
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



International Journal of Biological Macromolecules 163 (2020) 1649–1658

Contents lists available at ScienceDirect

International Journal of Biological Macromolecules

j ourna l homepage: ht tp : / /www.e lsev ie r .com/ locate / i j b iomac
The structure-activity relationship of the interactions of SARS-CoV-2
spike glycoproteins with glucuronomannan and sulfated galactofucan
from Saccharina japonica
Weihua Jin a,b,⁎, Wenjing Zhang c, Dipanwita Mitra e, Martin G. McCandless e, Poonam Sharma e,
Ritesh Tandon e, Fuming Zhang b,⁎⁎, Robert J. Linhardt b,d,⁎⁎⁎
a College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
b Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
c Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
d Departments of Biological Science, Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
12180, USA
e Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
⁎ Correspondence to: W. Jin, College of Biotechnology
University of Technology, Hangzhou 310014, China.
⁎⁎ Corresponding author.
⁎⁎⁎ Correspondence to: R.J. Linhardt, Departments of Bio
Chemical Biology and Biomedical Engineering, Ce
Interdisciplinary Studies, Rensselaer Polytechnic Institute,

E-mail addresses: jinweihua@zjut.edu.cn (W. Jin), zha
linhar@rpi.edu (R.J. Linhardt).

https://doi.org/10.1016/j.ijbiomac.2020.09.184
0141-8130/© 2020 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 July 2020
Received in revised form 8 September 2020
Accepted 21 September 2020
Available online 24 September 2020

Keywords:
Glucuronomannan
Sulfated galactofucan
SARS-CoV-2
The SARS-CoV-2 spike glycoproteins (SGPs) andhuman angiotensin converting enzyme2 (ACE2) are the two key
targets for the prevention and treatment of COVID-19. Host cell surface heparan sulfate (HS) is believed to inter-
act with SARS-CoV-2 SGPs to facilitate host cell entry. In the current study, a series of polysaccharides from
Saccharina japonica were prepared to investigate the structure-activity relationship on the binding abilities of
polysaccharides (oligosaccharides) to pseudotype particles, including SARS-CoV-2 SGPs, and ACE2 using surface
plasmon resonance. Sulfated galactofucan (SJ-D-S-H) and glucuronomannan (Gn) displayed strongly inhibited
interaction between SARS-CoV-2 SGPs and heparin while showing negligible inhibition of the interaction be-
tween SARS-CoV-2 SGPs and ACE2. The IC50 values of SJ-D-S-H and Gn in blocking heparin SGP binding were
27 and 231 nM, respectively. NMR analysis showed that the structure of SJ-D-S-H featured with a backbone of
1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-linked α-L-Fucp residues sulfated at C4 and
branched with 1, 6-linked β-D-galacto-biose; Gn had a backbone of alternating 1, 4-linked β-D-GlcAp residues
and 1, 2-linked α-D-Manp residues. The sulfated galactofucan and glucuronomannan showed strong binding
ability to SARS-CoV-2 SGPs, suggesting that these polysaccharides might be good candidates for preventing
and/or treating SARS-CoV-2.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19, caused by the SARS-CoV-2 virus, has now spread world-
wide with the tremendous human and economic impact. SARS-CoV-2
is a zoonotic betacoronarirus transmitted through person toperson con-
tact by airborne and fecal-oral routes [1]. Approximately 15 million
cases of COVID-19 and more than 600,000 deaths have been reported
[2]. The absence of vaccines prompts the need for antiviral therapeutics.
and Bioengineering, Zhejiang
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Previous studies [3–5] have shown that the host cell surface glycos-
aminoglycan (GAG), heparan sulfate (HS), interacts with SARS-CoV-2
spike glycoprotein (SGP) andmay facilitate host cell entry. Surface plas-
mon resonance (SPR) has been performed to detect the binding ability
between SGP and heparin, a highly sulfated HS analog. Monomeric
SARS-CoV-2 SGP was shown to bind more tightly to immobilized hepa-
rin (KD= 40 pM) than did SARS-CoV SGP (500 nM) andMERS-CoV SGP
(1 nM) [3]. The results of the competition binding assay indicated that
the IC50 of heparin, tri-sulfated non-anticoagulantHS and lowmolecular
weight heparinwere 0.056 μM,0.12 μM, and26.4 μM, respectively [3]. In
addition, unbiased computational ligand docking studies suggested that
the heparan sulfate (HS) binding domains were at the subunit 1 (S1)/
subunit 2 (S2) of spike glycoprotein site and another site (453-459
(YRLFRKS)) [3].

Sulfated polysaccharides from brown seaweeds have similar struc-
tures to GAGs. Compared to heparin, the polysaccharide (RPI-27) and
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low molecular weight polysaccharide (RPI-28), from Saccharina japon-
ica, were shown to exhibit and strongly inhibit the binding of SARS-
CoV-2 SGP to immobilized heparin [6]. In addition, RPI-27 and RPI-28
did not show any toxicity using Vero cells using a standard water-
soluble tetrazolium salt-1 (WST-1) assay, even at thehighest concentra-
tions studied. Moreover, in an in vitro antiviral assays, RPI-28 had an
EC50 of 8.3 ± 4.6 μg/mL (corresponding to approximately 83 nM) [6],
and was more potent than remdesivir (a drug recently approved for
emergency use in severe COVID-19 infections), heparin (2.1 μM),
chemo-enzymatically synthesized TriS (a non-anticoagulant heparin
analog) [7] (5.0 μM) and non-anticoagulant low molecular weight
(LMW) heparin (NACH) [8] (55 μM). These strong interactions were at-
tributed to multivalent binding between the polysaccharides and the
SGPs of viral particles [9].

Due to the highly transmissible and pathogenic nature of SARS-CoV-
2, a biosafety level 3 (BSL3) containment is required for live-virus stud-
ies [10]. A pseudotyping system,whichmimics the surface properties of
SARS-CoV-2, has been used in biosafety level 2 (BSL2) laboratories for
the purpose of vaccine studies, drug inhibition studies and serological
screening [10]. Recently, a sulfated fucan from Lytechinus variegatus
(sea urchin) and a sulfated galactan from Botryocladia occidentalis (red
seaweed) were found to have anti-SARS-CoV-2 activity using these
pseudotype SARS-CoV-2 particles [11]. SARS-CoV-2 SGFs could bind
ACE2 based on previous studies [12]. In the current study, interactions
between pseudotyped particles and polysaccharides from Saccharina ja-
ponica have been further investigated to elucidate their structure-
activity relationship. In addition, the possible inhibitory activities of
polysaccharides on the interaction between SARS-CoV-2 SGPs and
ACE2 were also determined.

2. Materials and methods

2.1. Preparation of polysaccharides from Saccharina japonica

Crude polysaccharide from Saccharina japonica (SJ) was obtained ac-
cording to a previous study by hot water extraction [13]. SJ-100K, SJ-
50K, SJ-30K, SJ-10K and SJ-3Kwere prepared from0.2M formic acid cat-
alyzed degradation of SJ using five types of ultrafiltration devices
(Ultracel 100 kDa membrane, Ultracel 50 kDa membrane, Ultracel
30 kDa membrane, Ultracel 10 kDa membrane and Ultracel 3 kDa
Scheme 1. The flow chart o
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membrane, respectively (Sigma-Aldrich)) [14]. LMW polysaccharide
(SJ-D) was prepared by the degradation of SJ polysaccharide using hy-
drogen peroxide and ascorbic acid [14–17]. SJ and SJ-D were separated
by anion-exchange chromatography on a DEAE-Bio Gel agarose FF
(6 cm × 40 cm) eluted with water (5 L), 0.5 M NaCl (5 L) (Fraction W:
SJ-W and SJ-D-W), 1 M NaCl (5 L) (Fraction I: SJ-I and SJ-D-I) and 2 M
NaCl (5 L) (Fraction S: SJ-S and SJ-D-S) [14]. Autohydrolysis was carried
out by methods described in previous studies [18–24]. Two types of
autohydrolyzed polysaccharides, including higher molecular weight,
H-type fractions (SJ-D-W-H, SJ-D-I-H and SJ-D-S-H) and lower molecu-
lar weight, L-type fractions (SJ-D-W-L, SJ-D-I-L and SJ-D-S-L) were ob-
tained [14]. Glucuronomannan oligomers (G2, G4 and G6,
disaccharide, tetrasaccharide and hexasaccharide, respectively) and
glucuronomannan polysaccharide (Gn) with a molecular weight of
7.0 kDa were prepared in our laboratory by previously described
methods [25–27]. The desulfated polysaccharides (SJ-I-DS, SJ-S-DS, SJ-
D-I-DS and SJ-D-S-DS) and oversulfated polysaccharides (SJ-I-PS, SJ-S-
PS, SJ-D-I-PS and SJ-D-S-PS) were prepared according to the previous
studies [13,14,28]. Acid degradation was carried out according to the
previous study [29]. Three fractions were obtained. Briefly, crude poly-
saccharide (10 mg/mL) was dissolved in 0.1 M HCl and stirred for
0.5 h at 80 °C. The mixture was neutralized with 5% NH4OH solution
in water. The solution was concentrated and precipitated by ethanol.
The supernatant (Fraction GX-1: SJ-GX-1 and SJ-D-W-GX-1) was dia-
lyzed and lyophilized. The precipitant was further degraded by 0.5 M
HCl and stirred for 2 h at 80 °C. The mixture was neutralized with 5%
NH4OH solution in water. The solution was concentrated and precipi-
tated by ethanol. The supernatant (Fraction GX-2: SJ-GX-2 and SJ-D-
W-GX-2) was dialyzed and lyophilized. The precipitants (Fraction GX-
3: SJ-GX-3 and SJ-D-W-GX-3) were then dialyzed and lyophilized. All
samples studied were summarized in Scheme 1.

2.2. Solution competition SPR analysis

Solution competition SPR measurements were performed on a
BIAcore 3000 (GE Healthcare, Uppsala, Sweden). A heparin chip was pre-
pared based on previous studies [5] by the immobilization of biotinylated
heparin on a streptavidin (SA) chip. Pseudotype particles were prepared
as in previous studies [10,11]. Briefly, HEK293T cells (2 × 106) were
plated in a 100-mm tissue culture dish and transfected the next day
f sample preparation.



Fig. 1. Bar graphs of normalized pseudotype particles binding preference to surface
heparin by competing with SJ and its fractions (A) and SJ-D and its fractions (B).
Concentration of pseudotype particles was 0.085 mg/mL and concentrations of different
polysaccharides were 1000 nM. All bar graphs with standard deviations were based on
triplicate experiments.

W. Jin, W. Zhang, D. Mitra et al. International Journal of Biological Macromolecules 163 (2020) 1649–1658
with a combination of the following plasmids: 9 μg of pLV-eGFP, 9 μg of
psPAX2, and 3 μg of pCAGGS-S (SARS-CoV-2)(Catalog No. NR-52310:
BEI-Resources). The supernatant from cell culture was harvested, spun
in a tabletop centrifuge for 5 min at 2000 ×g to pellet the residual cells
and then passed through a 0.45 μm syringe filter. Virus titers were calcu-
lated by plating on new HEK293T cells and enumerating GFP positive
cells. Pseudotype particles were pre-mixed with different concentrations
of polysaccharides or oligosaccharides in HBS-EP buffer and injected over
the heparin chip at 30 μL/min to measure the inhibition of pseudotype
particle binding to heparin surface. After each run, there was a dissocia-
tion period of 3 min and a regeneration period of 1 min using 2 M NaCl.

SARS-CoV-2 spike protein was purchased from Sino Biological Inc.
(catalog #: 40591-V02H). SARS-CoV-2 spike proteinwas immobilized co-
valently to a CM5 sensor chip using manufacturer methods. Human an-
giotensin converting enzyme 2 (ACE2 was a generous gift from
Professor Jason McLellan from the University of Texas at Austin) at
500 nMwith orwithout polysaccharides or oligosaccharideswas injected
over the SARS-CoV-2 spike protein chip at 30 μL/min tomeasure the inhi-
bition of polysaccharides or oligosaccharides on ACE2 binding to SARS-
CoV-2 spike protein chip. After each run there was a dissociation period
of 3 min and regeneration period of 1 min using with 2 M NaCl.

2.3. Compositional analysis and nuclear magnetic resonance (NMR)
spectroscopy

The molar ratio of monosaccharides, fucose (Fuc) and galactose
(Gal) contents, were determined based on a modified method from a
previous study [30]. Sulfate content was determined by the paper of
Dodgson and Price [31]. The molecular weights of the polysaccharides
were determined using gel permeation chromatography-high perfor-
mance liquid chromatography (GPC-HPLC) on TSK G3000 PWxl column
(7 μm, 7.8 × 300 mm) with elution in 0.05 M Na2SO4 at a flow rate of
0.5 mL/min at 40 °C with refractive index detection. Ten different mo-
lecular weight dextrans, purchased from the National Institute for the
Control of Pharmaceutical and Biological Products (China), were used
as molecular weight standards.

For NMR analysis, polysaccharides (30 mg) were co-evaporated
with deuterium oxide (99.9%) twice before dissolving in deuterium
oxide. One-and two-dimensional spectra, including 1H NMR, 13C NMR
and 1H\\13C heteronuclear single quantum coherence spectroscopy
(HSQC), were recorded at a Hudson-Bruker SB 800 MHz spectrometer
(Bruker BioSpin, Billerica, MA, USA) at 25 °C.

3. Results

3.1. SPR solution competition study of different polysaccharides obtained by
anion exchange chromatography on heparin chip

According to a previous study [6], polysaccharide (SJ) from
Saccharina japonica has anti-SARS-CoV-2 virus activity and exhibits
stronger inhibitory activity binding to SARS-CoV-2 SGPs. Therefore, SJ
and its derivatives were screened using SPR to determine binding affin-
ity to the pseudotype particles for the purpose of structure-activity rela-
tionship. SJ showed the strongest inhibitory activity, which was
consistent with the previous study (Fig. 1A). Molecular weight influ-
enced the binding ability, however, SJ-D still exhibited a strong inhibi-
tory activity (>80%) (Fig. 1B). Anion exchange chromatography was
carried out to separate SJ and SJ-D and SJ-I, SI-S and SJ-D-S showed
strong inhibitory activity (>80%). Previous studies [15–17] showed
that SJ-I, SI-S and SJ-D-S were sulfated galactofucans.

3.2. SPR solution competition study on modified polysaccharides (mainly
sulfated galactofucans) using a heparin chip

After autohydrolysis, two fractions (H-type fraction with high mo-
lecular weight and L-type fraction with low molecular weight) were
1651
obtained. The results of SPR (Fig. 2A) indicated that H-type fractions
(SJ-D-W-H, SJ-D-I-H and SJ-D-S-H) had stronger inhibitory activities
than L-type fractions (SJ-D-W-L, SJ-D-I-L and SJ-D-S-L). SJ-D-I-H and
SJ-D-S-H showed strong inhibitory activity (> 80%). The impact of sul-
fate was examined using desulfated polysaccharides (SJ-I-DS, SI-S-DS,
SJ-D-I-DS and SJ-D-S-DS) and chemically oversulfated polysaccharides
(SJ-I-PS, SI-S-PS, SJ-D-I-PS and SJ-D-S-PS). Oversulfated polysaccharides
exhibited very strong inhibitory activities,whichwere stronger than the
native polysaccharides (Fig. 2B and C). Desulfated polysaccharides ex-
hibited only very weak or no inhibitory activities and were weaker in-
hibitors than the native polysaccharides. We conclude that the
presence of sulfate groups a one-factor influencing polysaccharide bind-
ing to pseudotype particles.

3.3. SPR solution competition study on modified polysaccharides (mainly
on glucuronomannan) on heparin chip

Five MWCO membranes (100 K, 50 K, 30 K, 10 K and 3 K) were
used to separate the partially degraded polysaccharides by 0.2 M
formic acid. SJ-100 K showed the strongest inhibitory activity
(Fig. 3A). In addition, 0.1 M HCl and 0.5 M HCl were used sequen-
tially to degrade SJ and SJ-D-W to obtain three fractions: (1) dilute
acid-sensitive fractions (SJ-GX-1 and SJ-D-W-GX-1); (2) acid-
sensitive fractions (SJ-GX-2 and SJ-D-W-GX-2); and (3) acid-
stable fractions (SJ-GX-3 and SJ-D-W-GX-3), respectively. Acid-



Fig. 2. Bar graphs of normalized pseudotype particles binding preference to surface
heparin by competing with different modified polysaccharides (mainly on sulfated
galactofucan). Concentration of pseudotype particles was 0.085 mg/mL and
concentrations of different polysaccharides were 1000 nM. All bar graphs with standard
deviations were based on triplicate experiments. Fig. 3. Bar graphs of normalized pseudotype particles binding preference to surface

heparin by competing with different modified polysaccharides (mainly on
glucuronomannan). Concentration of pseudotype particles was 0.085 mg/mL and
concentrations of different polysaccharides were 1000 nM. All bar graphs with standard
deviations were based on triplicate experiments.
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stable fractions (SJ-GX-3 and SJ-D-W-GX-3) exhibited stronger in-
hibitory activities than the other two corresponding fractions
(Fig. 3B). Monosaccharide analysis indicated that acid-stable frac-
tions (SJ-GX-3 and SJ-D-W-GX-3) were glucuronomannan deriva-
tives, suggesting that glucuronomannan might be one active
component to bind the pseudotype particles. A low molecular
1652
weight glucuronomannan (Gn) with 7.0 k Da and three
glucuronomannan-oligomers were also examined. Gn exhibited
very strong inhibitory activity (>90%) (Fig. 3C). It is interesting to
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note that glucuronomannan-tetramer showed 78% inhibitory
activity.

3.4. Kineticsmeasurements of pseudotype particles interactionwith SJ-D-S-
H and Gn on heparin chip

Based on the types of polysaccharides from fucose-containingpolysac-
charides from brown algae [32], a sulfated galactofucan (SJ-D-S-H) and a
glucuronomannan (Gn) were further studied. The yields of SJ-D-S-H and
Gn from SJ were 3.4% and 0.5%, respectively. We determined the kinetic
measurements of the interaction of SJ-D-S-H and Gn with pseudotype
particles by solution-based affinities (Ki) and calculated from IC50 values
from SPR competition experiments. The IC50 values of SJ-D-S-H and Gn
binding to pseudotype particles are shown in Fig. 4. According to a previ-
ous study [11], the dissociation constant (KD) for heparin and pseudotype
particles was 0.85 nM (The estimated molecular weight of pseudotype
particles is 2.5 × 105 kDa). Therefore, the Ki of samples were calculated
using the equation: Ki= IC50/(1+ [C]/KD),where [C] is the concentration
of pseudotype particles (0.34 nM) used in the competition SPR, and for
pseudotype particles binding affinity (KD) for heparin [14,33]. It was
shown that the Ki of SJ-D-S-H and Gn binding to pseudotype particles
were calculated to be 19 nM and 165 nM, respectively.
Fig. 4. SJ-D-S-H competes with heparin for pseudotype particles (A and B) bindingwith a IC50 o
IC50 of 231 nM. Concentrations were 0.085 mg/mL for pseudotype particles. All bar graphs wit
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3.5. Structure features of SJ-D-S-H and Gn

The chemical composition analysis in Fig. 5A indicate that SJ-D-S-H
had 21% sulfate, 36% Fuc and 10% Gal, suggesting that the molar ratio
of Gal to Fuc in SJ-D-S-H was 0.25: 1. The molar ratio of sulfate residues
to Fuc residueswas 0.83, using the equation: (sulfate content/103)/(Fuc
content/146), where 103 was calculated as SO3Na and 146 was Fuc-
H2O. The molar ratio of sulfate to hexose, including Fuc and Gal was
0.66 calculated using the equation: (sulfate content/103)/(Fuc con-
tent/164 + Gal content/162), where 103 was calculated as SO3Na, 162
was Gal-H2O and 146 was Fuc-H2O. GPC-HPLC shows that SJ-D-S-H
had amajor peak at 14.090min, corresponding to themolecular weight
of 13.7 kDa and an accompanying shoulder peak (The area ratio of the
major peak to the shoulder peak was 1:8) at 11.212 min corresponding
to a molecular weight of 195.0 kDa (Fig. 5B). NMR spectroscopy was
performed to elucidate the structure of SJ-D-S-H (Fig. 5). Resonances
with chemical shifts for anomeric carbons, at 103.0 ppm, are character-
istic peaks for 1, 6-linked β-D-Gal residues and β-D-Gal residues,
assigned to the residue D and E. These are also confirmed by the pres-
ence of two peaks at 62.6 and 72.1 ppm, corresponding to the C6 of β-
D-Gal residues and 1, 6-linked β-D-Gal residues, respectively. The
chemical shifts at approximately 98.6 ppm are characteristic peaks for
f 27 nM and Gn competes with heparin for pseudotype particles (C and D) binding with an
h standard deviations were based on triplicate experiments.
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1, 3-linked α-L-Fuc4S residues, assigned to the residue C. The chemical
shifts at approximately 98.0 ppm are characteristic peaks for 1, 3-linked
α-L-Fuc2, 4S residues and 1, 3-linked α-L-Fuc4S residues branched at
C2 with galacto-biose, corresponding to the residues A and B
[22,34–44]. In terms of the 1HNMR spectrum, resonanceswith chemical
shifts of anomeric protons, at approximately 5.31 ppm, are characteris-
tic peaks for 1, 3-linked α-L-Fuc2, 4S residues (Residue A) and 1,3-
linked α-L-Fuc4S residues (Residue B) branched at C2, respectively.
The chemical shifts at approximately 5.01 ppm are characteristic
peaks for 1, 3-linked α-L-Fuc4S residues (Residue C). The chemical
Fig. 5. The PMP derivatization-HPLC spectrum (A), GPC-HPLC (B), 1H NMR sp
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shifts at approximately 4.50 ppm are characteristic peaks for 1, 6-
linked β-D-Gal residues (Residue D and E), respectively [34–38]. More-
over, the chemical shifts at 2.12 and 20.3 ppm can be assigned to acetyl
groups, indicating that SJ-D-S-Hwas also acetylated. Twomethyl groups
at 1.16/1.42 and 2.12 ppmwere characteristic of the C6methyl group of
fucose and CH3 of acetyl group, respectively. By comparing these two
peak area, it was suggested that the molar ratio of acetyl group to the
methyl group of Fuc residues was 0.1 in Fig. 5C. Therefore, based on
the above results, we conclude that the primary structure of SJ-D-S-H
is 1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-
ectrum (C), 13C NMR spectrum (D) and HSQC spectrum (E) for SJ-D-S-H.



Fig. 5 (continued).
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linked α-L-Fucp residues sulfated at C4 and branched with 1, 6-linked
β-D-galacto-biose (Fig. 3). In addition, SJ-D-S-H was also randomly
substituted with acetyl group and sulfate groups on a small fraction of
the Gal residues. The primary structure of SJ-D-S-H is proposed in Fig. 6.

Based on previous studies [25–27,29,45], glucuronomannan (Gn)
consists of alternating 1, 4-linked β-D-GlcAp residues and 1, 2-linked
α-D-Manp residues and has amolecular weight of 7.0 kDa. The primary
structure of Gn proposed is shown in Fig. 6.

3.6. SPR solution competition study on SARS-CoV-2 spike protein chip of
polysaccharides with ACE2

SARS-CoV-2 SGF binds to ACE2 with high affinity [12]. In our previ-
ous study [11], we proposed a model of SARS-CoV-2 attachment and
entry, suggesting that virus at first bound to HS in the nasal epithelium
glycocalyx, increasing the local concentration of virus, leading to
1655
increased infection rates. The HS-virus complex then bound to ACE2
and was endocytosed. In the current study, we show that the sulfated
polysaccharides from S. japonica exhibited the inhibitory activity be-
tween heparin and pseudotype particles containing the SARS-CoV-2
SGPs. Here, we examined whether sulfated polysaccharides could in-
hibit the interaction between SARS-CoV-2 SGFs and ACE2. SARS-CoV-2
SGFs was immobilized to a CM5 sensor chip to answer this question.
ACE2 with or without polysaccharides (or oligosaccharides) was
injected over the SARS-CoV-2 spike protein chip to measure the inhibi-
tion of polysaccharides on ACE2 binding to SARS-CoV-2 spike protein.
ACE2 binds to the SARS-CoV-2 SGP at 140 nM KD (Fig. 7 and Fig. S1),
which is lower than the KD (15 nM) between SARS-CoV RBD-SD1 and
ACE2 [12]. SPR results for polysaccharides showed no or low inhibitory
activity on the interaction between SARS-CoV-2 SGPs and ACE2, sug-
gesting that polysaccharides could not inhibit the interaction between
SARS-CoV-2 SGPs and ACE2.



Fig. 6. The proposed primary structures of SJ-D-S-H and Gn.

Fig. 7. Bar graphs of normalized ACE2 binding preference to surface SARS-CoV-2 spike protein by competing with different polysaccharides. Concentration of ACE2 was 500 nM and
concentrations of different polysaccharides were 1000 nM. All bar graphs with standard deviations were based on triplicate experiments.
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4. Discussion and conclusion

COVID-19 could invade host cell by interactingwith host cell surface
GAGs through its SGPs [3]. SPR studies confirmed that both monomeric
and trimeric SARS-CoV-2 SGPs showvery strong binding affinity to hep-
arin, suggesting that heparin had multiple potential targets could be
used in COVID-19 therapy [5]. Fucose-containing sulfated polysaccha-
rides (FCSPs) are polysaccharides obtained from brown algae
[32,40,46–62]. Sulfated polysaccharides from marine seaweeds have
been suggested to have potential antiviral therapeutic activities
[63–65]. FCSPs from Adenocystis utricularis, Undaria pinnatifida,
Stoechospermummarginatum, Cystoseira indica, Cladosiphon okamuranus
or Fucus vesiculosus reportedly exhibit anti-HSV-1, HSV-2, HCMV, VSV,
Sindbis virus or HIV-1 by stimulating innate and adaptive immune de-
fense, inhibition of cell adhesion (Stage I), viral replication (Stage II),
blockage of the reverse transcriptase (Stage III) [58,62,63,66–73].

Our previous study [6] showed that SJ exhibited promising anti-
COVID-19 viral activity in vitro. However, SJ was a crude
heteropolysaccharide from brown alga Saccharina japonica. The
structure-activity relationship was studied to find the active compo-
nents of these polysaccharides. According to the previous studies [32],
polysaccharides from brown algae contain sulfated fucan, sulfated
galactofucan, fucoglucuronan and fucoglucuronomannan. Anion ex-
change chromatography was performed to separate SJ and SJ-D into
weak (W-type fraction), intermediate (I-type fraction) and strongly
(S-type fraction) charged fractions. SPR results indicated that SJ-I and
SJ-S had very strong inhibitory activities while only SJ-D-S had very
strong inhibitory activity, suggesting that molecular weight also is im-
portant for antiviral activity. Selective C2-desulfationwas accomplished
by autohydrolysis, which is accompanied bypartial debranching. Higher
molecular weight components (SJ-D-W-H, SJ-D-I-H and SJ-D-S-H)
showed stronger inhibitory activities than corresponding lowmolecular
weight components (SJ-D-W-L, SJ-D-I-L and SJ-D-S-L), confirming the
above hypothesis. In addition, SJ-D-I-H and SJ-D-S-H showed very
strong inhibitory activities. Sulfate content was also examined by pre-
paring desulfated polysaccharides and oversulfated polysaccharides,
suggesting that sulfate content was also an important factor. Therefore,
we conclude that molecular weight and sulfation level are two impor-
tant factors, which is consistent with the previous studies [70]. SJ was
also degraded using formic acid and separated using five types of ultra-
filtrationmembranes to obtainfive differentmolecularweight fractions.
SPR results indicated that the largest molecular weight component ST-
100 K, an acid-stable fraction, had the strongest inhibitory activity.
Therefore, two concentrations of acid, 0.1 M and 0.5 M HCl, were used
to degrade SJ and SJ-D-W to obtain three fractions: (1) dilute acid-
sensitive fractions (SJ-GX-1 and SJ-D-W-GX-1); (2) acid-sensitive frac-
tions (SJ-GX-2 and SJ-D-W-GX-2); and (3) acid-stable fractions (SJ-
GX-3 and SJ-D-W-GX-3).We found that acid-stable fractions had stron-
ger inhibitory activities than other fractions. Monosaccharide analysis
indicated that SJ-GX-3 and SJ-D-W-GX-3were glucuronomannan deriv-
atives. Three glucuronomannan oligomers (G2, G4 and G6) and one
glucuronomannan (Gn) with 7.0 kDa were prepared and their binding
to pseudotype particles were determined. The results showed that Gn
might be the active component.

In conclusion, polysaccharides frommarine seaweeds (Gn and SJ-D-
S-H)might represent a good candidate for treatment of COVID-19 based
on our systematic study of structure-activity relationship of interaction
with SARS-CoV-2 SGPs but not ACE2.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ijbiomac.2020.09.184.
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