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Graphical Abstract

Graphical Headlights:

(1) Development of statistical methods to determine bladder cancer (BLCA)-
specific DNA methylation (DNAm) profile for an accurate classification of
high- (HG) and low-grade (LG) BLCA.

(2) Development of sequencing assay to detect BLCA-specific DNAm in urine.
(3) Validation of urine DNAm as highly relevant biomarkers for non-invasive

diagnosis, prognosis and monitoring of BLCA in a prospective cohort.
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Abstract
Background: State-of-art non-invasive diagnosis processes for bladder cancer
(BLCA) harbour shortcomings such as low sensitivity and specificity, unable to
distinguish between high- (HG) and low-grade (LG) tumours, as well as inability
to differentiatemuscle-invasive bladder cancer (MIBC) and non-muscle-invasive
bladder cancer (NMIBC). This study investigates a comprehensive characteriza-
tion of the entire DNA methylation (DNAm) landscape of BLCA to determine
the relevant biomarkers for the non-invasive diagnosis of BLCA.
Methods: A total of 304 samples from 224 donors were enrolled in this multi-
centre, prospective cohort study. BLCA-specific DNAm signature discovery was
carried out with genome-wide bisulfite sequencing in 32 tumour tissues and 12
normal urine samples. A targeted sequencing assay for BLCA-specific DNAm
signatures was developed to categorize tumour tissue against normal urine, or
MIBC against NMIBC. Independent validation was performed with targeted
sequencing of 259 urine samples in a double-blinded manner to determine the
clinical diagnosis and prognosis value of DNAm-based classification models.
Functions of genomic region harbouring BLCA-specific DNAm signature were
validated with biological assays. Concordances of pathology to urine tumour
DNA (circulating tumour DNA [ctDNA]) methylation, genomic mutations or
other state-of-the-art diagnosis methods were measured.
Results:Genome-wide DNAmprofile could accurately classify LG tumour from
HG tumour (LG NMIBC vs. HG NMIBC: p = .038; LG NMIBC vs. HG MIBC,
p = .00032; HG NMIBC vs. HG MIBC: p = .82; Student’s t-test). Overall, the
DNAm profile distinguishes MIBC from NMIBC and normal urine. Targeted-
sequencing-based DNAm signature classifiers accurately classify LG NMIBC
tissues from HG MIBC and could detect tumours in urine at a limit of detec-
tion of less than .5%. In tumour tissues, DNAm accurately classifies pathology,
thus outperforming genomic mutation or RNA expression profiles. In the inde-
pendent validation cohort, pre-surgery urine ctDNA methylation outperforms
fluorescence in situ hybridization (FISH) assay to detect HG BLCA (n= 54) with
100% sensitivity (95%CI: 82.5%–100%) and LGBLCA (n= 26) with 62% sensitivity
(95%CI: 51.3%–72.7%), both at 100% specificity (non-BLCA:n= 72; 95%CI: 84.1%–
100%). Pre-surgery urine ctDNAmethylation signature correlateswith pathology
and predicts recurrence and metastasis. Post-surgery urine ctDNA methylation
(n = 61) accurately predicts recurrence-free survival within 180 days, with 100%
accuracy.
Conclusion: With the discovery of BLCA-specific DNAm signatures, targeted
sequencing of ctDNA methylation outperforms FISH and DNA mutation to
detect tumours, predict recurrence and make prognoses.

KEYWORDS
bladder cancer, diagnosis and prognosis, methylation, non-invasive screening, prospective
cohort study, urine tumour DNA
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1 INTRODUCTION

Amajor challenge inmanaging urothelial carcinoma is the
accurate diagnosis and classification of neoplastic lesions.
The classification of bladder cancer (BLCA) describes two
major subtypes, muscle-invasive and non-muscle-invasive
bladder cancer (MIBC/NMIBC), which differ significantly
in treatment and management based on terms of their
clinical manifestations and tumour biological behaviours.
This makes accurate classification crucial before clini-
cal decision-making.1–3 The current classification standard
for BLCA is based on a histopathological assessment of
tissue biopsy or surgical resection specimens. Such a pro-
cedure is invasive, costly, and often associatedwith the risk
of discomfort and infectious complications. Furthermore,
assessment accuracy is complicated, with numerous short-
comings such as subjective evaluation by pathologists and
the arbitrary selection of tissue samples.4,5
Clinical treatment of BLCA depends on the accurate

staging of tumour. Inaccurate staging results in reduced
survival (in the case of understaging) or unnecessary
surgery and permanent living quality loss (in the case of
overstaging). The staging of BLCA relies on the tumour
progress, that is, pathological manifest. In clinical prac-
tice, there are two classes of intermingled classification
systems of urothelium cancer (>90% of BLCA), based on
either tumour cell grading or muscle-invasiveness. Patho-
logically, BLCA could be classified into MIBC or NMIBC,
based on the presence of tumour cells invaded through
lamina propria into the muscularis propria/detrusor layer
of bladder. On the other hand, BLCA could be classified
into low grade (LG) and high grade (HG), according to the
morphology of tumour cells, the organization of tumour
cells, the prevalence of cell division and the nucleus
shape. Invasive tumours are classified as HG (traditionally
G2/G3), and non-invasive tumours are classified as LG.
Although LG tumours are never found muscle-invasive

according to the definition, HG tumours could be either
muscle-invasive or non-muscle-invasive, according to their
stage of development. However, it is inappropriate to pre-
dict all LG tumours benign par the following reasons: (1)
transformation (up-grading) of LG tumours towards HG
tumours is frequent and occurs in >30% of clinical cases;
(2) manual classification of tumour grades might lead to
clinical understaging of as many as 48% patients.6 Hence,
accurate grading of BLCA is of pivotal importance.
Liquid biopsy with urine offers a promising alterna-

tive to tissue histopathology for diagnosis and monitoring
of BLCA as it is easy to obtain and contains informa-
tive biomarkers, including cell-free (cf) DNA, RNA and
secreted proteins as well as dissociated tumour cells.7,8
Existing non-invasive, urine-based diagnosis methods for
BLCA target various aspects of cancer, such as aberrant

methylation (methylation-specific qPCR), DNA somatic
mutation (circulating tumour DNA [ctDNA] sequencing),
abnormal karyotype (FISH) or morphological changes
(cytology analysis).9 Although widely applied in clini-
cal practice, the previously mentioned methods harbour
shortcomings such as low sensitivity, especially for detect-
ing early, small, residual or recurrent tumours, as well
as the inability to distinguish pathological subtypes.10,11
The shortcomings of existing molecular diagnosis meth-
ods are attributable to limited specificity of the biomarkers,
for example, distinguishing true tumour-derived signals
from a benign, non-cancerous cell-derived signal and lim-
ited sensitivity due to the low abundance of investigated
subjects such as dissociated tumour cells in urine.
Aberrant DNA methylation (DNAm) is a pan-cancer

hallmark.12 Specific DNAm could be applied for can-
cer detection and a precise classification of cancer
subtypes.13–15 An individual human body is generated from
an identical genome as a multicellular ensemble of diverse
cell types. During development, epigenetic modifications
such as histone modification, differential histone subtype
incorporation andDNAmodification occur on the genome
to selectively enhance or repress gene expression.16–21 Such
a process enables each cell to ‘read different books’ (express
genes) from a similar ‘library’ (genome) to adopt differ-
ent ‘majors’ (cell fate). Consequently, cells from various
lineages show distinct genome-wide DNAm profiles.22
Cancer-associated DNAm could be resulted from two
sources. First, cell-type-specific differential DNAmaccom-
panies normal cell development and cell fate determina-
tion as a clonal outgrowth from a single mutated ancestor
cell23; cancer inherited – partly – the epigenome from
its ancestor. As a result, cell lineage-associated DNAm
could serve as a sensitive and specific biomarker to dis-
criminate cancer cell-of-origin.24–27 Second, widespread
cancer-specific DNAm changes occur during oncogen-
esis, creating a cancer-specific DNAm profile that is
drastically different from its normal counterparts.28–32
Although functionally largely unknown, such cancer-
specific DNAm has been widely applied as biomarkers to
detect tumours.25,33–37
Primarily, cancer-associated DNAm is detected via a sta-

tistical comparison between DNAm profiles from groups
of tissues, thus leading to the identification of differen-
tially methylated region (DMR), genomic loci on which
DNAm status is statistically different in one group of
samples as compared to the other groups.15 Theoretically,
cancer-associated DMR could potentially result from four
different scenarios: (1) inherited cell-type-specific DNAm
signature from the clonal ancestor of cancer, which is a
normal cell (Type I, T1DMR); (2) de novo DNAm shift dur-
ing oncogenesis (Type II, T2DMR); (3) inherited cell-type-
specific DNAm signature from a non-cancer cell, which is
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not present in normal tissue (Type III, T3DMR), such as
immune cells; or (4) de novo DNAm shift accompanied
oncogenesis in a non-cancer cell type (Type IV, T4DMR),
such as reprogrammed fibroblast. However, in most prior
work, these DMR subtypes were unclassified during the
screening of tumour-specific DNAm events.38–40 Conse-
quently, the deduction of tumour-derived fraction with
DNAm on this DMR is limited by ‘contamination’ of
the non-tumour-derived signal. Strategies to detect the
‘driver’, oncogenic (T2DMR) and ‘passenger’, tissue-of-
origin-specific (T1DMR) DNAm events in BLCA may
significantly enhance specificity for DNAm-based non-
invasive tumour detection.
Tumour-derived DNAm is naturally relevant to tumour

biology, less influenced by inter-tumour heterogeneity and
exists in large numbers compared to tumour-specific DNA
mutation. Assays using urine DNAm to detect or mon-
itor BLCA have been reported in our previous study.41
A set of two methylated genes (TWIST1 and NID2) in
urine samples have high (≥90%) sensitivity for the pres-
ence of primary BLCA.39 The UroMark assay (a 150 CpG
loci biomarker panel) has a sensitivity of 98% for the detec-
tion of primary BLCA.42 Bladder EpiCheck, a urine test
based on 15 methylation markers, displayed a sensitivity
of 67% for NMIBC and 91.7% in MIBC recurrences with
a specificity of 88% in a clinical trial.43 UtMeMa, another
urine DNAm-based mass spectrometry test, demonstrated
64.5%–100% sensitivity to Ta to T4 disease (overall 84.6%),
with an overall specificity of 83.1%.40 Compared to state-of-
the-art clinical assays such as urine cytology or FISH and
other assays focusing on detecting DNA mutation44–46 or
copy number variation45,47 in urine, DNAm-based assay
showed improved sensitivity but lower specificity. Addi-
tionally, most urine-based DNAm assays were designed
for and applied to diagnose BLCA, and none of them has
been demonstrated to enable non-invasive BLCA classifi-
cation. Consequently, most of these tests have not been
implemented in clinical practice.4
We reasoned that the shortcomings of urine-based

DNAm assays are caused by the limited specificity of the
biomarkers inherited from their surrogate nature. Sta-
tistical comparison between arbitrarily selected groups
of tissues may be confounded by cofactors unaware to
the investigators. Furthermore, it is difficult to exclude
all possible interference factors such as normal-cell-
derived DNAm or DNAm introduced during intravesical
chemotherapy (e.g. by gemcitabine).48 We depict that
combining multi-omics single-cell analysis with statistical
inference enables the accurate identification and classi-
fication of tumour-derived DNAm events with superior
specificity. The results revealed T2DMR DNAm as onco-
genic events, which are strongly associated with tumour
transformation, and T1DMR are inherited from the ances-

tral cell of neoplasm. Separating the two classes of DMR
helped us identify oncogenic SOX2 enhancers modified by
DNAm and further stratify LG BLCA by the prevalence
of cancer-specific T2DMR haplotypes. Methylation haplo-
types on these DMRs are highly specific for tumours and
indicate tumour class and grade.
We have previously shown distinct DNAm alterations

associated with BLCA subtypes originating from various
lineages and tumourmalignancy grades.41 This study aims
to determine the source and nature of the previously
mentioned differential DNAm. Furthermore, we tested
whether estimating the ctDNA fraction from urine by
sequencing cell-free DNA (cfDNA) methylation on these
precisely defined tumour-derived DMR could be used to
non-invasively detect and classify BLCA in a multi-centre,
prospective, observational cohort ‘Cancer HALLmark Epi-
genetics aNdGenetics of BLCA’ (Challenge-BLCA)with 224
donors enrolled from 5 hospitals across China preserved at
a Central China Biobank (Tables S1–S4 and Figure 1).

2 MATERIALS ANDMETHODS

2.1 Clinical protocol and ethics
statement

This studywas conducted in accordancewith themeasures
of China on the administration of clinical research, the
Declaration of Helsinki and the Ethic Protocols of Human
Genetic Resource Preservation Center of Hubei Province,
China (Hubei Biobank). Clinical information and sam-
ples (including blood, urine, surgical tissue specimens
and primary cancer cells) of the multi-centre, prospective,
observational cohort for BLCA: Cancer HALLmark Epi-
genetics aNd GEnetics (CHALLENGE) of BLCA (named:
Challenge-BLCA study cohort) was collected from five
hospitals in four cities of China:Wuhan, Enshi, Beijing and
Panzhihua, treated and preserved by the Hubei Biobank,
the official member of the International Society for Bio-
logical and Environmental Repositories (https://irlocator.
isber.org/details/60), approved by the Ethic Institutional
Review Board (approval number: 2015029, 2017038 and
2020102) and China Human Genetic Resources Manage-
ment Office, Ministry of Science and Technology of China
(approval number: 20171793, approved capacity of samples:
2.1 million).
Sample-size estimation: Genome-wide DNAm level

from MIBC, NMIBC and normal bladder tissue from a
previous study41 was used to calculate DNAm difference
between these tissues. We built artificial ‘urine’ DNA
methylome by mixing MIBC/NMIBC into normal tissue
data at a 5% percentage. General linear models were built
upon these data to classify cancer versus normal or MIBC

https://irlocator.isber.org/details/60
https://irlocator.isber.org/details/60
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F IGURE 1 Flow chart of the study.

versus NMIBC. Based on the distribution of these model,
we empirically determine the minimal sample size at
alpha= .05 and power= .8 to a total of 170, with 120 cancer
patients and 50 healthy donors. A drop-off rate of 25% was
included, to make a targeted enrolment of 226.
Written informed consents were obtained from all indi-

viduals enrolled in the Challenge-BLCA study cohort. The
samples (n = 304) from a total of 224 donors (Table S1)
were continually and prospectively collected by the Hubei
Biobank as bladder tissue (n = 33) from 2018/10/25 to
2020/10/31, urine samples (n = 271) from 2018/09/12
to 2020/05/23. Clinical, pathological and follow-up data
records for putative BLCA patients (n = 145) and healthy
donors (n= 79)were collected (Tables S1 and S2), and three
pathologists were invited to independently confirm the
histology diagnosis for putative BLCA patients. Due to a

low clinical application of FISH assay, we collected histor-
ical pathology reports of FISH (n = 368, from 2015 to 2021)
for putative BLCA patients from the participating centres.
Routine laboratory tests and pathology assessments were
done according to the relevant Chinese clinical guidelines
and protocols.
Enrolment, aims and including/excluding criteria for

the Challenge-BLCA study cohort are listed in Tables S1
and S2. The flow chart of the study is depicted in
Figure 1.
The training cohort contains 33 BLCA tissues and 12

urines from healthy donors (Table S3). The validation
cohort contains 259 urine samples from a total of 210
donors (133 patients and 67 healthy donors, Table S4).
Third-party statistician was invited to blind the samples
and perform double-blinded validation.
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2.2 Biospecimen collection

RT4, T24 and 5637 cells were kindly provided by Cell Bank,
Chinese Academy of Sciences (Shanghai, China) and
cultured under identical conditions following standard
procedures. Clinical assessment of BLCAwas done accord-
ing to the EAU 2020Oncology Guidelines (https://uroweb.
org/individual-guidelines/oncology-guidelines/). Human
peripheral bloodwas collectedwith BDEDTA tube accord-
ing to the manufacturer’s protocol and stored at 4◦C for no
longer than 8 h before serum separation. Peripheral blood
mononucleus cell (PBMC) was separated with the stan-
dard Ficoll protocol. Fresh tumour or normal tissues was
collected during surgery and transferred to laboratory in
high glucose, 10% FBS supplemented DMEM. Tissue sam-
plewas resected in PBS prior to single-cell dissociation. For
methylation sequencing, tissue samples were flash frozen
in liquid nitrogen and stored at−80◦C.Urine sampleswere
collected in a 50-ml FALCON tube and being stored at
−80◦C within 4 h of collection.

2.3 RNAi of SOX2

SOX2 siRNAs were purchased from GenePharma (Shang-
hai, China). The target sequences siRNAs were as in
Table S5. Cells were transfected with Lipofectamine 3000
following themanufacturer’s instruction (Invitrogen Ltd.).

2.4 Cell migration and invasion assay

For migration assay, 1 × 105 5637 cells or 4 × 104 T24 cells
were plated in the upper transwell chamber (Corning Ltd.,
USA) with 200-μl serum-free 1640 medium and 600 μl of
1640mediumcontaining 10%FBS in the lower chambers to
induce cellmigration.After incubated for 24h at 37◦C, cells
were fixed with 4% paraformaldehyde and stained with
.1% crystal violet. Themigrated cell numbers were counted
using phase contrastmicroscopy and statistically analysed.
For invasion assay, Matrigel was thawed and liquefied

on ice and diluted in cold serum-free 1640 medium to a
final concentration of 200 μg/ml. Next, 100 μl of the diluted
Matrigel was carefully added to the transwell insert and
solidified in a 37◦C incubator for 2 h to form a thin gel
layer. Then, 1 × 105 5637 cells or 4 × 104 T24 cells were
plated in the upper transwell chamber (Corning Ltd., USA)
with a 200-μl-serum-free 1640 medium and 600 μl of 1640
medium containing 10% FBS in the lower chambers to
induce cellmigration.After incubated for 24h at 37◦C, cells
were fixed with 4% paraformaldehyde and stained with
.1% crystal violet. Themigrated cell numbers were counted
using phase contrastmicroscopy and statistically analysed.

2.5 Western blot

Western blot assay was performed as previously described
by Xiong et al. in our group.49 The antibodies used in this
study were purchased from the following indicated com-
panies: SOX2 (Abcam Ltd., #ab97959), E-Cadherin (CST
Ltd., #3195), N-Cadherin (CST Ltd., #13116), Vimentin
(CST Ltd., #5741), GAPDH (Santa Cruz Ltd., #sc-365062).
A detailed list of antibodies could be found in Table S6.

2.6 KO of SOX2 and DMR

The small guide RNA (sgRNA) sequences were designed
by using the CRISPR Design Tool (http://tools.genome
engineering.org), kindly provided by Feng Zhang lab
(Broad Institute of MIT and Harvard, Boston, USA). The
target sequences sgRNAs were as in Table S7.
To construct 5637-Cas9, RT4-Cas9 and T24-Cas9 stable

cell lines, the Cas9 lentivirus packaging was provided by
Ubigene Ltd., Guangzhou, China. The lentivirus particles
were used for the infection of target cells with the supple-
ment polybrene. After two rounds of infection, cells were
selected with 200-μg/ml hygromycin.
To establish the cell lines that stably expressed the DMR

or SOX2-KO system, theCas9 stable cell lineswere infected
by the DMR or SOX2-KO sgRNAs lentivirus (Ubigene
Ltd.) with the supplement polybrene. After two rounds of
infection, cells were selected with 1-μg/ml puromycin.

2.7 Single-cell ATAC and RNA analysis

We used the integrated scATAC + scRNA object from
Xiao et al.41 and extracted normal urothelium, luminal-
like, basal-like and TM4SF1-positive cancer subpopu-
lation (TPCS) cells from the scATAC object. scATAC
peaks were called via MACS2 in ArchR package. Cis-
regulatory interaction between chromosomal loci were
inferred with ArchR as calculating ‘addCoAccessibility’
(maxDist = 1000 000) and filtered with correlation >.1.
Overlapping of scATAC peaks and cis-interacting ‘loops’
to enhancer or DMR are performed with GenomicRanges
in R.

2.8 CUT&Tag sequencing

RT4, T24, 5637-Cas9, and 5637-Cas9-active-gDNA cells
were counted using trypan blue (Solarbio Ltd., Beijing,
China). After quantification, 40 million cells were used
for CUT&Tag experiment. CUT&Tag experiments were
performed with NovoProtein CUT&Tag 2.0 pAG-Tn5 kit

https://uroweb.org/individual-guidelines/oncology-guidelines/
https://uroweb.org/individual-guidelines/oncology-guidelines/
http://tools.genomeengineering.org
http://tools.genomeengineering.org


XIAO et al. 7 of 20

(NovoProtein Ltd., Cat. #N259) according to the manu-
facturer’s protocol. Antibodies used in this study include
anti-H3K27ac (Abcam Ltd., Cat #ab4729), anti-FOXA1
(Abcam Ltd., Cat. #ab170933), anti-CTCF (Abcam Ltd.,
Cat. #ab188408), anti-SOX2 (Abcam, Cat. #ab92494), Goat-
anti-mouse IgG (Sangon Ltd., Cat. #D111024) and Goat-
anti-rabbit IgG (Sangon Ltd., Cat. #D111018). Each library
was sequenced to 2× human genome coverage onNovaSeq
sequencer (Illumina Ltd., CA, USA). A detailed list of
antibodies could be found in Table S6.

2.9 CUT&Tag analysis

Raw paired-end CUT&Tag sequencing data were mapped
to human reference genome GRCh38 using Bowtie2
(-k 10 –very-sensitive -X 2000) (https://github.com/Ben
Langmead/bowtie2). All unmapped reads, non-uniquely
mapped reads, reads with low mapping quality
(MAPQ) < 20 and PCR duplicates were removed. Enrich-
ment peaks were determined by intersecting peaks found
from MACS2 callpeak (-f BAMPE) (https://github.com/
taoliu/MACS) and Genrich (standard parameter) (https://
github.com/jsh58/Genrich). Differential peak calling
was performed with a general linear model approach for
estimating difference.

2.10 RNA sequencing

The total RNA of RT4, 5637, 5637-Cas9, 5637 DMR
and SOX2-KO was extracted using Trizol (Invitrogen
Ltd.), and 1000 ng of RNA were taken for ribosomal-
off treatment using the Ribo-off rRNA Depletion
Kit (Human/Mouse/Rat) (Vazyme Ltd., Cat. #N406-
01). RNA library with Ribo-off was constructed by a
KAPA RNA HyperPrep Kit (Roche Ltd., Cat. #KK8544).
Each RNA library was sequenced with 150-bp paired-
end format to 2× human genome coverage on NovaSeq
sequencer (Illumina Ltd., CA, USA). All procedures
followed the standard manufacturer’s protocol.

2.11 RNAseq analysis

Raw sequencing data (fastq) were trimmed with fastp
(-w 10) and aligned to GRCh37 reference genome
with STAR (–chimSegmentMin 20 –chimScoreMin
5 –quantMode GeneCounts –twopassMode Basic)
before re-alignment with HISAT with the STAR-output
novel splicing sites. Read counts per gene (GRCh37.82
ENSEMBL annotation) were extracted from the HISAT-
output binary alignment format (BAM). Differential

expression was performed with DESeq2 with annotation
from EnsDb.Hsapiens.v86. Significantly differential
expressed genes were defined by padj <.001 and
abs(log2FoldChange) >1. Similarities between pairs
of samples were computed with Euclidean distance (dist
function in R) upon all possible differentially expressed
genes padj <.05 and abs(log2FoldChange) >.5.

2.12 DNA extraction

For the extraction of gDNA fromBLCA tissues and its adja-
cent tissues, about 25 mg of tissues was taken from each
sample and extracted according to the DNeasy Blood &
Tissue Kit (QIAGEN Ltd., Cat. #69506). cfDNA in urine
was extracted from 20ml of urine supernatant with Quick-
DNA Urine Kit (Zymo Research Ltd., Cat. #D3061). All
procedures followed the standardmanufacturer’s protocol.

2.13 Oncology panel sequencing

DNA was sonicated into ∼250-bp fragments with Covaris
S220. NGS sequencing libraries were built with a single-
stranded DNA ligation protocol. In brief, sonicated DNA
was denatured to form a single strand and 3′-polyA-tailing
was performedwith terminal transferase (Enzymatics Ltd.,
USA, Cat. #P7070). Ligation of a polyT-extruding adaptor
(Sangon Ltd., China) was performed with Escherichia coli
ligase (Takara Ltd., Japan, Cat. #2161). Linear amplifica-
tion of the ligated product was performed with adaptor-
specific primer (Sangon Ltd., China) for 12 cycles and
the amplified product was annealed and ligated into a
5′-polyN-extruding adaptor (Sangon Ltd., China) with
T4 ligase (Enzymatics Ltd., USA, Cat. #L6030). The lig-
ated product was then amplifiedwith Illumina-compatible
primers (Sangon Ltd., China) for 10 cycles. The amplified
library was captured using a custom-synthesized oncol-
ogy panel-consisting exons, UTR and structural variant
breakpoint-enriched introns of 538 tumour-related genes,
as well as 1076 SNP loci (Euler Technology Ltd., China).
Libraries were sequenced to targeting ∼800× on-target
coverage with paired-end 150-bp read format on Illumina
NovaSeq.

2.14 Oncology panel data analysis

Raw sequencing data were mapped using BWA-MEM
to GRCh37 reference genome with default parameters.
Germline mutations were called with the Sentieon hap-
lotyper and annotated with VEP (90.1) and SnpSift
(4.2). Paired tumour-normal samples were co-called and

https://github.com/BenLangmead/bowtie2
https://github.com/BenLangmead/bowtie2
https://github.com/taoliu/MACS
https://github.com/taoliu/MACS
https://github.com/jsh58/Genrich
https://github.com/jsh58/Genrich
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candidate germline variants were filtered with the gno-
mAD global frequency <.001 and in-house database fre-
quency <.001 (out of 20 000 patients). Somatic tumour
mutations were called with the Sentieon TNscope and
Pisces (5.2.9.122), whereas variants called by both algo-
rithms were passed for filtering. Copy number variations
were called using a CNVkit with a default parameter. B-
allele frequency (BAF) determination was performed for
germline and somatic variants. Tumour genome was seg-
mented using BAF and sequencing depth information.
Allelic copy numbers were determined for each somatic
variant using a hypergeometrical test. Structural variants
were called using Lumpy. Tumour content determined
by an in-house CNV-based linear regression method was
confirmed by haematoxylin and eosin staining. Minimal
tumour-cell-fraction of 5%/2%, a minimal variant read
number of 10 and aminimal read depth of 500were applied
to variants for filtering. Filtered mutations were annotated
with vcfanno and filtered with gnomAD global frequency
<.001.

2.15 DNAmethylation data processing

Pre-processing of genome-wide bisulfite capture sequenc-
ing data is similar as fromXiao et al.41 Briefly, raw bisulfite-
converted DNAm sequencing data were processed using
fastp and mapped to GRCh37 + decoy reference genome
using BWA-Meth. Mapped data were deduplicated and
sorted using Sambamba and Samblaster. CpG-methylation
level was extracted using a Pile-O-Meth toolkit. For
all libraries, conversion rate was quality controlled by
CHH methylation level >99%. Basic statistics of in-house
sequencing library were further quality-controlled by on-
target rate and on-target coverage with bedtools, and
duplication rate and mapping rate with Sambamba. CpG
methylation level (beta: defined as reads of C nucleotide
over total read coverage on single C bases on both strands
on CpG loci) was measured for each CpG loci across the
genome as mentioned earlier using Pile-O-Meth. For each
locus, beta from sequencing results were summarized in
R (3.6.2) using an in-house script. Differentially methy-
lated loci (DML) were defined as (1) p < .01 for t-test
between control and case groups (given NMIBC/MIBC or
BC/normal urine); (2) beta difference between case and
control groups>.1. Initial DMR candidates were made by
merging within-100-bp-apart DML. The average beta of
each initial DMR was calculated as mean beta of all CpG
encompassed in the DMR. This average beta was subjected
to t-test and p < .01 regions were selected as candidate
‘seed’ DMR. Segments ofmethylation difference level were
computed using a circular binary segmentation approach
on beta difference case and control groups with DNA-

copy. k-Means clustering was performed using R (3.6.2)
on the methylation beta difference on each segment, and
clusters of segments fully encompassed candidate ‘seed’
DMR were selected as true DMR candidate. DMR candi-
dates were overlapped with scATAC peaks from luminal,
basal, TPCS and UE cells. DMR candidates not over-
lapping with epithelial cell-type-specific scATAC peaks
were removed. The leftover candidate DMR set was clus-
tered using Z-normalized beta value and hierarchically
clustered, segregated into groups by k-means clustering.
Candidate ‘core DMR’ is selected from the candidate DMR
set by correlating pathological features to unsupervised
hierarchical clustered groups of tumour hyper-methylated
DMR.

2.16 Bisulfite-converted DMR-specific
amplicon sequencing

Tissue genomic DNA (200 ng) or urine total DNA (100 ng)
were bisulfite converted using an EZ-DNAm-Gold Kit
(Zymo Research Ltd., Cat. #D5006) and the DNA is dis-
solved in NF-H2O. For urine DNA less than 100 ng, λDNA
(TaKaRa Ltd., Cat. #3010) was added to a total of 100 ng
before bisulfite conversion to reduce DNA damage. After
conversion, the DNA is amplified by the multiplex PCR
system contained 20-ng DNA, 2-μl 10× Buffer II (100-mM
Tris–HCl, pH 8.3, 500-mM KCl), 1.2-μl 25-mM MgCl2, .4-
μl 10-mM dNTPs, 4.6-μl primer mix, .1-μl AmpliTaq Gold
DNA Polymerase (Thermo Fisher Ltd., Cat. #N8080241),
20-ng DNA and NF-H2O to a total of 20 μl. Amplification
was performed as follows: a denaturation step at 95◦C for
10min, followed by 25 cycles× (95◦C for 30 s, 65◦C for 30 s,
54◦C for 2 min, 65◦C for 30 s and 72◦C for 30 s), 72◦C for
10 min and 4◦C for overnight. PCR products were purified
with AMPure XP beads. Finally, the PCR products were
amplified using adaptor oligos (Sangon Ltd., Shanghai,
China) and KAPA HiFi HotStart ReadyMix (Roche Ltd.,
Cat. #KK2602), resulting in a final amplicon library that
was further purified before sequencing by 150-bp paired-
end format to a target of 6-M reads on Illumina NovaSeq.
A list of primers could be found in Table S8.

2.17 Bioinformatic processing of
amplicon sequencing data

Raw amplicon sequencing data (fastq) were aligned to
GRCh37 + decoy reference genome using Sentieon BWA-
MEM. Sentieon UMI processing pipeline was used to
collapse the paired reads as well as UMI groups. After
initial alignment, a reference sequence with converted
C > T loci denoted was added to the BAM file using
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PySAM. Reads, with either <99% conversion rate, ≥2
non-converted C on non-CpG loci, non-single-stranded
converted read, both-strand converted, or MAPQ <30,
were removed using PySAM. Haplotype extraction was
done with Rsamtools in R. Methylation frequency (mf) of
a read is defined as

𝐶𝐶𝑝𝐺∕𝑁𝐶𝑝𝐺

where C is the number of C in CpG andN is the number of
total CpG in the read.
A DNAm haplotype is defined as a read originated from

a given amplicon with a specific methylation frequency.
To simplify computation, all methylation frequency is
rounded to one digit of decimal. For each sample, reads
on any given amplicon are aggregated according to the
DNAm haplotype. The relative prevalences (‘haplotype
frequency’) of the jth haplotype on amplicon were defined
as

𝑝𝑗 =

(
𝑁ℎ𝑎𝑝𝑙𝑜𝑡𝑦𝑝𝑒𝑗

∕

𝑛∑
𝑖

𝑁ℎ𝑎𝑝𝑙𝑜𝑡𝑦𝑝𝑒𝑖

)

where all haplotypes i, j belong to similar amplicon.

2.18 Statistical classification of DMR

For each amplicon-compassed DMR on each sample, the
haplotype entropy index is defined as

𝐸𝑛𝑡𝑖 = −1 ×

𝑛∑
𝑗

𝑝𝑖𝑗 × log
(
𝑝𝑖𝑗

)

where 𝑝𝑖𝑗 denotes the jth haplotype of the ith amplicon.
Student’s t-test was used to measure any difference

between entropy indexes of two groups of samples: MIBC
and NMIBC tissues. p-Values were adjusted by false dis-
covery rate (FDR) method. DMRwith adjusted p≥ .05 was
defined as T1DMR, and DMR with adjusted p < .05 was
defined as T2DMR.

2.19 Association of methylation
haplotypes to traits

Student’s t-test was used to measure any difference
between haplotype frequencies from two given sets of
samples: HG/MIBC (100% HG) cancer versus LG/NMIBC
(mostly LG) cancer tissue, HG cancer tissue versus normal
urine, LG cancer tissue versus normal urine. p-Valueswere
adjusted by an FDR method. Haplotypes with adjusted

p < = .001 and at least a haplotype frequency of 10% in
the higher group were considered significantly different
between the two groups. The haplotypeswere grouped into
three different classes: high in HG cancer (relative to urine
and LG) (HG_high), high in LG cancer (relative to urine
and HG) (LG_high) and high in urine (relative to MIBC
and NMIBC) (Urine_high). Mean haplotype frequency of
all haplotypes from the same class was computed for each
sample. From the results, we consider that more reliable
biological classification of BLCA might rely on the WHO
grade as well as clinical stage instead of the highly random
muscle invasion manifested on pathological slides.

2.20 Tissue-of-origin decomposition

Mean haplotype frequency of each haplotype was com-
puted for three sets of samples: HG cancer tissues, LG
cancer tissues and normal urine. The nnls function from
R package lsei was used to compute a non-negative least-
squared decomposition of the sample into amixture of pre-
viously mentioned three different tissue-of-origin compo-
nents: LG_similarity, HG_similarity and Urine_similarity.

2.21 LoD of amplicon sequencing

Standard samples were prepared by mixing a defined
portion of cancer cell line or PBMC genomic DNA into
urine cfDNA. Different mix-in gDNAs (RT4, T24, 5637 and
PBMC) were mixed with cfDNA from normal urines from
individual donors of the same sex, respectively. At least two
different samples of normal urine cfDNA were used for a
givenmix-in gDNA. Serial dilutionwas performed tomake
100%, 20%, 10%, 5%, 2.5%, 1%, .5% and .1% concentrations
of mix-in gDNA in urine cfDNA. The standard curve sam-
ples were then subjected to bisulfite conversion, multiplex
amplification and sequencing according to the respective
protocol. Haplotype frequencies were extracted from the
processed sequencing result. Prediction was done with
the urine cancer score (UCAS) model. Limits-of-detection
were drawn to 2×, the point which the next lower dilu-
tion is statistically indifferent to the current dilution by
Student’s t-test.

2.22 Classifier training

Twodifferent general linearmodelswere trained to classify
amplicon sequencing data. The UCAS model was trained
to distinguish cancer tissue from normal urine, using a
Gaussian family distribution and a link function of the
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following:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ∼ 𝑈𝑟𝑖𝑛𝑒_ℎ𝑖𝑔ℎ + 𝐻𝐺_ℎ𝑖𝑔ℎ + 𝐿𝐺_ℎ𝑖𝑔ℎ

+𝑈𝑟𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

where Urine_high, HG_high and LG_high are mean fre-
quency of denoted classes of haplotypes as defined by t-
test, andUrine_similarity is the non-negative least squared
approximation of ‘urine-like’ mixture component in sam-
ple. Predictor==1 when the sample is a cancer tissue or
‘==0’ otherwise.
The BLCAS model was trained to distinguish HG can-

cer tissue from LG cancer tissue, using a Gaussian family
distribution and a link function of the following:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ∼ 𝐻𝐺_ℎ𝑖𝑔ℎ + 𝐿𝐺_ℎ𝑖𝑔ℎ

where HG_high and LG_high are mean frequency
of denoted class of haplotypes as defined by t-test.
Predictor==1 when the sample is an HG cancer tissue or
‘==0’ otherwise.
Training was done with 32 urothelial cancer tissue sam-

ples (excluding the neuroendocrine cancer sample) and 12
normal urine samples, from a total of 14 MIBC, 9 NMIBC
and 12 healthy donors. With the training group, cut-off of
UCAS was set to .42 and BLCAS was set to .52.

2.23 Clinical trait association and
statistical analysis

Clinical trait was compared to the UCAS and BLCAS
results in a double-blinded fashion. Progression-free-
survival was defined as the time between first operation
and subsequent re-surgery or clinical assessment and
right-censored. Survival analyses were done with R pack-
age survival. Hazard ratio and statistical significance tests
were done with Cox model (R function coxph) and statis-
tical comparison was done by log-rank test. Survival plots
were done with R package survplot. ROC, AUC and best
performance sensitivity/specificity were calculated with R
package pROC. For table analysis, the Fisher test was used.
For comparing prediction precision, F1.testwith R package
MLmetrics was used where applicable. Unsupervised hier-
archical clustering was done by R function hclust with a
Ward method and classification according to hierarchical
clustering result was done with cutree.

2.24 Software

A list of software used in the study could be found in
Table S9.

3 RESULTS

3.1 The challenge-BLCA cohort

We screened 879 patients suspected of having BLCA and
planned to undergo surgery, and 100 healthy donors
from 5 hospitals across China, to prospectively recruit 145
patients and 84 healthy donors into the Challenge-BLCA
cohort (Figure 1). The primary aim of this study is (a)
to classify and validate the biological nature of BLCA-
associated DNAm regions; (b) to determine the utility of
DNAm on tumour-specific DMR as biomarkers for non-
invasive detection and surveillance of BLCA. Specifically,
we sought to determine whether such an approach results
in precision biomarkers which facilitate (1) the detection
of cancer in pre-surgery urine from BLCA-history naïve
patients; (2) the prediction of the presence of HG can-
cer from pre-surgery urine; (3) the prediction of tumour
pathology from pre-surgery urine; (4) the prediction of
progression-free survival and metastasis from pre-surgery
urine; (5) the prediction of the presence of residual cancer
from paired pre- and post-surgery urine; and (6) the pre-
diction of recurrence or residual disease with post-surgery
urine.
The training cohort (tumour samples from 23 patients

and urine from 12 healthy donors) was applied to develop
the BLCA-specific DNAm statistical model. In contrast,
the validation cohort (259 urine samples from 135 patients
and 67 healthy donors) was used to validate the non-
invasive detection assay.
The 23 BLCA patients in training cohort were with a

skewed sex ratio (male:female = 20/3, 6.67:1) and com-
prised all possible clinical grades (Ta: 7, 30%; T1: 2, 9%; T2:
6, 26%; T3: 5, 22% and T4: 4, 13%) as well as pathological
grading (low: 6, 26%; mixed: 1, 4% and high: 16, 70%). The
133 patients in the validation cohort also had a skewed sex
ratio (male:female = 110/23, 4.78:1). They were diagnosed
either by post-enrolment surgery (BLCA-naïve: 85, 63.9%)
or pre-enrolment surgery (with a BLCA history: 48, 36.1%).
These patients were with typical BLCA (109, 82%), atypical
BLCA (10, 7.5%), BLCA with multiple synchronous cancer
(5, 4%) and LG PUNLMP (5, 4%) or inflammation (4, 3%).
After enrolment, pathology after surgery resection deter-
mined T stage in 86 (64.6%) of the patients, with 27 (20.3%)
Ta, 30 (22.6%) T1, 17 (12.8%) T2, 5 (3.8%) T3 and 7 (5.3%)
T4 tumours. We conclude that the study cohort was well
balanced and representative of clinically observed BLCA
cases.

3.2 Statistical classification of
BLCA-associated methylated regions

We term the mean cytosine methylation status on mul-
tiple CpG islands in a single-DNA read as a methylation
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haplotype (haplotype in short). Theoretically, haplotype
in T1DMR is unchanged during oncogenesis, whereas
haplotypes in T2DMR occurred de novo in cancer cells
and might be associated with tumour grades or stages
(Figure 2A). DNAm on T1DMR loci does not hold onco-
genic capability but is passively amplified during tumouri-
genesis. In contrast, DNAm on T2DMR is associated with
or directly driving, malignancy transformation. We term
T1DMR as ‘passenger’ and T2DMR as ‘driver’ loci.
We reasoned that the classification of T1DMR and

T2DMR could be performed with haplotype diversity
(entropy), prevalence, as well as the existence of tumour-
specific haplotype (Figure 2B). In theory, haplotype diver-
sity from T1DMR should be significantly lower compared
to T2DMR, and tumour-specific haplotype prevalence in
T1DMR should be higher compared to T2DMR. Further-
more, tumour-associated haplotypes from T1DMR should
be present in normal tissues, albeit at a lower level,
whereas those from T2DMR should be near absent.
By associating pathology-deduced tumour fraction to

differential methylation levels, we located 17 BLCA-
associated DMR from our previous study41 as potential
T1DMR or T2DMR. To saturate sample the haplotypes in
BLCA tissues, a multiplex PCR amplicon assay designed
to target these 17 DMR was applied to 33 BLCA tumour
tissue samples from the 23 donors of the training cohort.
Haplotype prevalence and entropy (Figure S1) on each
DMR clearly classified T1DMR from T2DMR. The entropy
(‘diversity’) of haplotypes on T1DMR does not differ
between LG and HG tumours (Figure S1). However, the
type of haplotypes on T1DMR drastically differs between
LG and HG tumours. For example, OTULINL T1DMR is
hypomethylated (>80% haplotype with 0%methylation) in
NMIBC but hyper-methylated (>50% haplotype with 100%
methylation) in MIBC (Figure S1A). LG tumour and non-
muscle-invasiveness are only associated with haplotypes
in T1DMR, suggesting that LG tumour results from clonal
expansion of a cell type remained in a well-differentiated
status. Haplotypes in T2DMR are associated with HG
tumour as well as invasiveness (Figure 2C). Unsupervised
hierarchical clustering of haplotype prevalence from each
sample (‘trees’ in Figure 2D) revealed that HG tumours
cluster together according to the prevalence of haplotypes
on T2DMR. In these regions, although LG tumours typ-
ically have a defined set of haplotypes, the diversity of
haplotypes in HG tumours is significantly higher. Further-
more, gradual methylation or demethylation was found in
HG tumour samples (Figure 2D), indicating more preva-
lent epigenetic reprogramming in HG tumour compared
to LG. These T2DMR controls genes known to be impli-
cated in oncogenesis such as HOXC9,50 CCN1,51 SOX2 or
reported being differentially expressed in epithelial can-
cer such as MYOM2.52 Similar to our previous report,41

we observed that haplotypes from T1DMR differ between
LG and HG tumours, suggesting that they are of different
cellular origin.

3.3 Functional validation of
SOX2-associated driver T2DMR

To validate that epigenetic reprogramming on ‘driver’
T2DMR is associated with oncogenesis, we investigated a
set of T2DMR adjacent to a well-known oncogene SOX2,53
which shows gradual de novo DNAm in HG but not
LG cancer (Figure 2D). Our previous works with single-
cell RNA and ATAC sequencing have demonstrated that
NMIBC and MIBC evolve from different cell-of-origin.
Although NMIBC (luminal-like BLCA) originates from
the intermediate cells of the urothelium, MIBC (basal-
like BLCA) originates from the basal cells of urothelium.41
Particularly, a TPCS arises in MIBC as a potential can-
cer stem cell. We leveraged the same single-cell ATAC
dataset to extract the regulatory elements and their chro-
matin accessibility around SOX2 loci. Furthermore, we
applied the CUT&Tag assay on BLCA cell lines T24 (which
is derived from an MIBC donor and demonstrates typ-
ical basal-like HG tumour characteristics), 5637 (which
is derived from an MIBC donor and shows transcription
similarity to TPCS) and RT4 (which is derived from an
NMIBC tumour, and representative to an LG tumour) to
investigate transcription factor and chromatin regulator
binding on this region. scATAC and CUT&Tag experi-
ments revealed two distal regulatory regions (L1 and L4)
specifically bound by FOXA1 and opened in the basal can-
cer cell types (basal and TPCS) (Figure S2A). Correlation
between single-cell chromatin accessibility suggests that
L1 and L4 enhancers interact with the SOX2 transcription
start site (TSS) (Figure S2A). The chromatin cis-regulatory
interaction is supported by basal-specific CTCF binding on
L1 and luminal-specific CTCF binding on L4 (Figure S2B).
FOXA1 binding on L1/L4 in basal cancer cells is associated
with H3K27ac disposal (Figure S2A). Hence, basal-specific
FOXA1 binding removed a non-enhancer cis-interaction
between SOX2 and L4, while activating the L1 enhancer
and facilitating L1-SOX2 interaction.
SOX2 T2DMR interacts with L1 enhancer as inferred

by scATAC correlation (Figure S2A). We thus adopted
CRISPR technology to remove the T2DMR region and
investigate their potential regulatory effects on SOX2
expression. Cas9-mediated removal of T2DMR in TPCS
results in a loss of CTCF binding on L1. Additional loss
of CTCF binding adjacent to SOX2 (L2/L3) and reversal
of CTCF binding on L4 is detected in TPCS with DMR2
removal (Figure S2B), suggesting that SOX2 T2DMR inter-
action with L1/L4 is essential for the regulatory activation
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F IGURE 2 Classification of bladder cancer (BLCA) differentially methylated region (DMR). (A) Cancer-associated DMR could result
from four different scenarios: (1) inherited cell-type-specific DNA methylation (DNAm) signature from the clonal ancestor of cancer, which is
a normal cell (Type I, T1DMR); (2) de novo DNAm shift during oncogenesis (Type II, T2DMR); (3) inherited cell-type-specific DNAm
signature from a non-cancer cell which is absent in normal tissue (Type III, T3DMR), such as immune cells; and (4) de novo DNAm shift
accompanied oncogenesis in a non-cancer cell type (Type IV, T4DMR), such as reprogrammed fibroblast. Considering only the
cancer-cell-derived DNAm, two types of cancer-cell-associated DMR might present: the T1DMR, which is present in the ancestral cell of
cancer, and T2DMR, which underwent tumour-specific DNAm change. (B) T1DMR does not contain tumour-specific haplotype (TSH) and
shows low haplotype diversity. Chromatin accessibility on T1DMR does not change between ancestral cells and cancer. But T1TSH prevalence
is highly correlated with tumour fraction in tissues. In contrast, T2DMR exhibits that high haplotype diversity has TSH and shows chromatin
accessibility change. Furthermore, T2TSH prevalence is linked to tumour grade or clinical stage. (C) Association of haplotype from
T1DMR/T2DMR with pathological traits. (D) Examples of four T2DMR that display oncogenesis-associated de novo
methylation/demethylation, as revealed by gradually changing TSH prevalence in tumour samples.
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of SOX2. Consequently, the loss of interaction between
the SOX2 locus and the L1 enhancer by SOX2 T2DMR
removal reduced SOX2 RNA expression (Figure S2C)
and subsequently reduced SOX2 binding on its cognate
TFBS (Figure S2D). Though SOX2 expression and bind-
ing reduction are only partial in SOX2 T2DMR KO, it is
sufficient to cause a global transcription switch to phe-
nocopy SOX2 KO (Figures S2E and S3). As knock-down
of SOX2 results in reduced migration and invasion capa-
bilities in the TPCS cell line (Figure S4), these results
indicate that SOX2-associated T2DMRs are essential reg-
ulatory elements for SOX2 in basal BLCA and suggest
that differential methylation on T2DMR drives oncogenic
transformation.

3.4 DNAmethylation on
T1DMR/T2DMR enables accurate
classification of BLCA

We tested whether BLCA can be accurately classi-
fied with DNAm on the selected driver and passen-
ger T1DMR/T2DMR. MIBC and NMIBC tissues were
sequenced using the EUCAS assay, and DNAm haplo-
types were extracted for T1DMR/T2DMR. The prevalence
of every haplotype was plotted as a heat map by samples.
The haplotypes and samples were subjected to unsuper-
vised hierarchical clustering. Haplotype prevalence from
these DMRs clearly segregates BLCA into two groups:
a luminal-like group which is associated with LG, non-
invasive phenotype, Ta stage; and a basal-like group which
is associated with HG, invasiveness and higher clinical
stage (Figure 3A). The HG group tumours were associ-
ated with tumour suppressor mutation (TP53, CDKN and
SOX genes), whereas oncogenic mutations were found
in both LG and HG tumours (Figure 3A). Based on
the tissue classification result, a general linear model
was constructed with haplotype prevalence to classify
MIBC tissues from NMIBC tissues (Section 2). Numeri-
cal results predicted by the model (BLCAS: basal/luminal
cancer score) clearly stratified MIBC and NMIBC tissues
(Figure 3B). BLCAS is strongly associated with WHO
grade (p = .038 [LG vs. HG MI−] or .00032 [LG vs. HG
MI+], Wilcox test, Figure 3B) but not muscle invasion
(p = .82 between HG MI+/−), showing that malignant
transformation predetermined pathological trait before
its development. Although mutations on oncogenes or
tumour suppressors are associated with pathological grad-
ing and clinical features (Figure 3C), their performance
is not as good as DNAm-based classification (Figure S5).
Hence, DNAm on the selected DMR accurately reflects
the underlying pathological and clinical features of cancer
biology.

3.5 Non-invasive detection of BLCA
from pre-surgery urine

BLCA cells release their DNA content into urine at their
death. By successfully identifying the driver and passen-
ger DMR containing tumour-derived DNAm haplotypes
associated with BLCA biology, we tested whether the
cancer-associated methylation signature could be identi-
fied in urine. In a model experiment, we artificially mixed
the genomic DNA from a cancer cell or PBMC (to mimic
haematuria) into cfDNA from the urine of healthy donors.
DNAm haplotypes in these mixture samples were inferred
by sequencing with the same multiplex PCR NGS assay.
A general linear model classifying tumour tissues against
normal urine was constructed with the methylation hap-
lotype prevalence from sequencing results (Section 2) to
predict a score for tumour (UCAS). The assay can dis-
tinguish samples with 0% and .025% mixed-in tumour
cells, which means its limit of detection is of <.5% (2 ×
.025%) for the artificial mixture samples (Figure S6). These
results indicate that cancer methylation signals could be
identified in urine.
We validated the urine DNAm sequencing assay using

the urine samples from the Challenge-BLCA cohort. In
85 pre-surgery urine from donors without previous BLCA
history and 67 urines from healthy donors (Figure 4A),
negative UCAS results were obtained from 100% (72/72)
of the urines from healthy donors (67) or donors with
benign bladder disease (5). In contrast, positive UCAS
results were obtained from 65% of Ta cancer (15/23), 94%
of T1 (30/32) and 100% of T2+ cancer (25/25) (Figure 4B
and Table S10). ROC analysis demonstrated that the AUC
for HG BLCA is 1.0, with specificity and sensitivity reach-
ing 100%. The overall detection rate in all the tested
samples was 87.5% at 100% specificity, with all unde-
tected tumours as LG (Figure 4C). Compared to historical
urine sedimentary cell FISH assay results from the same
hospitals, UCAS demonstrated significantly superior sen-
sitivity and specificity for BLCA. For non-cancerous urine
samples, specificity of UCAS is 100% (72/72), whereas
specificity for FISH is 80% (47/59) (HR = Inf [3.97, Inf],
p = 3.529e − 05, Fisher’s exact test). For LG and HG
tumours,UCASdemonstrated higher sensitivity compared
to FISH (LG: 62%, 16/26 vs. 28%, 33/118, HR = 4.08[1.56,
11.17], p = .002349, Fisher’s exact test: HG: 100%, 54/54 vs.
73%, 139/191, HR = Inf [5.02, Inf], p = 6.849e − 07, Fisher’s
exact test) (Figure 4D,E). The false-negative urines from
LG tumours demonstrated less cancer-specific T2DMR
signal, suggesting that these LG tumours are benign neo-
plasm resulting from clonal expansions of a minimally
transformed cell type (Figure S7). Together, these results
suggest that UCAS outperforms currently applied clinical
assays to detect BLCA non-invasively.
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F IGURE 3 Selective driver and tissue-of-origin DNA methylation signature outperform tumour genomic mutation in classifying
bladder cancer (BLCA) tumour tissues. (A) DNA methylation and mutation profiling on resected non-muscle-invasive bladder cancer
(NMIBC) or muscle-invasive bladder cancer (MIBC) tumour tissues showing haplotype (rows) prevalence in pathologically defined tumour
samples (columns). Haplotype prevalence is Z-scaled. Pathological classifications (grade, T-stage, invasiveness [invasive] and
muscle-invasion) and DNA mutations of known BLCA-associated oncogenes and tumour suppressors are revealed in the heat map. DNA
methylation haplotype prevalence strongly correlates with pathological grade and invasiveness in tumour tissues. (B) DNAmethylation-based
BLCAS classifier score predicts tumour grade in MIBC and NMIBC tissues. (C) The presence of mutations or pathology features, or DNA
methylation class (luminal or basal, defined by haplotype prevalence), in NMIBC and MIBC.

In 75 urines from putative BLCA donors who received
surgical resection after urine collection and were diag-
nosed as either HG tumour or tumour-free, UCAS
score was positive for 100% (60/60) of the donors
whose first resection was positive for HG tumour.
In the remaining 15 urines from patients whose first
trans-urethral resection of bladder tumour (TURBT)
pathology reports were negative for tumour, a posi-
tive UCAS signal was found in 0% (4/4) of donors
whose second TURBT pathology remained cancer-free,
and 45% (5/11) of donors whose second TURBT pathol-
ogy was tumour-positive, suggesting a positive corre-
lation between tumour load and urine DNAm signal
(Figure S8).

3.6 Stratification of BLCA patients
according to pre-surgery urine DNAm
signature

TheBLCASmodelwas validated by comparing pre-surgery
urine and pathology results from resected tissues from
67 donors with BLCA. Association of BLCAS to resected
tumour pathological features suggested that BLCAS is
strongly associated with WHO grade and invasiveness but
onlymildly associated withmuscle invasion, with the opti-
mal performance in predicting HG tumour (AUC: .826,
Figure S9).
Follow-up clinical assessments on 70 BLCA donors

across 3 years were compared to pre-surgery urine UCAS
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F IGURE 4 Urine DNA methylation signal non-invasively detects bladder cancer (BLCA). (A) Experiment design: DNA methylation
assays were performed on pre-surgery urine and validated with resected pathology classification. (B) Cancer-specific methylation score
(cancer methylation score) of individual samples. Samples are grouped/coloured by their class (normal, LG and HG). The individual
pathological type of each sample is denoted as the shape of a dot. (C) Receiver-operating curve and area-under curve for DNA methylation
signature to classify high-grade (HG), low-grade (LG) or all cancer samples from benign bladder disease and normal donors. (D and E)
Sensitivity and specificity of urine sedimentary cell FISH assay (FISH) or DNAmethylation assay (urine cancer score [UCAS]) for LG and HG
cancer.

and BLCAS scores and pathological tumour reports from
the first resection. Progression of disease was defined
as tumour recurrence in a second surgery or by clini-
cal assessment. UCAS stratified patients into ‘negative’
or ‘positive’ groups or by BLCAS into ‘basal’ and ‘lumi-
nal’ groups. In concordance with the association of
UCAS negativity to tumour-free or well-differentiated LG
tumour state, 100% (13/13) of UCAS negative patients
are recurrence-free, whereas 37% (21/57) patients with
positive urine DNAm signal demonstrated disease pro-
gression (Figure 5A and Table S11), including patients
whose initial TURBT pathology was tumour free. How-
ever, 7 months later, TURBT pathology demonstrated LG
tumour. Hence, pre-surgery UCAS accurately stratifies
patients into a low-risk group who were tumour free in a
subsequent TURBT surgery (p = .001923, log-rank) and a

high-risk group with an estimated 1- and 2.5-year recur-
rence rate of 24.6% (95% CI: 12.5%–34.9%) and 43% (95%
CI: 25.3%–56.5%) (Figure 5A and Table S11). This stands in
stark contrast with all pathological traits tested, including
WHO grade (p = .3196), tumour invasiveness (p = .2151),
or muscle-invasion (p = .8793), which failed to predict
recurrence-free survival (Figure 5A and Table S11). More-
over, lymph node or distal metastasis was only found in
patients with HG tumour (p = .002128), invasive pathol-
ogy (p = .001605) and ‘basal’ class by BLCAS (p = .04461).
Muscle invasion in pathological assessment failed to dis-
tinguish metastasis (p = .4661, Figure 5B and Table S11).
These results show that urine DNAm signal accurately
predicts disease-free survival to avoid unnecessary addi-
tional surgery and stratifies patients of higher risk for
metastasis.



16 of 20 XIAO et al.

F IGURE 5 Pre-surgery urine differentially methylated region (DMR) DNA methylation signal non-invasively classifies bladder cancer
(BLCA) and predicts progression-free survival. Experiment design: pre-surgery urine DNA methylation signal, or pathological features of
resected samples on the first trans-urethral resection of bladder tumour (TURBT) sample, was used to predict progression-free survival (A) or
metastasis-free survival (B). Only DNA methylation scores negativeness, but none of the pathological features were significantly associated
with a progression-free survival benefit. DNA methylation, WHO grade and tumour invasiveness, but not muscle invasion, are associated
with metastasis-free survival. In other words, pre-surgery, BLCA DNAmethylation signature negative urine is from benign, slow-growing
cancer, which is very unlikely to develop disease recurrence, and pre-surgery BLCA DNAmethylation basal class are associated with tumours
with metastasis potential.

3.7 Post-surgery urine DNAm signature
detects residual disease and predicts
disease progression

To determine whether urine DNAm signal could pre-
dict residual disease, we first analysed paired pre- and
post-first-surgery urine from 13 donors who received two
consecutive surgeries. A 100% (13/13) of first (pre-first-
surgery) urine was positive for UCAS, whereas a positive
second (post-first-surgery) UCAS correctly predicts 100%
(4/4) of patients who depicted a residual tumour in a
subsequent surgery, and 100% (9/9) of patients who were
tumour-free in subsequent surgery were UCAS negative in
the post-surgery urine (Figure 6).
In 61 post-first-surgery urines from donors who received

two consecutive surgeries within 180 days, we define a
high-risk group with positive UCAS or basal-like BLCAS
and a low-risk group with luminal-like BLCAS as well as
negative UCAS. Overall, 100% (30/30) of low-risk group

patients are progression-free within this period, whereas
71% (22/31) of high-risk group patients depicted residual
disease in a second surgery, with an expected disease-free
survival of 44 days (95% CI: 30.4%–69.3%). Hence, the post-
surgery urine DNAm defined high-risk group shows a sig-
nificantly higher risk of disease progression (p= .0008807,
log-rank). Metastasis is only found in the high-risk group
(6.4%, 2/31) though statistically insignificant due to a low
number of cases. These results display that post-surgery
urine methylation signal sensitively detects residual dis-
ease and stratifies patients into risk groups with direct
implications for clinical decisions.

4 DISCUSSION

Our assay demonstrated specificity and sensitivity, reach-
ing 100% for HG BLCA, largely outperforming FISH,
urine cytology and the currently available urinary-based
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F IGURE 6 Post-surgery urine DNA differentially methylated region (DMR) methylation signal detects minimal residual disease and
predicts recurrence. (A) Paired pre-first trans-urethral resection of bladder tumour (TURBT) urine and pre-second surgery urine are
compared for the same individual. Although the pre-first TURBT urine is 100% positive (13/13) in these patients, second TURBT/radical
cystectomy (RC) only finds residual tumour in 100% of individuals (4/4) who show positive cancer methylation score. (B) Post-first TURBT
urine DNA cancer methylation signature (high-grade or residual disease: high risk; low-grade and no-residual-disease: low risk) stratifies
patients into risk groups that are strongly associated with recurrence. A 100% (30/30) of low-risk patients do not show recurrence within
180 days of the first TURBT, whereas >90% (30/31) of high-risk patients show recurrence within 180 days.

biomarkers.4,54 For LG BLCA, our results indicate non-
inferior performance to UtMeMA and superior perfor-
mance to all the other methods.40 Our assay detected all
recurrent LG tumours, and all LG tumours with a nega-
tive UCAS signal in urine belong to the benign neoplasm
group with a favourable clinical outcome. By combining
UCAS and BLCAS classifiers, our assay first indicated that
urine DNAm could be used to classify patients before
surgery. Compared to histology or FISH, the classifica-
tion of BLCA by pre-surgery urine DNAmmore accurately
identifies patients at a high risk of disease progression
with negative pathology findings and patients with no risk
of recurrence or metastasis. One of the reasons for this
might be a full representation of intratumoural hetero-
geneity in urine DNA compared to limited sampling by
pathology.55,56 Furthermore, the recurrence of BLCA could
occur for transformed LG tumours as well as HG basal
tumours. Although histological assessment could distin-
guish a tumour’s grade and invasiveness, it cannot tell
the difference between the transformation status of LG
tumours, which could only be assessed through molec-
ular profiling. Combining UCAS and BLCAS scores in
post-surgery urine predicts recurrence within 180 days
with excellent sensitivity (100%), assisting in stratify-
ing ∼50% of patients into the low-risk group for whom

an immediate subsequent surgical procedure could be
avoided or postponed. Together, the assay we designed
helps reduce unnecessary invasive monitoring and avoid
repeated transurethral resection of BLCA (Re-TURBT), not
only alleviating the financial burden and the discomfort
of patients but also mitigating the risk associated with
unnecessary surgery. Hence, the accurate classification
of cancer-derived DNAm events not only helped eluci-
date molecular mechanisms underlying oncogenesis but
also facilitated in development more sensitive and spe-
cific in vitro diagnostic assay highly relevant for clinical
management of BLCA.
There are some limitations to this study. First, pathology

assessment on resection samplesmay be limited by tumour
heterogeneity, thus leading to the inconsistencies between
UCAS and BLCAS prediction in the pathological evalu-
ation. Because of tissue limitations, this study has per-
formed complementary molecular classification on paired
urine and tissue samples on only a few samples. Future
clinical evaluations should include RNA- and immuno-
histochemistry (IHC)-based molecular classification on
resected tissue. Second, because of the scarce number of
cases, the prediction ability of the urine DNAm signature
for other pathological types of bladder tumours (neuroen-
docrine carcinoma, adenocarcinoma, sarcoma and others)
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as well as other types of urologic cancers were not anal-
ysed. Whether this assay could be applied to a wider range
of urological cancers merits future investigation. Third, a
50% progression-free survival (PFS) was not satisfied dur-
ing our observation period for recurrence or metastasis. A
longer follow-up is needed to further substantiate the per-
formance of the urine DNAm signature in monitoring the
recurrence and metastasis of BLCA. Fourth, because only
urines fromhealthy volunteers or patients subjected to pro-
visional diagnostic or treatment via TURBT were included
in the study,wehave only a fewPUMLMPandbenign blad-
der disease patients in the final cohort. Such limitation is
due to the enrolment criteria set before the clinical study.
We expect future clinical trials to include a more general
patient population, including microhaematuria, to test the
general testing performance of the EUCAS assay. Finally,
a throughout validation of oncogenic T2DMR should be
carried out in the future.
In conclusion, we characterized DNAm identifiers of

BLCA to enable accurate detection and classification
of BLCA in urine. Our results not only could have
practice-changing implications for non-invasive diagno-
sis and surveillance of BLCA but also implied widespread
extended application of similar methods to other cancer
types.
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