
the extracted signal for subsequent analysis. In this study, the
ROIs were the hippocampus, amygdala, and OC, brain regions
strongly related to olfactory processing. A voxel-based analysis
was then applied over the whole brain to explore regions
associated with CSIT score in AD, MCI, and NC groups.

Statistics Analysis
Statistical analyses of behavioral data were conducted using
SPSS for Windows (22.0, IBM). Sex ratios were compared
across diagnostic groups (AD, MCI, and NC) using the chi-
square test. Demographic variables such as age, education level,
neuropsychological features, and CSIT scores were compared
across groups by one-way analysis of covariance (ANCOVA)

1http://www.neuro.uni-jena.de/vbm/download/
2http://www.fil.ion.ucl.ac.uk/spm

(Vasavada et al., 2015) followed by a post hoc Bonferroni test
for multiple comparisons. For non-normally distributed data
[denoted by Md (p25,p75)], we used Kruskal–Wallis analysis
of variance (ANOVA) to evaluate differences among groups
followed by a Dunn–Bonferroni test for post hoc comparisons.
The effectiveness of CSIT for identifying AD, MCI, and NC
was assessed by receiver operating characteristic curve (ROC)
analysis. The sensitivity and false positive rate (1 – specificity) of
CSIT-OI, CSIT-self, and CSIT-OI + self was calculated for ROC
curves, and the area under the ROC curve was used to determine
classification accuracy. A α < 0.05 (two-tailed) was considered
significant for all tests.

Spearman correlation analysis was performed between CSIT
scores and mean GMV of each ROI (OC, amygdala, and
hippocampus). Significant correlations between CSIT and GMV
of each ROI were corrected for false discovery rate. The mean
GMV of each ROI was also compared between groups by
ANCOVA with sex, age, and education as covariates. At the
whole-brain voxel level, behavior – neuroimaging correlation
analysis was conducted using SPM 8 with sex, age, and education
as covariates. The statistical maps were thresholded using the
Gaussian random field (GRF) correction with a voxel-level
threshold of P < 0.001 and a cluster-level threshold of P < 0.05.

RESULTS

Clinical Characteristics of the Study
Cohort
The demographic and baseline clinical characteristics of the study
subjects are summarized in Table 1. There were no significant
differences in age, sex ratio, family history, WMH score, and
vascular risk factors among the three groups. However, there were
significant differences in years of education (AD = 6.78 ± 5.26,
MCI = 8.48± 5.53, NC = 12.20± 4.44; p < 0.001).

Neuropsychological Deficits in MCI
and AD
There were significant differences in several neuropsychological
test outcomes among the three groups as revealed by one-
way ANOVA (Table 2). As expected, MMSE (p < 0.001) and
CDR (p < 0.001) differed markedly, with significantly lower
scores in the AD group compared to MCI and NC groups. In
addition, there were significant inter-group differences in AVLT
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TABLE 2 | Neuropsychological assessment of MCI, AD, and NC groups.

AD MCI NC ANOVA/Kruskal-Wallis

n = 37 n = 27 n = 30 χ2/F p

MMSE∗ 16.03 ± 4.04 26 (25, 28) 29 (28, 30) 73.253abc <0.001

CDR∗ 1.0 (1, 1.5) 0.5 (0.5, 0.5) 0 (0, 0) 61.189abc <0.001

AVLT (immediate)∗ 2.2 (1.1, 3.4) 4.64 ± 1.65 9.22 ± 1.86 72.642abc <0.001

AVLT (delay)∗ 0.0 (0.0, 0.5) 3.33 ± 2.51 10.57 ± 2.45 29.308abc <0.001

AVLT (recognize)∗ 10.0 (4.0, 13.5) 12.52 ± 2.03 14 (14, 15) 29.308abc <0.001

HAMD∗ 4.0 (3.0, 6.0) 5.0 (4.0, 14.0) 1.0 (0, 2.0) 31.904ab <0.001

ADL∗ 30.0 (26.0, 35.5) 21.0 (20.0, 22.0) 20 (20, 20) 61.443abc <0.001

CSIT score† 13.46 ± 6.09 19.11 ± 6.41 28.80 ± 3.93 62.597abc <0.001

CSIT-self∗ 3.0 (2.5, 4.0) 3.0 (3.0, 3.0) 3.0 (3.0, 4.0) 4.039 0.133

∗Kruskal–Wallis test followed by pairwise multiple comparisons. †ANOVA with post hoc Bonferroni test. ap < 0.05 (post hoc), AD vs. HC; bp < 0.05 (post hoc), MCI vs.
HC; cp < 0.05 (post hoc), AD vs. MCI. AD, Alzheimer’s disease, ADL, activities of daily living scale; AVLT, auditory verbal learning test; CDR, clinical dementia rating;
CSIT-OI, Chinese smell identification test – olfactory identification; CSIT-self, Chinese smell identification test – self assessment; HAMD, hamilton depression scale; MCI,
mild cognitive impairment; MMSE, mini mental state examination; NC, normal control.

TABLE 3 | Correlations analysis of CSIT and neuro-psychological.

All participants AD MCI NC

R p R p R p R p

MMSE 0.740∗∗ 0.000 0.225 0.180 0.268 0.176 0.392∗ 0.032

CDR −0.775∗∗ 0.000 −0.452∗∗ 0.005 0.000 0.000 0.087 0.648

AVLT (immediate) 0.703∗∗ 0.000 0.241 0.151 0.027 0.892 0.329 0.076

AVLT (delay) 0.799∗∗ 0.000 0.417∗ 0.010 0.213 0.286 0.350 0.058

AVLT (recognize) 0.624∗∗ 0.000 0.459∗∗ 0.004 0.180 0.370 0.419∗ 0.021

HAMD −0.46∗∗ 0.000 −0.186 0.269 0.107 0.595 −0.394∗ 0.031

ADL −0.697∗∗ 0.000 −0.193 0.253 −0.246 0.216 −0.257 0.171

R, correlation coefficient (Spearman’s rho correlations). ∗∗Correlation is significant at the 0.01 level (2-tailed). ∗Correlation is significant at the 0.05 level (2-tailed). AD,
Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control; MMSE, mini mental state examination; CDR, clinical dementia rating; AVLT, auditory verbal
learning test; HAMD, Hamilton depression scale, ADL, activities of daily living scale.

(immediate, delay, or recognition; p < 0.001). Daily functions
were significantly impaired only in AD patients; both MCI and
AD groups showed a gradual decline, but a worse performance
was observed in the latter patients (Table 2). Mean HAMD scores
were higher in AD and MCI groups than in the NC group,
and higher in MCI than AD (Table 2). The CSIT-OI score was
positively correlated with AVLT [delay] and AVLT [recognize]
and negatively correlated with CDR in AD patients but not in the
other groups (Table 3).

CSIT Scores Distinguish MCI and AD
From Age-Matched Controls
Group Differences in CSIT-OI and CSIT-Self Scores
There were significant differences in CSIT-OI score among
groups, with significantly lower scores (indicating poorer OI) in
the AD and MCI group compared to NCs (p < 0.001), and lower
mean score in AD than MCI (Figure 1 and Table 2). The CSIT-
self score was also lower in AD and MCI groups compared to
NCs. The CSIT-self score was positively correlated with CSIT-
OI for the entire cohort (R = 0.415; p < 0.001); however,
the correlation did not reach significance within individual
diagnostic groups due to lack of statistical power (p > 0.05).

Power of Discrimination
Patients vs. normal controls
In the ROC analysis, both CSIT-OI score and combined CSIT-OI
plus CSIT-self score distinguished AD from NC and MCI from
NC, while CSIT-self score alone did not (note that AUC = 0.5
indicates no discriminative power) (Figures 2A,B and Table 4).
Using a cut-off value of 26, CSIT-OI score distinguished MCI
from NC with 80.0% sensitivity and 89.0% specificity; using a cut-
off value of 22.5 distinguished AD from NC with 93% sensitivity
and 95% specificity.

AD vs. MCI
According to ROC analysis, CSIT-OI score and CSIT-OI plus
CSIT-self score also distinguished AD from MCI, while again
CSIT-self score did not (Figure 2C and Table 4). Using a cutoff
value of 18.5, CSIT-OI score distinguished AD from MCI with
70.4% sensitivity and 83.8% specificity.

Correlations Between CSIT Scores and
Regional GMV Values at the ROI and
Voxel Levels
At the ROI level, CSIT-OI scores of AD patients were positively
correlated with left amygdala volume (r = 0.38, p = 0.046), with
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FIGURE 1 | Histogram of CSIT scores for all participants in this study. (A) The CSIT-OI scores of patients with AD and MCI were lower than NC, and the scores of
AD were the lowest and there were significant statistical differences (P < 0.001); ∗∗∗<0.001. (B) There was no difference in the CSIT-self scores of the three groups
(P > 0.05).

FIGURE 2 | ROC curves for the CSIT-OI, CSIT-Self and CSIT-OI + Self (A–C). (A) ROC curves for the CSIT-OI, CSIT-self, and CSIT-OI + Self between AD and MCI.
(B) ROC curves for the CSIT-OI, CSIT-self, and CSIT-OI + Self between AD and NC. (C) ROC curves for the CSIT-OI, CSIT-self, and CSIT-OI + Self between MCI and
NC. The x-axis indicates the error of the second kind (100%-specificity). The y-axis indicates sensitivity. The area under the curve (AUC) shows the discriminative
power between the two groups. The diagonal from (0,0) to (100,100) with AUC = 0.5 indicates a total lack of discriminative power.

TABLE 4 | Receiver operating characteristic curve analysis of CSIT in all participant.

Variable AUC Cut-off value Youden index Sensitivity Specificity PPV NPV LR+ LR−

AD vs. MCI CSIT-OI 0.98∗∗ 18.5 0.54 0.70 0.84 0.76 0.80 4.34 0.35

CSIT-Self 0.58 2.5 0.06 0.81 0.24 0.44 0.64 1.08 0.76

CSIT&Self 0.98∗ 22.5 0.47 0.63 0.84 0.74 0.76 3.88 0.44

AD vs. NC CSIT-OI 0.98∗∗ 22.5 0.88 0.93 0.95 0.93 0.95 17.27 0.07

CSIT-Self 0.58 2.5 0.18 0.93 0.24 0.92 0.88 1.23 0.27

CSIT&Self 0.98∗∗ 25.5 0.88 0.93 0.95 0.82 0.94 17.27 0.07

MCI vs. NC CSIT-OI 0.92∗∗ 26.0 0.69 0.80 0.89 0.89 0.80 7.20 0.23

CSIT-Self 0.64 3.5 0.21 0.40 0.81 0.71 0.55 2.16 0.74

CSIT&Self 0.92∗∗ 28.5 0.76 0.87 0.89 0.90 0.86 7.80 0.15

∗significant at the 0.05 level (2-tailed). ∗∗significant at the 0.01 level (2-tailed).
Abbreviations: AUC: area under the receiver operating characteristic (ROC) curve, PPV: positive prediction value, NPV: negative prediction value, LR+: positive likelihood
ratio, LR−: negative likelihood ratio, CSIT-OI: Chinese smell identification test – olfactory identification, CSIT-self: Chinese smell identification test – self assessment, CSIT
& self: CSIT-OI + CSIT-self.
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TABLE 5 | Correlations analysis of CSIT and the GMV of ROI.

Total participants AD MCI NC

R FDR-p R FDR-p R FDR-p R FDR-p

OFC-L 0.452∗∗ 0.000 0.248 0.139 0.156 0.438 0.012 0.95

OFC-R 0.487∗∗ 0.000 0.213 0.247 0.382 0.294 0.144 0.674

Amygdala-L 0.466∗∗ 0.000 0.331∗ 0.046 0.035 0.863 0.191 0.312

Amygdala-R 0.457∗∗ 0.000 0.192 0.255 0.144 0.71 0.02 0.918

Hippocampus-L 0.520∗∗ 0.000 0.323 0.051 0.088 0.797 0.326 0.47

Hippocampus-R 0.512∗∗ 0.000 0.242 0.224 0.231 0.737 0.167 0.757

Precentral cortex-L 0.469∗∗ 0.000 0.577∗∗ 0.000 0.283 0.152 0.172 0.363

IFG-L 0.416∗∗ 0.000 0.430∗∗ 0.008 0.174 0.769 −0.2 0.29

R, correlation coefficient (Spearman’s rho correlations); FDR-p, the p value after false discovery rate (FDR) correction. ∗Correlation is significant at the 0.05 level (2-tailed).
∗∗Correlation is significant at the 0.01 level (2-tailed). ROI, region of interesting; GMV, gray matter volume; L, left; R, right; OFC, olfactory cortex; IFG, inferior frontal gyrus.

a trend observed for the left hippocampus (r = 0.35, p = 0.051)
(Table 5). At the voxel level, CSIT-OI score was associated with
volumes of the left inferior frontal gyrus (IFG, peak location
x = –33, y = 20, z = –18, peak intensity = 0.612) and left
precentral gyrus (peak location: x = –42, y = –5, z = 33, peak
intensity = 0.707) (p < 0.05; Figure 3 and Table 5). There was
a significant relationship between CSIT-OI score and GMV in
the all participants at the ROI or voxel level, but no significant
relationships were found between CSIT-OI score and GMV in the
MCI and NC groups at either the ROI or voxel level (Table 5).

DISCUSSION

We demonstrate that OI as measured by the CSIT is impaired
in AD and MCI patients compared to age-matched healthy
controls in the Chinese population, and that the severity of OI
dysfunction can distinguish AD and MCI patients from controls
and AD from MCI with high sensitivity and specificity. In
addition, CSIT scores were significantly associated with specific
memory assessment outcomes but not with measures of general
cognitive function such as MMSE score. Based on ROI-level
GMV analysis, the OI of AD patients was significantly correlated
with left amygdala volume, with a similar trend observed for
the left hippocampus (but not bilateral OC, right amygdala, or
hippocampus); meanwhile, a voxel-level analysis revealed that
the OI of AD patients was also associated with the volumes of
precentral gyrus-L and IFG-L. In contrast, no such CSIT-GMV
associations were found in the MCI and NC groups. Therefore,
OI dysfunction as assessed by a culturally appropriate test (the
CSIT) may be a convenient AD screening tool.

This study confirmed that OI is impaired in ethnic Chinese
AD and MCI patients, consistent with previous studies in
Western populations. In all three diagnostic groups (MCI, AD,
and NC), OI decreased progressively with age (Larsson et al.,
2000; Devanand et al., 2014; Roalf et al., 2017; Silva et al., 2018).
There was also a disconnect between objective and subjective
OI capacity, as AD patients did not rate their sense of smell
as inferior despite lower CSIT-OI scores. In line with our
findings (Doty et al., 1984; Burns, 1998) reported that only
6% of AD patients complained of olfactory dysfunction, while

90% had actual olfactory deficits as demonstrated by olfactory
tests. Alternatively, MCI patients did provide relatively low self-
assessments (Yu et al., 2018). This may result from impaired
self-concept in AD but not in MCI. Further, average score
among AD patients (13/40 = 32.5%) was near the chance level
of 25%, indicating that sense of smell was substantially degraded.
Therefore, it is necessary to measure olfactory function using
sensitive and objective olfactory tests. Thus, OI may not be
suitable for gauging AD progression but could be useful for
measuring MCI progression and deficits during normal aging.

Although CSIT is based on UPSIT, group differences in
scores were greater than in past studies using the UPSIT,
suggesting better discriminative efficacy. Our ROC analysis
suggests that the CSIT can distinguish MCI and AD patients
from normal elderly individuals and accurately distinguish AD
from MCI. This level of discrimination is similar to cerebral
spinal fluid (CSF) biomarkers, only slightly inferior to amyloid
imaging and structural MRI, and significantly greater than UPSIT
(sensitivity: 0.88, specificity: 0.91) (Devanand, 2016; Hagemeier
et al., 2016). The OI test classifies individuals showing cognitive
decline correctly at a higher rate than a global cognitive test
(Graves et al., 1999). Consistent with these findings, CSIT-OI
score was positively correlated with memory function (AVLT-
delay and -recognition), and negatively correlated with the
severity of cognitive impairment (CDR score) in AD patients.
This demonstrates that the OI deficit in AD is mainly related
to impairment of semantic (cognitive) rather than perceptual
processing (Lehrner et al., 1999). However, the CSIT-OI score was
not associated with MMSE scores in AD patients, consistent with
previous studies (Roalf et al., 2017; Silva et al., 2018), possibly
because the MMSE is a general test of cognition that does not
provide information on specific cognitive dysfunctions in AD.
Therefore, we conclude that CSIT is more suitable for use in
the Chinese Han population than the UPSIT, and is a useful
biomarker for cognitive deficit.

Volumes of left IFG and precentral cortex were significantly
associated with OI performance in AD patients, a finding that
to the best of our knowledge has not been reported previously.
While previous reports have indicated that OI is related to
the olfactory bulb, OC, hippocampus, and parahippocampus,
few have found associated changes in motor-related areas. The
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FIGURE 3 | Correlations between CSIT scores and regional GMV values at the voxel levels (A–D). (A) The location of left-Precentral Gyrus (L-PG) (peak MINI:
x = −42, y =–5, z = 33, Peak intensity: 0.707). (C) The location of left-Inferior Frontal Gyrus (L-IFG) (peak MINI x = –33, y = 20, z = –18, Peak intensity = 0.612).
(B,D) The scatter plot and linear fit show the relationship between the GMV of L-PG & L-IFG and CSIT score in AD. The results suggested that the GMV of L-PG
(r = 0.643, p < 0.001) & L – IFG (r = 0.517, p = 0.001) were significantly correlated with the CSIT scores in AD.

precentral cortex is an important component of the motor
network (Yousry et al., 1997; Hopkins et al., 2017). In addition,
however, recent reports have found that the precentral cortex
participates in a variety of perceptual and integrative processes
(Chen et al., 2008), including contributions to cognitive functions
such as language and executive control (Ferreira et al., 2017;
Mugler et al., 2018). Bi et al. (2018) found significant changes
in the precentral cortex volume of AD patients compared to
NCs. In addition, Rizzo et al. (2018) found that the fiber

bundle connection between the amygdala and precentral gyrus
is abnormal in AD. Furthermore, the strength of functional
connections between posteromedial and precentral cortices was
reduced, which is significantly correlated with cognitive function
in AD (Wu et al., 2016). The IFG is part of Broca’s area, which
is involved in semantic processing and phoneme production
(Mugler et al., 2018), and some studies have also reported a
relationship with memory function (Smith and Jonides, 1999).
The IFG does not contribute to the processing of single
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syllables, but rather acts in combination with the precentral
gyrus for responding to understood speech, including the
ordering of multiple syllables. A number of functional imaging
studies have demonstrated that L-IFG and L-precentral gyrus
regions are active during speech perception and comprehension
(Wilson et al., 2004; Pulvermuller et al., 2006), particularly
when participants listen attentively to speech signals that are
noisy or degraded (Hervais-Adelman et al., 2012; Wild et al.,
2012). On the ROI level, the volume of the left amygdala was
significantly associated with OI performance in AD patients,
suggesting that structural changes in the left amygdala are due
to involvement of the olfactory network. Based on previous
reports and our findings, we speculate that functional anomalies
in the precentral gyrus, IFG, amygdala, and hippocampus lead to
defective OI in AD patients, and that the amygdala–precentral
gyrus pathway plays a predominant role in OI. Unraveling the
specific contributions of this precentral gyrus shrinkage to OI
deficits requires further research.

This study has several limitations. First, our AD patient group
included both early-onset and late-onset patients, which may
introduce heterogeneity to morphometric changes. A previous
study found that patients with early-onset AD showed bilateral
reductions in the medial temporal lobes, inferior parietal lobules,
precuneus and perisylvian cortices, and cingulate cortices, as
well as in the right inferior frontal gyrus, whereas late-onset
patients with AD showed atrophy only in bilateral medial
temporal cortices. Second, we did not compare differences
between AD patients with and without olfactory dysfunction,
and such a comparison could also reveal mechanisms underlying
OI disorders. Third, this is a cross-sectional rather than a
longitudinal study, so we do not know if these differences were
caused by the progression of AD. Fourth, we excluded subjects
who engaged in long-term smoking and drinking, as these
behaviors affect cognition and olfaction (Frye, 1990). This could
result in selection bias but better reflects central mechanisms of
olfactory recognition (Vasavada et al., 2017). Lastly, the sample
was small; therefore, studies in a larger population are needed
in order to confirm whether this measure can consistently
distinguish controls from AD patients.

CONCLUSION

Our study confirms that the CSIT is a culturally appropriate
olfactory recognition test for the Chinese Han population that
can effectively distinguish among AD, MCI, and healthy aging.
Gray matter voxel-based MRI analysis demonstrated that OI
is more strongly related to the left cerebral hemisphere (left
hippocampus, left amygdala, left-precentral gyrus, left-IFG, and

bilateral olfactory cortex) than to the right hemisphere (right
hippocampus and right amygdala). We also found that the
left-precentral gyrus and left-IFG may be involved in OI. We
therefore speculate that language processing may contribute to
the expression of olfactory recognition, and that AD patients are
impaired in this domain. However, further research is needed
to elucidate the precise mechanisms for OI dysfunction and
relationships to other aspects of MCI and AD pathology.
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