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ABSTRACT

Aim: To compute the uncertainty of time-in-ranges, such as time in range (TIR), time

in tight range (TITR), time below range (TBR) and time above range (TAR), to evaluate

glucose control and to determine the minimum duration of a trial to achieve the

desired precision.

Materials and Methods: Four formulas for the aforementioned time-in-ranges were

obtained by estimating the equation's parameters on a training set extracted from study

A (226 subjects, ~180 days, 5-minute Dexcom G4 Platinum sensor). The formulas were

then validated on the remaining data. We also illustrate how to adjust the parameters

for sensors with different sampling rates. Finally, we used study B (45 subjects,

~365 days, 15-minute Abbott Freestyle Libre sensor) to further validate our results.

Results: Our approach was effective in predicting the uncertainty when time-in-

ranges are estimated using n days of continuous glucose monitoring (CGM), matching

the variability observed in the data. As an example, monitoring a population with

TIR = 70%, TITR = 50%, TBR = 5% and TAR = 25% for 30 days warrants a precision

of ±3.50%, ±3.68%, ±1.33% and ±3.66%, respectively.

Conclusions: The presented approach can be used to both compute the uncertainty

of time-in-ranges and determine the minimum duration of a trial to achieve the

desired precision. An online tool to facilitate its implementation is made freely avail-

able to the clinical investigator.
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1 | INTRODUCTION

Continuous glucose monitoring (CGM) sensors are increasingly used

in research and clinical practice.1 A recent consensus panel2 identified

‘time-in-ranges’ as key outcome metrics to assess glycaemic control

based on CGM data. The identified time-in-ranges include: time in

range (TIR), that is, the percentage of time spent within 70-180 mg/dL

(3.9-10 mmol/L); time below range (TBR), that is, the percentage of time
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spent with CGM less than 70 mg/dL (<3.9 mmol/L); and time above

range (TAR), that is, the percentage of time spent with CGM more than

180 mg/dL (>10 mmol/L).3-5 Furthermore, the percentage of readings

within 70-140 mg/dL (3.9-7.8 mmol/L) is referred to as time in tight

range (TITR).1

These time-in-ranges were used as final endpoints in several

studies evaluating the effects of new treatments and/or drugs on glu-

cose control.6-9 The duration of these trials, which varied from a single

day to several months, strongly impacted the precision of the estima-

tion of time-in-ranges in these studies: the longer the trial duration

then the less uncertain/more precise the estimated time-in-ranges,2,10

and, in turn, the more reliable the clinical conclusions. For example,

over a longer monitoring period, confounding factors such as meal

times, meal composition and exercise/sports, which cause intra-day

variability, but also other factors such as menstrual cycle, shiftwork,

vacations, intercurrent illness and weekend lifestyle, which affect

inter-day variability, average out. On the other hand, a long trial dura-

tion is associated with higher costs,11,12 increased recruitment diffi-

culties, larger likelihood of withdrawal13,14 and a greater risk of

protocol deviations.15 Therefore, in the design of a clinical trial, a care-

ful balance between these two opposing needs must be found.16,17 In

particular, for trials with time-in-ranges as final endpoints, under-

standing the impact of trial duration on the precision of CGM-derived

metrics would be particularly useful in power calculations. Similarly, in

clinical practice, time-in-ranges are increasingly used to assess current

glycaemic status and can influence decisions to change therapy or

start new therapies. A 5% change in TIR is believed to be clinically

significant,18 but understanding the effect of assessing TIR over

14 days, 1 month or 3 months can affect clinical decision-making.

The consensus panel of Battelino et al.2 recommends assessing

14 days of CGM, as the most recent 14 days of CGM data provide a

good approximation of time-in-ranges collected over a 3-month

period.10,19 However, this indication is empirical,20,21 and the litera-

ture lacks a description of how the precision in the estimation of

time-in-ranges improves as the trial duration increases.

In a recent work,22 we analytically obtained a mathematical for-

mula that predicts the uncertainty of TBR estimates based on the

number of CGM days. Briefly, it can be assumed that an accurate esti-

mate of TBR, TBR Nð Þ, can be obtained from a sufficiently long CGM

recording of N days (e.g. N≥90 days). The estimate TBR nð Þ, obtained
using only n days of CGM data n<Nð Þ, is affected by an estimation

error of eTBR nð Þ¼ TBR nð Þ�TBR Nð Þ (see19,21 for similar definitions).

This error is distributed around 0 with a certain standard deviation,

SD eTBR nð Þ½ �, which describes the uncertainty around the estimate of

TBR. We derived an explicit equation describing how fast the uncer-

tainty of the TBR estimate, SD eTBR nð Þ½ �, decreases as the length of the

trial n increases:

SD eTBR nð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr 1�prð Þ

k n
1þ 2α

1�α
þ2α
k n

αk n�1ð Þ
1�αð Þ2

 !vuut : ð1Þ

Equation (1) involves three parameters, k, pr and α.

1. The first parameter, k, is the number of CGM samples produced in

1 day when no measurement is missed (e.., k¼288 for a CGM sen-

sor providing measurements every 5 minutes, k¼96 for CGM

measurements collected every 15 minutes).

2. The second parameter, pr , represents the expected average TBR in

the population.

3. The third parameter, α, depends on the CGM sensor sampling

period (but also on the glycaemic range considered, as will be illus-

trated in the following).

Moreover, in22 we provided a single set of parameters able to

predict the uncertainty of TBR estimates of a whole population of

heterogeneous subjects.

Notably, the mathematical machinery used to derive Equation (1)

also holds for any other time-in-range, provided that the parameters

(in particular, the parameter α) are changed accordingly.

In the current paper, we first provide suitable values of the

parameters k, pr and α for TIR, TITR, TBR and TAR, thus providing four

different formulas. Each of these formulas is then validated by com-

paring the predicted uncertainty of time-in-ranges with the variability

observed in the data. The generalizability of the proposed formulas is

also tested for different sensors and different populations. To do that,

we illustrate and validate how to adjust the parameters to cope with

sensors with different sampling rates.

Finally, we discuss two possible clinical cases: (a) 14-day monitor-

ing of a person with diabetes provides the following results: 5% TBR,

70% TIR, 50% TITR and 25% TAR. How precise are these estimates,

that is, what are the confidence intervals around them? (b) An investi-

gator is designing a new clinical trial, requiring a maximum confidence

interval of ±1% around the resulting TBR. Which is the minimum mon-

itoring duration that warrants such precision?

2 | METHODS

2.1 | Data: study A and study B

In this work we considered two different studies, labelled A and B.

Study A23 involves 226 subjects (112 women) with type 1 diabe-

tes followed for 177 ± 20 days (mean ± SD) using an unblinded CGM

sensor with or without confirmatory fingerpick (adjunctive and non-

adjunctive CGM therapy, respectively). The sensor used was a

Dexcom G4 Platinum, with enhanced accuracy through Software

505,24 providing one sample every 5 minutes. The overall population

had an HbA1c of 7.0% ± 0.7% (53.0 ± 7.7 mmol/mol), mean glucose

of 160.5 ± 22.1 mg/dL, TIR of 63.3% ± 12.5%, TITR of 39.8%

± 12.0%, TBR of 3.7% ± 2.6%, TAR of 33.0% ± 13.4% and coefficient

of variation (CV) of 37.1% ± 4.8%.

Study B was an observational study (not published yet) performed

at the Medical University of Graz (IRB approval number: 29/522 ex

16/17). It involved 45 subjects (16 women) with type 1 diabetes mon-

itored for 357 ± 14 days (mean ± SD), using a blinded Abbott Free-

style Libre sensor (Abbott Laboratories), providing one sample every
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15 minutes. The overall population had an HbA1c of 7.7% ± 1.2%

(60.3 ± 13.2 mmol/mol), mean glucose of 172.8 ± 34.1 mg/dL, TIR of

54.0% ± 17.7%, TITR of 34.5% ± 16.9%, TBR of 5.2% ± 4.3%, TAR of

40.8% ± 19.3% and CV of 48.6% ± 6.7%.

To ensure that an adequate amount of CGM data were available

for each subject, only participants with at least 173 days of monitor-

ing were retained for study A and only participants with at least

330 days were retained for study B, resulting in the exclusion of

approximately 10% of subjects (22 from study A and four from

study B).

2.2 | Proposed formulas for uncertainty in time-in-
ranges

As anticipated, the mathematical framework used in Camerlingo

et al.22 also holds for any other time-in-range. The parameters of

Equation (1) should be altered to cope with different glycaemic

ranges. In particular:

1. The parameter pr should be set to the average percentage of

time (known or expected) spent by the population in the range under

analysis: average TIR when TIR is considered, average TAR when TAR

is considered, etc.

2. The parameter α, as well as depending on the CGM sampling

rate, also depends on the glycaemic range under analysis, that is, a dif-

ferent α should be used for different time-in-ranges. Notably, the

parameter α is not very sensitive to the population under analysis

(unlike pr ). Therefore, in this work we will provide suitable values for

parameters α for TIR, TITR, TBR and TAR (Table 1) that can be used

for a generic population. These values were estimated using the pro-

cedure proposed in22 on the population of study A. As such, they

should be used with a 5-minute CGM sensor. If a sensor with a differ-

ent sampling rate is used then these parameters can be easily

adjusted. Specifically, the αT value to be used for a sensor providing

one measurement every T minutes can be linked to α5, the parameter

α used for a 5-minute CGM sensor, by

αT ¼α
T
5
5 ð2Þ

As an example, for 10- and 15-minute CGM sensors, α5 can be

adjusted to α10 ¼α25, and α15 ¼α35, respectively.

3. Lastly, the parameter k in Equation (1), representing the num-

ber of CGM samples provided in one day, remains independent of the

glycaemic range.

Suitable values of the parameters pr and α for the four considered

glycaemic ranges are obtained using study A. Specifically, patients in

study A are randomly split into training (70%) and test (30%) sets. The

training set is used to estimate the parameters and the test set is then

used to validate the resulting formulas.

The estimated values of pr are: 64.5% for TIR, 40.0% for TITR,

3.10% for TBR and 33.0% for TAR. The values of α are: 0.961 for TIR,

0.958 for TBR, 0.940 for TBR and 0.968 for TAR (also reported in the

third column of Table 1).

In Table 1 we summarize the formulas with pr as the only parame-

ter (α is fixed to the values above) for the four time-in-ranges under

analysis and a sensor with a 5-minute sampling rate. In this table, to

improve readability, the term αkn of Equation (1) is neglected because

it is close to zero.

2.3 | Validation of the formulas

To validate the equations of Table 1, we evaluated their ability to pre-

dict the decrease in the standard deviation of the estimation error

e nð Þ, computed by CGM data, as the trial duration n increases. This

was performed for the four time-in-ranges under study (i.e. TIR, TITR,

TBR and TAR), using the test set extracted from study A.

To explain our validation methodology, let us focus on the TBR.

For each participant, the most accurate estimate of TBR, that is,

TBR Nð Þ, was evaluated over the whole trial duration N. Then, to simu-

late a short-term trial, we extracted several shorter windows of fixed

duration, n, ranging from 1 to nmax ¼30 days. For each window, we

computed TBR nð Þ and compared it with TBR Nð Þ by computing the

error

eTBR n, jð Þ¼ TBR n, jð Þ�TBR Nð Þ, j∈ 1,2,…,Mpf g,

where Mp is the number of different windows available for each

patient p, obtained by considering different starting points (with a

window shift of 1 day), as proposed in.21 Repeating this procedure for

all the patients, we obtained a total of M values of the estimation

error committed using windows of duration n in the whole population.

Finally, for each window duration n, the standard deviation of the

estimation error was computed, that is:

SDS eTBR nð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M�1

XM

j¼1
e n, jð Þ2

� �s
: ð3Þ

Notation: to distinguish the standard deviation provided by the

proposed formula from the standard deviation computed by data,

from now on we will denote the first as theoretical standard deviation,

SDT e nð Þ½ �, and the second as sample standard deviation, SDS e nð Þ½ �.
Remark: when dealing with extremely long datasets, the ground-

truth TIR can vary during the trial. In this case, TIR N,pð Þ should be

computed over a long-term window of an arbitrary duration, Ni <N

(e.g. 90 days), extracted around the centre of the short-term window

of duration n.

2.4 | Generalizability of the formula: Validation
with other sampling rates and populations

To show the effectiveness of the proposed formulas for sensors with

different sampling rates, we modified the test set extracted from
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study A, to simulate 10- and 15-minute CGM sensors. This operation

was performed by averaging the 5-minute CGM values over the previ-

ous 10 and 15 minutes, respectively. Then, for each considered

glycaemic range, we compared the sample standard deviation,

SDS e nð Þ½ �, computed using this modified dataset against the theoreti-

cal standard deviation, SDT e nð Þ½ �, predicted by the proposed formulas,

adjusting the values of α by means of Equation (2).

In addition, to show that the parameters reported in Table 1 can

be used, with limited approximation, for different populations, we also

validated the formulas on the whole of study B. Because the CGM

used in study B provides one sample every 15 minutes, the values of

α5 in Table 1 were adjusted according to Equation (2).

These analyses investigate the generalizability of the parameters

proposed.

All the analyses were performed in Matlab 2020b (MathWorks,

Natick, MA, USA). All the scripts for implementing the methodology in

Matlab are publicly available at https://github.com/NunzioCamer/

AnalyticalTBRestimation.

3 | RESULTS

3.1 | Validation of the formula (using study A data)

In Figure 1A-D, the sample and theoretical standard deviations of

the estimation error (SDS and SDT , respectively) are compared con-

sidering different window durations n, from 1 to nmax ¼30 days, and

for the time-in-ranges under study: TIR (A), TITR (B), TBR (C) and TAR

(D). In particular, SDS, reported as a solid red curve, was computed on

a test set extracted from study A, as in Equation (3), while SDT ,

reported as a dashed blue curve, was obtained by substituting the

values of the parameters pr and α estimated by the training set data

of study A into Equation (1).

The curves describing SDS and SDT overlap well (the relative dis-

crepancy between the two curves is smaller than 10% for all the

glycaemic ranges for most of the durations considered). Therefore, we

conclude that the proposed formulas are able to effectively describe

the uncertainty of all time-in-ranges estimates for the overall popula-

tion of study A.

In addition, in each part of Figure 1, the boxplot of the estimation

error e n, jð Þ is also reported.

3.2 | Generalization of the results for different
sampling rates (using study A data)

In Figure 1E-H, we investigate the adjustment of α proposed in

Equation (2). Specifically, we report SDS computed on the test set

extracted from study A, modified to emulate a 15-minute sensor.

This SDS is compared with SDT , which is obtained by Equation (1)

using the values of α corrected as in Equation (2). Also in this case,

SDS and SDT overlap well (the relative discrepancy between the

two curves is smaller than 10% for most of the durations consi-

dered), thus proving the efficacy of Equation (1) combined with

Equation (2).

Similar results are also obtained when emulating a 10-minute sen-

sor (see Section S1).

A comparison between 5-, 10- and 15-minute CGM sensors in

terms of the predicted decrease in the uncertainty of time-in-ranges is

reported in Figure S2.

3.3 | Generalization of the results for different
populations (using study B data)

In Figure 1I-L, we stress the generalizability of the formulas on a dif-

ferent dataset. In this case, for each time-in-range, SDS was computed

using the whole study B, while SDT was obtained by substituting the

values of the parameters pr and α estimated by the training set data

of study A into Equation (1), and adjusting α as in Equation (2) (i.

e., α15 ¼α35Þ:
Despite the approximations introduced, the SDS curve overlaps

well with the curve of SDT , for TIR, TITR and TAR. For these ranges,

the relative discrepancy between the curves is below 13% for most of

the durations considered. As expected, the agreement between the

two curves achieved in this case is smaller compared with that

observed in Figure 1A-H. The impact of the introduced approximation

is larger for TBR, mainly as a result of a large difference in the inci-

dence of hypoglycaemia in the two studies: the average TBR in the

training set extracted by study A is TBRA ¼3:10%, while in study B it

reaches TBRB ¼5:15% (~ 40% larger).

In Section S2, we show that a better estimate of the incidence of

hypoglycaemia in the population of study B can significantly improve

the agreement between the curves for TBR too.

TABLE 1 Proposed formulas for the uncertainty around time-in-ranges estimates, for four different time-in-ranges: time in range (TIR), time
in tight range (TITR), time below range (TBR) and time above range (TAR), for sensors with 5-min sampling rate

Glycaemic metric Glycaemic range Estimated α5 Uncertainty around the estimate

TIR 70-180 mg/dL (3.9-10 mmol/L) 0.961
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr 1�prð Þ
288 n 50:28� 4:388

n

� �q
TITR 70-140 mg/dL (3.9-7.8 mmol/L) 0.958

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr 1�prð Þ
288 n 47:78� 3:962

n

� �q
TBR <70 mg/dL (<3.9 mmol/L) 0.940

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr 1�prð Þ
288 n 24:00� 0:998

n

� �q
TAR >180 mg/dL (>10 mmol/L) 0.968

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr 1�prð Þ
288 n 61:50� 6:565

n

� �q
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4 | DISCUSSION AND CLINICAL CASES

We introduced four formulas linking the precision/uncertainty of four

time-in-ranges (TIR, TITR, TBR and TAR) to the number of CGM days

used to estimate them. We showed that by setting the formulas'

parameters to the values suggested in Table 1, one can calculate the

uncertainty of time-in-ranges estimates, matching the uncertainty

observed on the CGM data collected in two different populations of

subjects with heterogeneous characteristics (e.g. age, body mass index

and diabetes duration) and wearing different sensors. Moreover, in

Section S5, we show that no significant differences in the reliability of

the formulas were observed for patients of different ages, body mass

index or gender.

Nonetheless, in the case of clinical studies focused on a specific

subpopulation (e.g. children or the elderly), one may also consider

optimizing the formula's parameters for the specific subpopulation

being studied. This can be carried out by re-running the parameters'

estimation procedure described in22 on data collected in populations

with similar characteristics.

To facilitate the use of these formulas, we implemented an online,

freely accessible calculator, available at http://computecgmduration.

dei.unipd.it. The tool requires the user to insert some information

about the ongoing experiment then computes the parameters of the

formulas. Next, the user can decide either to compute the uncertainty

around time-in-ranges estimated in previous clinical trials, or to com-

pute the optimal number of days necessary to achieve the desired

uncertainty around the selected time-in-range.

The resulting number of days refers to days with no missing

CGM data. To deal with the common issue of gaps in CGM

data, a practical approach is to consider the total amount of

available data (e.g. a 30-day study with four gaps of 6 hours

could be considered as a 29-day study). Therefore, in the design

of a clinical trial, if we expect 80% sensor usage (i.e. data loss

of 20%), we suggest setting the study duration to 20% longer

than the one provided by the proposed formula. In Section S5,

we show that this is a conservative approach, as sporadic miss-

ing samples have no practical impact on the precision of the

estimated time-in-ranges.

F IGURE 1 Estimation error e nð Þ for four time-in-ranges: time in range (TIR; A, E and I), time in tight range (TITR; B, F and J), time below range
(TBR; C, G and K) and time above range (TAR; D, H and L). The dashed blue curve is the theoretical standard deviation, SDT nð Þ, returned by the
proposed formulas with the parameters estimated using the training set of study A, while the solid red curve is the sample standard deviation,
SDS nð Þ, computed retrospectively by the test set of study A (A-D), the modified test set of study A, simulating a 15-min continuous glucose
monitoring (CGM) sensor (E-H) and the whole of study B (I-L). In the proposed boxplot representation, the median, 25th percentile and 75th
percentile of the estimation error are shown in black, while the grey stars indicate the outlier values
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The consensus panel of Battelino et al.2 recommended a minimum

CGM duration of 14 days to accurately estimate time-in-ranges.10,19

However, it was recently shown in20,21 that this approach10,19 may pro-

duce inconsistent results in different datasets. The approach proposed in

this work offers an alternative way to overcome this limitation.

The proposed formulas can be used for multiple applications. In

the following, we will focus on two of them and illustrate four clinical

cases. Furthermore, we will discuss the analogy of the proposed for-

mula with tools for power calculation.

4.1 | Application 1: Precision of time-in-ranges
estimated from previous studies

4.1.1 | Clinical case 1.1

Suppose that an individual was diagnosed with type 1 diabetes and the

investigator prescribed 14-day CGM monitoring to evaluate the overall

glycaemic control. At the end of the 2-week period, the time-in-ranges

observed were 5% TBR, 70% TIR, 50% TITR and 25% TAR. The investiga-

tor also needs to know how precise the estimated values are, focusing in

particular on TBR. Using the formula for TBR (third row of Table 1) and

substituting the values n¼14 and pr ¼0:05, SD eTBR nð Þ½ � ¼1:95% (the

computation can be performed using the online calculator, available at

http://computecgmduration.dei.unipd.it). This means that the confi-

dence interval around the estimated TBR is 5%�1:95%. Repeating

the computation for the other time-in-ranges, the investigator attains

analogous confidence intervals, as summarized in the upper panel of

Table 2, second column. The same table also reports the uncertainty

obtained with different CGM monitoring durations (i.e. 7, 14, 30,

60 and 90days). As expected, the time-in-ranges estimated by studies

using short monitoring periods (e.g. 7 days) will have wide confidence

intervals, while longer studies (e.g. 90 days) provide better precision.

4.1.2 | Clinical case 1.2

The I HART CGM trial25 compares the effectiveness of real-time CGM

(RT-CGM) versus flash CGM on hypoglycaemia for adults with type 1 dia-

betes. After 8 weeks (n¼56 days), the RT-CGM group exhibits an

average TBR of 6.20%. Our formula suggests a confidence interval of

�1:08% for all individuals. After 16weeks of RT-CGM (n¼112 days),

the average TBR is equal to 5.40%, and the formula indicates a much

narrower confidence interval of �0:72% for all individuals.

4.2 | Application 2: Minimum trial duration
providing the desired precision for estimates of time-
in-ranges

4.2.1 | Clinical case 2.1

Suppose that an investigator is designing a clinical trial involving

patients with type 1 diabetes to test a new human insulin analogue.

The primary outcome is the TBR. Based on a previous pilot study, the

investigator expects an average TBR of 4:00% in the population. She/

he is interested in setting a suitable trial duration and desires a maxi-

mum confidence interval around the final TBR of 1:00%. Using the

proposed formula, the investigator can compute the minimum moni-

toring duration, which warrants the desired uncertainty around the

resulting TBR. In particular, by inverting the formula for TBR (third

row of Table 1) and setting pr ¼0:04 and SD eTBR nð Þ½ � ¼0:01, the

investigator gets that the trial must last at least n¼44 days (the com-

putation can be performed using the online calculator available at

http://computecgmduration.dei.unipd.it).

4.2.2 | Clinical case 2.2

In the same scenario as the previous clinical case, suppose that the inves-

tigator selects the TAR (or similarly, TIR or TITR) as the primary outcome

and wants to compute the minimum monitoring duration to provide the

desired uncertainty around the final estimate. Based on previous pilot

studies, the investigator expects an average TAR of 25%. The investiga-

tor prefers to consider the relative uncertainty and deems acceptable a

relative uncertainty of 15% around the final TAR. Setting pr ¼0:25 and

SD eTAR nð Þ½ � ¼0:15�pr ¼0:0375 in the proposed formula, it transpires

that the minimum monitoring duration is n¼29 days.

In Table 2 we summarize the number of days needed to achieve

the desired precision in the estimation for the four main time-in-

ranges. Precision is expressed both in absolute terms (2.0%, 1.5%,

1.0% or 0.5%) and in relative terms (20%, 15%, 10% or 5%). The first

option is preferable for TBR, while the latter option is preferable for

the other ranges. Uncommon options are shaded, as they result in

extremely demanding precisions and thus in very long trials. The pr

values used for each time-in-range were extracted from the consen-

sus of Battelino et al.2 and are also reported in the table.

Table 2 suggests that reaching a tight confidence interval for TBR

requires more monitoring days than for the other time-in-ranges. To

further assess this consideration, in Section S3 we compared the cur-

ves of absolute uncertainty and relative uncertainty for the four time-

in-ranges under study.

4.3 | Analogy between power calculation tools and
the proposed formula

To better illustrate the main message of the current paper, it is useful to

discuss the analogy between our formula and the power calculation tools

commonly used by clinical practitioners to answer the question: How

many participants should be recruited? These tools are based on a mathe-

matical formula that returns the minimum number of subjects to be moni-

tored, providing the desired study power and thus avoiding a type II error

(i.e. the chance of declaring the findings non-significant, while instead the

treatment has an effect).26 The formula requires input of two parameters

specific to the population to be monitored: the expected difference in the

outcome metric between treatment and control, and the standard devia-

tion of the outcome metric. The values of these parameters are often
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unknown when designing the study, and are usually based on previously

reported or preclinical studies.

Analogous to power calculation tools, the methodology discussed in

the current work can be used by clinical practitioners to answer the ques-

tion: For how long should the participants be monitored to have a realistic

evaluation of their time-in-ranges? In fact, the presented formula returns

the minimum number of monitoring days that would provide the desired

precision of time-in-ranges indexes selected as endpoints of the study.

Besides specifying the desired precision, this formula requires as input

two parameters specific to the population to be monitored: pr (the time-

in-ranges in the population) and α (related to the sensor sampling

period and the glycaemic range under analysis). Suitable values for α

suggested in this work can be used for a generic type 1 diabetes pop-

ulation. As for power calculation tools, the value of pr should be set to

the expected time-in-ranges in the population under analysis, based

on pilot studies, clinical experience of previously reported data, or an

educated guess.

Finally, both approaches are based on simplified mathematical

assumptions. For example, in power calculation tools, the study out-

come is assumed to be normally distributed, while for the tool pro-

posed in this work, we hypothesize mono-exponential autocorrelation

in CGM-based outcome metric samples.22

A schematic comparison between power calculation tools and the

proposed formula is reported in Table 3.

5 | CONCLUSIONS

With increased use of CGM data and, in particular, time-in-ranges

metrics for making therapeutic decisions and assessing differences

TABLE 2 Possible applications of the
proposed formulas

Application 1

Time-in-ranges
Continuous glucose monitoring duration (d)

7 14 30 60 90

Time in range (pr ¼0:70) 7.22% 5.12% 3.50% 2.48% 2.03%

Time in tight range (pr ¼0:50) 7.59% 5.38% 3.68% 2.60% 2.13%

Time below range (pr ¼0:04) 2.47% 1.75% 1.20% 0.85% 0.69%

Time above range (pr ¼ 0:25) 7.53% 5.34% 3.66% 2.59% 2.11%

Application 2

Time-in-ranges
Absolute uncertainty Relative uncertainty

2.0% 1.5% 1.0% 0.5% 20% 15% 10% 5%

Time in range (pr ¼0:70) 93 165 370 1479 2 4 8 31

Time in tight range (pr ¼0:50) 102 182 408 1631 4 8 17 66

Time above range (pr ¼ 0:25) 101 179 403 1612 17 29 65 258

Time below range (pr ¼0:04) 11 20 44 173 68 120 270 1078

Note: Upper panel (application 1): uncertainty (%) around the estimate of different time-in-ranges, for 7,

14, 30 and 90 days of monitoring. Lower panel (application 2): number of days needed to reach a desired

precision of different time-in-ranges. Precision is expressed as absolute uncertainty for time below range,

with possible values of 20%, 1.5%, 1.0% and 0.5%. Relative uncertainty is reported for time in range, time

in tight range and time above range, with possible values of 20%, 15%, 10% and 5%.

TABLE 3 Analogy between power calculation tool and proposed tool

Power calculation tool Proposed tool

Question How many participants should be recruited? For how long should the participants be monitored

to have a realistic evaluation of their time-in-

ranges?

Desired result Sufficient study power (to avoid type II errors) Sufficient precision in the estimated time-in-ranges

Inputs of the formula Desired power + expected outcome difference in the

two arms, standard deviation

Desired precision + pr , α

How to set the inputs Pilot study, educated guess, clinical experience of previously reported data

Mathematical assumptions Observations are independent from each other; the

outcome parameter is normally distributed

The outcome metric is stationary. Mono-

expontential time-invariant autocorreation of the

dichotomized trace obtained from continuous

glucose monitoring.22
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between therapies in the clinical and research setting, it is important

to understand the reliability of those measurements. While life with

diabetes can vary from day to day and month to month, the longer we

aggregate data over, the less those data will be subject to the vagaries

of individual days.

The formula we have created, which links the number of days of

CGM data to the precision/uncertainty around given time-in-ranges

values, should help give people a better understanding of the numbers

that are so important in current diabetes management.

The formula involves three parameters: k, a constant depending

on the sensor sampling rate, α, linked to both the sensor sampling rate

and the glycaemic range under analysis, and pr , related to the charac-

teristics of the population (to be) monitored. Although the values of α

can be estimated for different populations, those obtained in this

work can be considered general and can be used to apply the pro-

posed formula to other populations, with limited error. For what

concerns the values of pr , we suggest adjusting them to the time-in-

ranges expected in the population, based on a pilot study, educated

guess, clinical experience or previously reported data (e.g. those con-

sidered in this paper, or those identified in the consensus of Battelino

et al.2 as targets for different diabetic populations).

We tested the validity of the formula on patient data and showed

its ability to generalize to different CGM sampling rates and

populations.

We believe this formula can help the diabetes community in a

number of different scenarios. First, when assessing time-in-ranges

obtained in published studies, we can determine the precision around

the estimated values, based on how long the CGM values were col-

lected over. Some studies using 3 or 7 days of CGM data will have

wide confidence intervals, while others using longer durations offer

better precision. We believe that this analysis will also be valuable in

clinical consultations. Clinicians receive reports on time-in-ranges

through software linked to CGM devices, but the proposed formula

can help provide an estimate of the confidence intervals (i.e. the preci-

sion) of those values.

Second, we believe this formula can be used by academic or industry

clinical trial teams, to help them determine a suitable duration of the

study. Furthermore, the value of the standard deviation provided by the

formula could also be used in power calculations, for example, to deter-

mine the number of participants needed in a trial. This will help with

designing better studies, providing more accurate results. To support aca-

demic colleagues around the world, we have developed an online calcula-

tor that we have made freely available and which facilitates the use of

the formulas in performing the tasks mentioned above.

In conclusion, together with standard power calculation tools, this

formula allows optimization of the cost-benefit ratio of a clinical trial:

trials with too many subjects monitored for too long expose the sub-

jects to unnecessary risks. Trials with too few subjects monitored for

too short a duration do not permit collection of conclusive scientific

evidence and thus waste patients' time and risk exposure. Statistical

tools for an effective cost-benefit balance in clinical trials are impor-

tant for all subjects, but they become essential when recruiting a

minority of underprivileged patients.

Future developments include exploring relaxed mathematical

assumptions under which the formula is derived, as well as further

validation on datasets collected in wider and more heterogeneous

populations. We also plan to explore the possibility of optimizing

the formula's parameters for specific populations (e.g. type 2 dia-

betes, pregnant and paediatric) and for different co-variates (e.g.

HbA1c, diabetes duration, body weight, CGM sensor model and

insulin therapy).
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