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Abstract
Atrial fibrillation (AF) is one of the most prevalent arrhythmias. Myocardial sleeves of the pulmonary vein are critical in the 
occurrence of AF. Our study aims to investigate the effect of synthetic vascular smooth muscle cells (SMCs) on gap junc-
tion proteins in cardiomyocytes. (1) Extraction of vascular SMCs from the pulmonary veins of Norway rats. TGF-β1 was 
used to induce the vascular SMCs switching to the synthetic phenotype and 18-α-GA was used to inhibit gap junctions of 
SMCs. The contractile and synthetic phenotype vascular SMCs were cocultured with HL-1 cells; (2) Western blotting was 
used to detect the expression of Cx43, Cx40 and Cx45 in HL-1 cells, and RT-PCR to test microRNA 27b in vascular SMCs 
or in HL-1 cells; (3) Lucifer yellow dye transfer experiment was used to detect the function of gap junctions. (1) TGF- β1 
induced the vascular SMCs switching to synthetic phenotype; (2) Cx43 was significantly increased, and Cx40 and Cx45 were 
decreased in HL-1 cocultured with synthetic SMCs; (3) The fluorescence intensity of Lucifer yellow was higher in HL-1 
cocultured with synthetic SMCs than that in the cells cocultured with contractile SMCs, which was inhibited by18-α-GA; (4) 
the expression of microRNA 27b was increased in HL-1 cocultured with synthetic SMCs, which was attenuated markedly 
by 18-α-GA. (5) the expression of ZFHX3 was decreased in HL-1 cocultured with synthetic SMCs, which was reversed by 
18-α-GA. The gap junction proteins of HL-1 were regulated by pulmonary venous SMCs undergoing phenotypic transition 
in this study, accompanied with the up-regulation of microRNA 27b and the down-regulation of ZFHX3 in HL-1 cells, which 
was associated with heterocellular gap junctions between HL-1 and pulmonary venous SMCs.
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Introduction

Atrial fibrillation (AF) is one of the most prevalent arrhythmias, 
which increased the risk of heart failure, stroke and sudden 
death [1, 2]. It has been well established that paroxysmal AF is 
mainly triggered by cardiomyocytes located in the pulmonary 
veins [3], and these cells are characterized by electrical remod-
eling such as delayed electrical conduction and short refractory 
period [4].

Gap junctions consisting of proteins from the connexin 
(Cx) family play a crucial role in the electrical remodeling of 
cardiomyocytes like intercellular ion transfer [5] to contribute 
to the pathogenesis of AF. For examples, Cx43 was downreg-
ulated by JNK activation promoting AF development [6], and 
Cx40 was related to idiopathic AF clinically [7]. In atrium, 
it mainly expresses Cx40, Cx43 and Cx45. In the pulmonary 
vein, connexins expression and molecular properties of ion 
channels have been demonstrated to resemble those of the 
working myocardium under physiological conditions [8], such 
as Cx43 in the pulmonary sleeves comparable to atrial myo-
cardium [9]. However, when under pathological conditions, 
connexins remodeling occurring in pulmonary vein could play 
a pivotal role in AF initiation [10], such as Cx40 protein that 
was downregulated markedly in the pulmonary sleeves of AF 
dogs [10]. However, the regulation of connexins expression 
in pulmonary venous cardiomyocytes is not fully elucidated.

Accumulating evidence has demonstrated that the neigh-
boring cells could regulate gap junctions of cardiomyocytes. 
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In the heart chamber, cardiomyocytes neighbor with fibro-
blasts or myofibroblasts. Cx43 in the cardiomyocytes could 
be augmented by myofibroblasts not fibroblasts to form 
heterocellular gap junctions with myofibroblasts [11]. The 
heterocellular gap junctions would allow slow electronic 
conduction across scar tissue to induce a reentrant circle 
[12], which was also considered as an important mechanism 
of AF initiation.

However, the cardiomyocytes in pulmonary sleeves were 
surrounded by the vascular smooth muscle cells (SMCs) 
[13], which provides an anatomical basis for the establish-
ment of gap junctions between cardiomyocytes and SMCs. 
In hypertension, the most common risk factor of AF, the pul-
monary venous SMCs had an increase of α-SMA expression 
and collagen deposition, showing that SMCs switched to the 
synthetic phenotype. Meanwhile, AF or atrial tachycardia 
was induced more frequently by pacing [14]. Furthermore, 
when AF occurs, it has been revealed that the expression of 
Cx40 was attenuated and Cx43 was augmented markedly 
in pulmonary venous cardiomyocytes [8, 10]. Therefore we 
hypothesize that SMCs with synthetic phenotype may affect 
the expression of connexin proteins in pulmonary venous 
cardiomyocytes, and induce heterocellular gap junctions 
between these two types of cells in the pulmonary vein.

There is an emerging role of microRNA (miRNA) in 
connexins regulation of cardiomyocytes [15, 16]. MiRNAs 
are short nucleotide sequences that bind to the 3′-untrans-
lated region of mRNA, thereby regulating gene expression 
at the post-transcriptional level by inhibiting the translation 
of a protein or by promoting mRNA degradation. Recently, 
miR-1 downregulation was demonstrated to increase Cx43 
in cardiomyocytes to promote ventricular arrhythmias [17]. 
MiR-27b was reported to regulate Cx40 expression in car-
diomyocytes of fat mice and then to increase vulnerability 
to atrial arrhythmia [18]. And miR-130a decreased Cx43 
in cardiomyocytes resulting in both atrial and ventricular 
arrhythmias [16]. However, the roles of miRNAs from 
SMCs in the regulation of gap junction remodeling of car-
diomyocytes remains unknown.

This study aims to investigate the effects of synthetic 
SMCs on gap junctions of cardiomyocytes and the roles 
of microRNAs from SMCs in gap junction remodeling of 
cardiomyocytes.

Methods

Ethical approval

All animal experiments were approved by the Animal 
Research Ethics Committee of the No. 9 People’s hospi-
tal affiliated to Shanghai Jiaotong University School of 

Medicine. All animals were killed by bilateral thoracotomy 
operation during anesthesia.

Isolation of pulmonary venous SMCs

Two-month-old male Norway rats were purchased from 
Shanghai SLAC Laboratory Animal Co. (Shanghai, 
China). The vascular SMCs were isolated from the pul-
monary veins of Norway rats as described previously 
[19]. The rat was anesthetized with chloral hydrate and 
was then subjected to thoracotomy. The pulmonary vein 
was clamped at both ends and was excised. Then the vein 
was washed twice in physiological saline and was put into 
DMEM/high glucose media (HyClone; GE Healthcare Life 
Sciences, Utah, USA; Cat#SH30243.01; Lot#AB216032) 
containing 10% fetal calf serum (gibco; Rochester, NY, 
USA; Cat#10099-141; Lot#2059461RP). To obtain vas-
cular SMCs with high purity, the intima and adventitia of 
vein were completely removed. The medial layer of vein 
was cut into small pieces and attached to a cell culture dish. 
After 4–7 days, vascular SMCs would crawl out of the tis-
sue pieces, followed by the digestion and purification using 
differential adherence.

Phenotypic switching of SMCs

To examine the effect of synthetic vascular SMCs on gap 
junctions in cardiomyocytes, we first used transforming 
growth factor beta 1 (TGF-β1) to induce phenotypic switch-
ing of vascular SMCs. Vascular SMCs were cultured in a 
6-wells plate at 5 × 104 per well. After adherence, vascular 
SMCs were stimulated by TGF-β1 5 ng/ml; (Millipore; Bill-
erica, MA, USA; Cat#GF439, Lot#VP1801100) to induce 
the phenotypic transition. After 24 h, the culture medium 
was discarded and the cells were washed three times with 
phosphate buffer saline (PBS) prepared for the following 
experiments.

Immunocytochemistry

SMCs cultured on membranes were rinsed with PBS, 
fixed for 15 min at room temperature, blocked for 2 h in 
PBS containing 5% normal goat serum and 2% BSA, and 
incubated with monoclonal antibodies (diluted 1:1000) 
against α-actin (Santa Cruz Biotechnology; Dallas, Texas, 
USA; Cat#sc-32251; Lot#B0615; RRID:AB_262054) 
at 4 °C overnight. Cells were rinsed five times in PBS 
and incubated with Alexa Fluor 594-conjugated (red) 
goat anti-mouse antibody (diluted 1:500) for 1 h at room 
temperature.
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Inhibition of gap junction

SMCs were stimulated by TGF-β1, followed by the treat-
ment with 50 μM 18-α-glycyrrhetinic (18-α-GA) (Sigma; 
Cat#G8503) dissolved in 0.5% DMSO for 24 h to block the 
formation of the gap junction. Cells were treated by DMSO 
were used as control. HL-1 cells alone and HL-1 cells cocul-
tured with SMC in coculture system treated with 50 μM 
18-α-GA dissolved in 0.5% DMSO for 24 h to detect the 
toxic effect of 18-α-GA.

Coculture of vascular SMCs and cardiomyocytes

HL-1 cell line was purchased from Yuanchuang Biotech-
nology Co., Ltd (Shanghai, China). HL-1 cells and SMCs 
were cultured in DMEM/high glucose media containing 10% 
fetal calf serum at 37 °C in a humidified 5%  CO2 incubator 
and used after 3–4 passages. The 24 mm-Transwell Inserts 
with 0.4 μm pores (Sigma Cat#CLS3450-24E) were used 
to establish the coculture system. In contact coculture sys-
tem, the vascular SMCs were seeded on the bottom side 
of 6-well Transwell insert membranes at the concentration 
of 5 × 104 cells/membrane. And after 6 h, HL-1 cells were 
seeded on the top side of 6-well Transwell insert mem-
branes. In non-contact coculture system, the vascular SMCs 
were seeded on the bottom of 6-well at the concentration of 
5 × 104 cells/well. After 6 h, Hl-1 cells were seeded on the 
top side of 6-well Transwell insert membranes. After HL-1 
was grown over the entire insert, all cells were collected 
separately for real-time PCR and Western blotting.

Real‑time PCR

Total RNA was isolated from HL-1 or vascular SMCs 
separately from the two side of the Transwell insert mem-
branes using TRIzol reagent (ambion by life technologies, 
Carlsbad, CA, USA; Cat#10296028; Lot#79348502) and 
followed by specific steps with the manufacturer’s pro-
tocol. RNA was reverse-transcribed to cDNA using the 
Thermo Cycler machine (Applied Biosystems). qRT-PCR 
was performed using a Real-time PCR machine (LightCy-
cler 480 II, Roche). The possible target genes mRNA was 
quantified using Takara reverse transcription assay (Takara 
Cat#R0037A) and SYGRII (Takara Cat#RR820A). Specific 

primers were synthesized from Sangon Biotech (Shanghai, 
CHINA). The mRNA levels were quantified with the  2−ΔΔct 
(Table 1).

Western blotting

To investigate the effect of vascular SMCs on gap junc-
tion proteins in cardiomyocytes, HL-1 cells were cocul-
tured with vascular SMCs using transwell system. Western 
blotting was used to detect related gap junction proteins 
in HL-1 cells. Total protein of HL-1 cells or SMCs was 
extracted by RIPA separately from the two side of the Tran-
swell insert membranes and separated by 10% SDS-PAGE, 
electrophoretically transferred to PVDF membranes, and 
probed with the following primary antibodies including 
anti-Cx43 (Cell Signaling Technology, Danvers, MA, USA; 
Cat#3512, Lot#4, RRID:AB_2294590), anti-Cx45 (Abcam; 
Discovery Drive, Cambridge Biomedical Campus, Cam-
bridge, CB2 0AX, UK; Cat#ab78408, Lot#GR3187454-1, 
RRID:AB_1566083), anti-Cx40 (Santa Cruz Biotechnology 
Cat#sc-365107, Lot#C2417, RRID:AB_10708736), anti-α-
tubulin (Cell Signaling Technology Cat#2144, Lot#0005, 
RRID:AB_2210548) in 4 ℃ overnight. After that, the mem-
branes were incubated by horseradish peroxidase (HRP)-
conjugated secondary antibodies in room temperature for 
1 h. Analysis was conducted using the ECL system (Fusion 
FX7).

Dye transfer

After receiving the stimulation with TGF-β1 or then treated 
by 18-α-GA, vascular SMCs were loaded with lucifer yel-
low biocytin (5 mg/mL, Thermo Fisher Scientific Cat#L-
6950), using a pinocytotic uptake method (Invitrogen, Grand 
Island, NY; Cat#I14402). Then HL-1 cells were cocultured 
with vascular SMCs at 5 × 104 per well that had received 
the stimulation with TGF-β1 or 18-α-GA or not. After 24 
and 48 h, lucifer yellow biocytin in vascular SMCs or HL-1 
cells was observed as green fluorescence at the excitation/
emission wavelengths of 428 nm/536 nm as described pre-
viously [20]. cTNT antibody was used to label HL-1 cells 
and incubated with Alexa Fluor 594-conjugated (red) goat 
anti-mouse antibody. The mean fluorescence intensity of 

Table 1  The sequences of the 
primers

Gene Forward 5′ → 3′ Reverse 5′ → 3′

Collagen I TGT TGG TCC TGC TGG CAA GAATG GTC ACC TTG TTC GCC TGT CTCAC 
Vimentin GTC CGT GTC CTC GTC CTC CTAC TAG AGG CTG CGG CTA GTG CTG 
Calponin ACC ACC AGC GTG AGC AGG AG CGT CCT TGA GGC CAT CCA TGAAG 
Mir27b GCG AGA GCT TAG CTG ATT GGT AGT GCA GGG TCC GAG GTA TT
GAPDH GAC ATG CCG CCT GGA GAA AC AGC CCA GGA TGC CCT TTA GT
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Lucifer yellow was analyzed by ImageJ software (ImageJ, 
RRID:SCR_003070) [21].

Statistical analysis

Mean ± standard error was used to represent the quantita-
tive data, which was analyzed by ANOVA followed by least 
significant difference (LSD) t test for post-hoc comparison 
using the SPSS 13.0 software(SPSS,RRID:SCR_002865). P 
values < 0.05 were considered statistically significant.

Results

TGF‑β1 induces phenotypic switching of vascular SMCs

Vascular SMCs treated with TGF-β1 showed a typical "val-
ley-peak" growth pattern and diffuse actin staining (Fig. 1a). 
The mRNA expressions of col1agen I and vimentin, the 
markers of vascular SMCs synthetic phenotype, were sig-
nificantly increased. At the same time, calponin, a marker 
of contractile phenotype, was decreased markedly (Fig. 1b).

Vascular SMCs with synthetic phenotype regulate 
the expression of connexins in cardiomyocytes

HL-1 cells had an initial level of Cx43, Cx40 or Cx45 
(Fig. 2a). Cx43 expression in HL-1 cells was increased 
significantly when cocultured with SMCs and was elevated 
further when cocultured with SMCs treated by TGF-β1 
(Fig. 2b). Meanwhile, the expressions of Cx40 and Cx45 
were notably decreased in HL-1cells cocultured with SMCs 
treated by TGF-β1 (Fig. 2c, d). However, in the shared media 
coculture system, the expressions of Cx43, Cx40 and Cx45 

were not changed in HL-1 cells cocultured separately with 
SMCs whether treated with TGF-β1 or not (Fig. 3).

Vascular SMCs with synthetic phenotype form 
functional gap junctions with cardiomyocytes

After 48- not 24-h coculture with SMCs treated by TGF-
β1, Lucifer yellow transferred from SMCs into HL-1 cells, 
as evidenced by cytoplasmic green fluorescence markedly 
increased in HL-1 cells. However, such an increase was 
attenuated significantly by 18-α-GA administrated to syn-
thetic SMCs beforehand. In addition, cytoplasmic green 
fluorescence was hardly detected in HL-1 cells cocultured 
with the contractile-like SMCs (Fig. 4).

Vascular SMCs with synthetic phenotype increase 
miR‑27b in HL‑1 cells

The expression of miR-27b was significantly increased in 
HL-1 cells cocultured with SMCs with synthetic phenotype 
not with contractile-like SMCs (Fig. 5a). At the same time, 
the expression of miR-27b was increased about 2.4 times in 
SMCs treated with TGFβ1 compared to that in normal SMCs 
(Fig. 5b). In non-contact coculture system, the expression 
of miR-27b of HL-1 cells was comparable in three groups 
(Fig. 5c).

Heterocellular gap junctions are involved 
in miR‑27b and ZFHX3 expressions in HL‑1 cells

18-α-GA, which was used to inhibit gap junctions of syn-
thetic SMCs, did not change the expression of Cx43 in HL-1 

Fig. 1  Phenotypic switching 
of SMCs. a. Immunofluores-
cence staining of a-SMA in 
SMCs receiving the treatment 
of TGF-β1 (5 ng/mL) or not; b 
the mRNA levels for markers of 
contractile and synthetic SMCs 
were detected by RT-PCR 
(n = 5). *P < 0.05, SMC smooth 
muscle cell, SMC + TGFβ1 
smooth muscle cell treated by 
TGF-β1 (5 ng/mL)
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cells (Fig. 6b). However, the increased miR-27b in HL-1 
cells was decreased to 0.5 times when being cocultured with 
synthetic SMCs treated by 18-α-GA in advance (Fig. 6b). 
Meanwhile, the expression of ZFHX3 was decreased in 
HL-1 cells coculture with synthetic SMCs, which was 
reversed by 18-α-GA treated to synthetic SMCs forehead 
(Fig. 6c). Furthermore, 18-α-GA treated both in HL-1 group 
(HL-1 + GA) and HL-1/SMC group (HL-1/SMC + GA). The 
expression of miR-27b and ZFHX3 in these two group was 
comparable to the HL-1 group (Fig. 6b, c).

Discussion

Atrial fibrillation is one of the most prevalent arrhythmias, 
and to make clear the pathogenesis of atrial fibrillation is 
very important. In this study, we found that the gap junc-
tions in HL-1 cells were regulated by synthetic pulmonary 
venous SMCs, accompanied with the increased miR-27b and 
decreased ZFHX3 markedly in HL-1 cells.

Pulmonary vein is surrounded by an external sleeve of 
cardiomyocytes that are widely recognized as triggers of 

paroxysmal atrial fibrillation. In the pulmonary vein, the car-
diomyocytes were localized surrounding the vascular SMCs. 
Accumulating evidence has well demonstrated that the 
architecture of pulmonary venous sleeves is associated with 
the possibility of initiating AF [22]. For instance, thicker 
or longer sleeves were more frequent AF [23]. Recently, it 
was reported that more synthetic-like SMCs presenting in 
the pulmonary vein of hypertensive rats were more likely 
subjected to AF [14, 24]. However, it remains to be eluci-
dated whether these synthetic-like SMCs directly regulate 
bioactivities of cardiomyocytes.

In hypertensive patients, the circulating transforming 
growth factor-β1 (TGF-β1) is significantly increased [25], a 
pivotal factor to induce the phenotypic transition of contrac-
tile-like SMCs to synthetic-like cells [26]. In this study, we 
used TGF-β1 to induce SMCs with synthetic phenotype as 
evidenced by the notable diffusing actin, increased collagen 
I and vimentin, and decreased calponin as described in our 
previous study [27].

Connexins, gap junction proteins, have been widely 
proved to play an important role in physiological electronic 
conduction of cardiomyocytes [28]. Cx43 expresses in both 

Fig. 2  Effects of SMCs on gap 
junction proteins expression 
in HL-1 cells. Cx43, Cx40 
and Cx45 were detected using 
western blot (a), and the relative 
protein levels of these mole-
cules were determined by densi-
tometric analysis (b–d) (n = 5). 
Data are shown as mean ± SD. 
*, P < 0.05. Cx43 connexin43, 
Cx40 connexin40, Cx45 con-
nexin45, HL-1 HL-1 cells, 
HL-1/SMC HL-1 cells which 
were cocultured with con-
tractile SMCs for 48 h, HL-1/
SMC TGFβ1 HL-1 cells which 
were cocultured with synthetic 
SMCs for 48 h. The number 
of observations (n) represents 
the number of independent cell 
preparations
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atrium and ventricle. In this study, SMCs were cocultured 
with HL-1 cells using a transwell system to anatomically 
mimic these cells in pulmonary venous sleeves. We found 
that Cx43 was significantly increased in HL-1 cells cocul-
tured with synthetic pulmonary venous SMCs. The current 
findings suggested that phenotypic transition of pulmo-
nary venous SMCs, as previously described in myocardial 
sleeves [14], might change Cx43 expression in cardiomyo-
cytes, leading to the abnormal electrical conduction between 
SMCs and cardiomyocytes to promote AF initiation.

It was notable that ventricular Cx43 reduction (e.g., 
induced by JNK activation) would lead to heart dysfunction 
linking to an enhanced propensity to AF [29–31], however, 
increasing cardiac gap junctional intercellular communica-
tion by ZP123 failed to attenuate atrial tachyarrhythmias 
inducibility [32]. Taken together, these results suggest the 
different roles of Cx43 expression in atrial or ventricular 
cardiomyocytes in AF initiation.

Besides the increase of Cx43, we found a marked 
decrease of Cx40 and Cx45 in HL-1 cells when cocultured 
with synthetic pulmonary venous SMCs. Previous stud-
ies showed that Cx40 expression was lower in myocardial 
sleeves than that in left atrium, and was further downregu-
lated in the myocardial sleeve of AF dogs [9, 10], which 
were consistent to our current findings. Previous study found 

Cx45 labeled strongly in the human myocardial sleeves [3]. 
Taken together, these results suggested that the decrease of 
Cx40 and Cx45 in pulmonary venous sleeves in AF devel-
opment, which might be concerned with the phenotypic 
switching of pulmonary venous SMCs.

Previous study has shown that the cellular expression 
of gap junction proteins could be regulated by paracrinal 
cytokines, which could be also secreted from synthetic 
SMCs [33]. However, in the present study, the expression of 
Cx43, Cx40 or Cx45 in HL-1 cells was little affected by the 
synthetic SMCs separately cocultured with HL-1 cells in the 
non-contact coculture system, suggesting that the changed 
expressions of Cx43, Cx40 and Cx45 did not result from 
synthetic SMCs in a paracrinal manner.

Intercellular gap junctions were closely affected by con-
nexins regulation. Changed connexins expression could 
make the formation of heterocellular gap junction between 
cardiomyocytes and non-cardiomyocytes to contribute to 
arrhythmias [34, 35]. In this study, intercellular communica-
tion (biocytin transfer) was detected in HL-1 cells cocultured 
with synthetic SMCs not contractile-like SMCs, suggesting 
the intercellular communication was fully formed probably 
due to increase of Cx43 expression in both these cells, simi-
lar to the previous results of Cx43-dependent gap junctions 
between cardiomyocytes and myofibroblasts [36].

Fig. 3  Expression of gap junc-
tion proteins in HL-1 cells in 
non-contact coculture model. 
Cx43, Cx40 and Cx45 were 
detected using western blot 
(a), and the relative protein 
levels of these molecules were 
determined by densitometric 
analysis (b–d) (n = 5). Data 
are shown as mean ± SD. *, 
P < 0.05. Cx43 connexin43, 
Cx40 connexin40, Cx45 con-
nexin45, HL-1 + TGFβ1 HL-1 
cells induced by TGFβ1, HL-1/
SMC HL-1 cells cocultured 
with SMCs for 48 h in non-
contact coculture system, HL-1/
SMCTGFβ1 HL-1 cells cocul-
tured with synthetic SMCs for 
48 h in non-contact coculture 
system. The number of observa-
tions (n) represents the number 
of independent cell preparations
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Gap junctions are intercellular channels to allow passage 
of ions and small molecules to achieve cell-specific delivery 
including miRNAs [37]. MiR-27b was recently reported to 
be positively related to vulnerability to AF initiation [18]. 
In this study, we found that miR-27b was upregulated in the 
synthetic pulmonary venous SMCs. Furthermore, miR-27b 
was significantly increased in HL-1 cells cocultured with 
these synthetic SMCs in contact coculture system, which 
was markedly inhibited by 18-α-GA administrated to syn-
thetic SMCs forehead, without change of Cx43 expression 
in HL-1 cells. These findings suggested that the increased 

miR-27b in HL-1 cells might be transferred from synthetic 
SMCs cocultured with HL-1 cells through heterocellular gap 
junctions.

Mir-27b has been reported to target several genes con-
tributing to AF, such as ZFHX3 [38]. For examples, ZFHX3 
knock-down may cause dysregulated calcium homeostasis 
and increased atrial arrhythmogenesis [39] and cause car-
diac remodeling [40], contributing to AF development. 
In this study, the expression of ZFHX3 was significantly 
decreased in HL-1 cocultured with synthetic SMCs, accom-
panied by an increase of miR-27b. In addition, 18-α-GA, 

Fig. 4  Heterocelluar gap junc-
tions between SMCs and HL-1. 
Gap junctions were detected 
using lucifer yellow biocytin 
transfer. Brilliant green fluores-
cence of lucifer yellow biocytin 
in HL-1 cells (red) was showed 
by yellow fluorescence, indicat-
ing biocytin transfer from SMCs 
to HL-1 cells (white arrowheads 
in a; × 400). b Semi-quantita-
tive assessment of lucifer yellow 
biocytin transfer to HL-1 cells 
by pixel intensity (mean ± SD). 
SMC + HL-1 HL-1 cells cocul-
tured with contractile SMCs, 
SMCTGFβ1 + HL-1 HL-1 
cells cocultured with synthetic 
SMCs, SMCTGFβ1GA + HL-1 
HL-1 cells cocultured with 
synthetic SMCs which were 
treated with 18-α-GA. The data 
are presented as the mean ± SD 
of four independent experiments 
and analyzed by LSD t test
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a nonselective inhibitor of gap junctions administrated to 
synthetic SMCs, could reverse the declination of ZFHX3 
in HL-1 cells. And the toxic effect of 18-α-GA has little 
effect on the expression of miR-27b and ZFHX3 in HL-1 
cells. In this study, the transferred lucifer yellow biocytin 
was detected little in HL-1 cells cocultured with contractile-
like SMCs, suggesting that HL-1 cells did not fully form 
heterocellular gap junctions with the contractile-like SMCs. 
These results might account for the little effect of 18-α-GA 
on miR-27b expression in HL-1 cells cocultured with the 
contractile-like SMCs. In addition, there is an increase of 
ZFHX3 expression in HL-1 cells, even not statistically 
significant, which was caused by 18-α-GA treated to the 
contractile-like SMCs. It was noticeable that ZFHX3 was a 
target gene of miR-1 [41], which was reported to be nega-
tively regulated by long non-coding RNA MALAT1 through 
gap junction connexins such as Cx43 [42]. Then it needs to 
be explored further whether the inhibition of heterocellular 
gap junctions by 18-α-GA in SMCs could negatively regu-
late ZFHX3 expression via the MALAT1-Cx43-miR-1 axis 
in HL-1 cells. These results suggested that the heterocel-
lular gap junctions were involved in the down-regulation of 

ZFHX3 in HL-1 cells, which might be due to the increase 
of miR-27b in these cells.

Limitations

Although the changed expression of gap junction proteins 
in the cardiomyocytes cocultured with SMCs undergoing 
phenotypic switching was observed, these results were based 
on experiments in vitro, which needs to be elucidated further 
in large animals in vivo. Although our results implied that 
miR-27b affected little the expressions of Cx43 and Cx40 in 
HL-1 cells, the specific mechanism of the changed expres-
sion of gap junction proteins needs to be further explored.

In the present study, biocytin was detected in HL-1 cells 
cocultured with contractile SMCs, in spite of little, suggest-
ing that HL-1 constructed heterocellular gap junctions with 
contractile SMCs. However, it remains to be explored which 
connexin was involved in the full formation of gap junctions.

Although our results suggested that the increase of miR-
27b contributed to the changed ZFHX3 in HL-1 cells, it 
needs to be confirmed whether ZFHX3 is the direct target 
gene of miR-27b in HL-1 cells. It also needs further study 
to explore whether the inhibition of heterocellular gap 

Fig. 5  MiR-27b expression 
in SMCs and HL-1 cells. The 
expression of miR-27b was 
detected by RT-PCR. a miR-
27b expression in contractile 
SMCs and in synthetic SMCs 
(n = 5); b miR-27b expression 
in HL-1 cells cocultured with 
SMCs for 48 h (n = 5). HL-1 
HL-1 cells, HL-1/SMC HL-1 
cells which were cocultured 
with contractile SMCs, HL-1/
SMCTGFβ1 HL-1 cells which 
were cocultured with synthetic 
SMCs. c miR-27b expres-
sion in HL-1 cells cultured in 
non-contact coculture system 
(n = 5). SMC contractile SMCs, 
SMCTGFβ1 synthetic SMCs, 
HL-1TGFβ1 HL-1 cells treated 
by TGFβ1, HL-1/SMC HL-1 
cells cocultured with SMCs in 
non-contact coculture system, 
Hl-1/SMCTGFβ1 HL-1 cells 
cocultured with synthetic in 
non-contact coculture system. 
*P < 0.05
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junctions by 18-α-GA in SMCs could negatively regulate 
ZFHX3 expression via the MALAT1-Cx43-miR-1 axis in 
HL-1 cells.

In summary, the gap junctions of HL-1 was affected 
by the pulmonary venous SMCs undergoing phenotypic 
transition in this study, accompanied by the up-regulation 
of miR- 27b and the down-regulation of ZFHX3 in HL-1 
cells, which could be reversed markedly by 18-α-GA, a 
non-selective inhibitor of gap junctions, administrated to 
synthetic SMCs. The current findings suggested that the 
phenotypic switching of pulmonary venous SMCs could 
regulate ZFHX3 gene expression of cardiomyocytes, 
associated with functionally heterocellular gap junctions 
between these two types of cells in pulmonary venous 
sleeves, which might contribute to AF initiation.
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