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Classical dendritic cells (cDCs) are essential for immune responses and differentiate
from hematopoietic stem cells via intermediate progenitors, such as monocyte2DC
progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are
activated and rapidly express host defense-related genes, such as those encoding cyto-
kines and chemokines. Chromatin structures, including nuclear compartments and
topologically associating domains (TADs), have been implicated in gene regulation.
However, the extent and dynamics of their reorganization during cDC development
and activation remain unknown. In this study, we comprehensively determined higher-
order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. Dur-
ing cDC differentiation, chromatin activation was initially induced at the MDP stage.
Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC
gene loci in CDPs, which was followed by increased intra-TAD interactions and loop
formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differ-
entiation, mediated chromatin activation and changes into the active compartments in
DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an
infection model, we found that the chromatin structures of host defense-related gene
loci were preestablished in unstimulated cDCs, indicating that the formation of higher-
order chromatin structures prior to infection may contribute to the rapid responses to
pathogens. Overall, these results suggest that chromatin structure reorganization is
closely related to the establishment of cDC-specific gene expression and immune func-
tions. This study advances the fundamental understanding of chromatin reorganization
in cDC differentiation and activation.
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Classical dendritic cells (cDCs) are indispensable for inducing innate and acquired
immunity (1). These cells recognize pathogen- and damage-associated molecular pat-
terns, stimulating them to produce cytokines, chemokines, and other molecules that
activate the innate immune system. Through antigen presentation, cDCs also induce
the differentiation of naïve CD4+ and CD8+ T cells into helper and cytotoxic T cells,
respectively. There are two major cDC subpopulations with distinct functions, namely,
cDC1s and cDC2s; cDC1s are essential for host defense against intracellular parasitic,
viral, and bacterial infections, whereas cDC2s are required for immune responses to
extracellular parasites, bacteria, and fungi (2, 3).
The cDCs are derived from bone marrow hematopoietic stem cells via intermediate

progenitors (2, 4–7). Progenitor populations expressing FMS-like tyrosine kinase 3
(FLT3) receptor have DC lineage differentiation potential (4, 8). Indeed, the number
of cDCs is markedly reduced in mice deficient for FLT3 or its ligand, FLT3L (9, 10).
In the mouse hematopoietic system, the most upstream FLT3-expressing progenitor
population is lymphoid primed multipotent progenitors (LMPPs). LMPPs differentiate
into monocyte�DC progenitors (MDPs), common DC progenitors (CDPs), and pre-
cDCs in the bone marrow to generate cDCs (11, 12). The pre-cDCs then migrate into
peripheral tissues such as the spleen, where they give rise to cDC1s or cDC2s. Notably,
DC lineage specification can occur in upstream hematopoietic progenitors such as
LMPPs (11, 13).
Cell differentiation is the process of establishing cell type–specific gene expression pat-

terns, wherein regulation of enhancers by transcription factors plays a critical role. Several
transcription factors have been implicated in cDC differentiation. The transcription fac-
tors PU.1 and the RUNX1-CBFβ complex are required for cDC generation. Mice lack-
ing either PU.1 or CBFβ show a severe reduction in FLT3 expression in hematopoietic
progenitors, including LMPPs (14, 15). In mice deficient for the transcription factor
IRF8, the numbers of CDPs and DCs, particularly cDC1s, are reduced, whereas MDPs
accumulate, suggesting that IRF8 is required for the MDP-to-CDP transition (16–21).
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We recently analyzed the enhancer landscape dynamics during
the differentiation of monocytes and cDCs (22). Priming and
activation of enhancers associated with genes expressed in mono-
cytes and cDCs are induced by IRF8 in mononuclear phagocyte
progenitors such as MDPs. These genes are transcribed in
mature monocytes and cDCs but not yet at the progenitor stages
(22). These results suggest that a time lag occurs between
enhancer establishment and gene expression during cDC differ-
entiation. Additional events, such as remodeling of the chroma-
tin structure, may be involved in this temporal delay (23).
In interphase eukaryotic nuclei, DNA is packaged into higher-

order chromatin structures such as nuclear compartments, topo-
logically associating domains (TADs), and promoter–enhancer
interactions (24–28). Hi-C, a technique that analyzes the three-
dimensional (3D) chromatin architecture of the whole genome,
revealed that the genome is subdivided into large megabase-scale
A and B compartments (29). The A compartment contains geno-
mic regions with active histone modifications such as histone H3
lysine 27 acetylation (H3K27ac) and transcribing genes, and is
localized in the interior nuclear space and nuclear speckles. The B
compartment is composed of chromatin with repressive histone
modifications and is frequently associated with the nuclear lamina
and nucleolus. Loci in the same compartment (that is, A or B)
tend to cluster together, while repulsing loci of the opposite com-
partment. Recent findings suggest that compartments are formed
by the assembly of chromatin with similar molecular properties,
potentially through mechanisms similar to those of phase separa-
tion (30). TADs are locally self-associated chromatin domains
and are typically formed via loop extrusion mediated by DNA-
bound CTCF and the ring-shaped cohesin complex (31, 32).
TADs have been suggested to function as insulators that restrict
enhancer–promoter interactions to loci in the same TAD.
Therefore, it has been proposed that they play essential roles in
gene regulation. However, rapid CTCF or cohesin removal
experiments do not necessarily support this view (33, 34). Ubiq-
uitously expressed chromatin proteins, such as cohesin, the
mediator complex, and transcription factors, can also mediate
enhancer–promoter interactions (25). Although the molecular
basis underlying the higher-order chromatin structure formation
has been gradually determined, the functions of chromatin
structures in gene regulation are still not fully understood.
In cells of the hematopoietic lineage, recent studies have

improved the understanding of structural changes in chromatin
during T cell and B cell differentiation (35–38); however, knowl-
edge about the chromatin structure organization during cDC dif-
ferentiation and activation is lacking. In this study, we performed
Hi-C on cDC lineage populations, including LMPPs, MDPs,
CDPs, cDC1s, and cDC2s. In genomic regions enriched in
cDC-specific genes, a shift to the A compartment preceded the
rewiring of cDC-specific TADs. We also found that IRF8 pro-
moted the B-to-A compartment shifting in DC progenitors.
Moreover, chromatin domains containing infection-inducible
gene loci have already been established in unstimulated cDCs.
Thus, chromatin structure reorganization is closely related to the
establishment of cDC-specific gene expression patterns.

Results

Active Compartment Remodeling Precedes Gene Expression
during cDC Differentiation. To understand the changes in
higher-order chromatin structures during cDC differentiation,
we performed in situ Hi-C on LMPPs, MDPs, CDPs, cDC1s,
and cDC2s isolated from mice (Fig. 1A, SI Appendix, Fig. S1 A
and B, and Dataset S1) (39). Two independent research groups

identified pre-cDC subpopulations using different surface and
intracellular markers in previous studies (40, 41); therefore, the
definition of pre-cDCs is not completely consistent. For this
reason, pre-cDCs were excluded from our analysis. At the reso-
lution achieved in this study, nuclear compartments and TADs
could be observed using our Hi-C data.

Compartments can be identified based on the values of the
first principal component (PC1) in principal component analysis
of the Hi-C contact maps (Fig. 1B) (29). A and B compartments
were defined as genomic regions with positive and negative PC1
values, respectively. Consistent with previous findings, we
detected interactions between loci in the same compartment (Fig.
1B) (29, 39). The proportions of the genome in compartments A
and B were almost unchanged during cDC differentiation (SI
Appendix, Fig. S1C). To characterize changes in compartmentali-
zation throughout cDC differentiation, we calculated the PC1
values by dividing the mouse genome into 25-kb bins, followed
by k-means clustering (Fig. 1C and Dataset S2). The PC1 values
of the two biological replicates in each population were highly
correlated (SI Appendix, Fig. S1D). A large portion of the genome
was consistently found in the same compartment, with 33.7%
labeled as A compartment (cluster [CL]3) and 51.3% labeled as
B compartment (CL4 and CL5). We found that 15.0% of the
genome underwent compartment switching. CL1 contained
regions that changed from B to A (Fig. 1D), whereas regions in
CL2 changed from A to B upon differentiation of LMPPs to
cDCs. To investigate the temporal relationship between compart-
ment changes, chromatin activation, and gene expression, we
performed integrated analysis of Hi-C, H3K27ac chromatin
immunoprecipitation sequencing (ChIP-seq), and RNA sequenc-
ing (RNA-seq) data. In the CL1 (B-to-A) regions, H3K27ac
accumulated from the MDP stage, followed by an increase in
PC1 values starting at the CDP stage. The RNA expression of
genes associated with CL1 regions was up-regulated when the
cells reached the cDC stages (Fig. 1E and SI Appendix, Fig. S1E).
Opposite results were observed in the CL2 (A-to-B) regions.
RNA expression was rapidly down-regulated at the MDP stage.
Subsequently, the compartment status gradually changed from A
to B, and, finally, H3K27ac enrichment decreased after the CDP
stage. Genes in CL1 regions were associated with host defense-
related gene ontology (GO) terms, whereas those in CL2 were
associated with cell proliferation and differentiation-related GO
terms (SI Appendix, Fig. S1 F and G and Dataset S3). Our data
indicate that the activations of enhancers precede the switch in
compartmentalization from B to A, leading to the induction of
cDC-specific genes.

Rewiring of cDC-Specific TADs Occurs at Later Stages. Next,
we analyzed changes in the intra-TAD interaction frequency
during cDC differentiation. The Arrowhead algorithm of Juicer
software was used to identify TADs (42). Domains identified
by this software include typical TADs, sub-TADs, contact
domains, and compartment domains (SI Appendix, Fig. S2A)
(43). By merging TADs across all cell types tested, we identi-
fied a total of 7,311 unique TADs. The intra-TAD interaction
frequencies of the two biological replicates in each population
were highly correlated (SI Appendix, Fig. S2B). During cDC
differentiation, intra-TAD interactions were established in a
cell type–specific manner (Fig. 2A and Dataset S4); CL1 TADs
were specific to cDC1s, CL2 TADs were specific to cDC2s,
CL3 and CL4 TADs were common to cDC1s and cDC2s,
and CL5 TADs were common to LMPPs and cDC1s. CL6
and CL7 were TADs that reduced the intradomain interaction
frequency during differentiation. For example, CL3 includes
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the genomic region containing major histocompatibility com-
plex (MHC) class II genes, which are highly expressed in both
cDC1s and cDC2s (Fig. 2B). Chromatin interactions within
the two TADs detected in this region were weak at the progeni-
tor stages, but markedly increased in cDC1s and cDC2s.
We then investigated the relationship between increased

intra-TAD interactions, H3K27ac accumulation, and RNA
expression in cDC1-specific CL1, cDC2-specific CL2, and
cDC-common CL3 (Fig. 2C). H3K27ac was slightly enriched
in the regions of CL1 and CL3 TADs at the MDP stage. Genes
in CL1, CL2, and CL3 TADs were induced at the cDC1,
cDC2, and both cDC1 and cDC2 stages, respectively, and
were closely linked to increased chromatin interactions within
TADs (SI Appendix, Fig. S2C). TADs are also characterized by
the formation of loops between their boundaries, and stronger
loops are associated with TADs of higher insulation. We saw
that the cDC-specific TADs formed stronger loops, but there
was no significant change in the insulation score at the TAD
boundary regions during cDC differentiation (Fig. 2D and SI
Appendix, Fig. S2D). In the genomic regions of CL7 TADs,
where chromatin interactions and loop formation diminished
during cDC differentiation, H3K27ac enrichment and RNA
expression were gradually reduced (Fig. 2 C and D). Similar
results were obtained for TADs identified using another

algorithm (Homer) (SI Appendix, Fig. S3). These results indi-
cate that cDC-specific TADs are established at relatively later
stages of differentiation, showing a close temporal association
with cDC subpopulation–specific gene expression.

A Switch to Compartment A Precedes the Increase in Intra-TAD
Interactions at cDC-Specific Gene Loci. Our results indicate that
changes in higher-order chromatin structures are related to the
induction of cDC-specific genes. Therefore, we compared the
temporal relationship between compartmentalization and TAD
formation in chromatin regions containing cDC-specific gene
loci. We analyzed RNA-seq data for LMPPs, cDC1s, and cDC2s
and identified 1,204 and 1,059 cDC1- and cDC2-specific genes,
respectively (SI Appendix, Fig. S1F). Approximately 90% of the
genomic regions containing these genes were in the A compart-
ment (i.e., CL1 or CL3 shown in Fig. 1C) at the cDC stages
(Fig. 3A). Among them, in regions belonging to CL1 (B-to-A
type), H3K27ac levels began increasing in the MDP stage (Fig.
3B), which is consistent with our previous results (Fig. 1E). This
was followed by increases in PC1 values starting from the CDP
stage. Subsequently, intra-TAD interactions and TAD loops were
enhanced between the CDP and cDC stages, which was corre-
lated with cDC subpopulation–specific gene expression (Fig. 3B
and SI Appendix, Fig. S4A). Likewise, in regions belonging to
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Fig. 1. Nuclear compartment dynamics during cDC differentiation. (A) A differentiation model of cDCs. The green rectangle indicates DC lineage popula-
tions subjected to Hi-C analysis. (B) Example of Hi-C contact matrix. The color represents normalized Hi-C interaction counts at indicated genomic regions in
chromosome 8 using Homer software. Histograms of PC1 values of the corresponding genomic region are horizontally and vertically shown. Black and gray
regions indicate regions in the A and B compartment, respectively. (C) Genome-wide assessment of changes in nuclear compartments during cDC differenti-
ation. The mouse genome was subdivided into 25-kb bins, resulting in 103,531 regions, for PC1 value calculation. The genomic regions were clustered into
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CL3 (A-to-A type), the increase in H3K27ac enrichment was fol-
lowed by enhanced TAD structures and gene induction (Fig. 3C
and SI Appendix, Fig. S4A). These results suggest that switching
to compartment A occurs first, after which TADs are remodeled
in a cell type–specific manner, for cDC gene expression (Fig. 3D).
We also analyzed the genomic regions containing genes

whose expression is repressed upon cDC differentiation. Inter-
estingly, these regions were present not only in the B compart-
ments (CL2, CL4, and CL5) but also in the A compartments
(CL1 and CL3) at the cDC stages (SI Appendix, Fig. S4B),
implicating diverse gene silencing mechanisms. Nonetheless, A-
to-B compartment shifting occurred concomitantly with dimin-
ished TAD structures at 12.2% of repressed gene loci (SI
Appendix, Fig. S4C). These results indicate that, at least in a
fraction of repressed gene loci, changes in chromatin structures
might again be involved in regulating gene expression during
cDC differentiation.

Transcription Factor IRF8 Promotes H3K27ac Enrichment prior
to B-to-A Compartment Change. Our results suggest that switch-
ing to the A compartment provides a structural foundation for
cDC-specific gene expression. To understand the molecular basis
regulating compartmentalization, we focused on genomic regions
that changed from B to A during cDC differentiation (Fig. 1C).
As described above, chromatin activation, that is, accumulation
of H3K27ac, occurred at the MDP stage before the B-to-A com-
partment change. We previously showed that lineage-specific
transcription factors bind to enhancers in mononuclear phagocyte
progenitors, leading to enhancer priming and activation (22).
Considering that chromatin activation by transcription factors in
cDC progenitors may regulate switching to the A compartment,
we performed de novo motif analysis in open chromatin regions
showing B-to-A compartment changes (Fig. 4A). Although PU.1,
CTCF, and RUNX binding motifs were detected in all progeni-
tor stages, PU.1-IRF composite elements were significantly
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enriched in MDPs and CDPs but less frequent in LMPPs.
Known motif analysis supported this observation (Fig. 4B).
Among the nine IRF family transcription factors, only IRF8 was
highly expressed in MDPs and CDPs (Fig. 4C). Notably, in
Irf8�/� mice, CDPs and cDC1s are severely diminished, whereas
MDPs accumulate (17). To investigate whether IRF8 is involved
in H3K27ac enrichment before the B-to-A compartment changes
during cDC differentiation, we analyzed H3K27ac ChIP-seq data
in Irf8�/� MDPs. We found that H3K27ac accumulation in
genomic regions showing a B-to-A compartment switching and
bound by IRF8 in wild-type MDPs was significantly reduced in
Irf8�/� MDPs (Fig. 4D). Similar results were obtained for open
chromatin regions showing the B-to-A compartment changes and

containing known PU.1-IRF motifs (i.e., GGAANNGAAA). In
contrast, H3K27ac accumulation in B-to-A compartments with-
out the PU.1-IRF binding motif in open chromatin regions was
not affected by IRF8 deficiency. These results demonstrate that
IRF8 promotes H3K27ac enrichment prior to active compart-
ment formation during cDC differentiation.

IRF8 Induces Switching to A Compartment in DC Progenitors.
To understand the role of IRF8 in active compartment formation
during cDC differentiation, we performed Hi-C on Irf8�/�

MDPs. Two biological replicates for the compartment PC1 val-
ues and intra-TAD interaction frequencies in Irf8�/� MDPs
were highly correlated (SI Appendix, Fig. S5A). Loss of IRF8
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affected the PC1 values in 20.2% of the genomic regions in
MDPs (Fig. 5A). In Irf8�/� MDPs, 10,915 (10.5%) and 10,091
(9.74%) out of the total 103,531 regions displayed significant
decrease or increase, respectively, in PC1 values compared to
those in the wild-type MDPs, although the number of regions
that were judged to have switched from B to A or from A to B
was limited (1.75% and 1.46%, respectively; SI Appendix, Fig.
S5B). Hierarchical clustering revealed that the PC1 value land-
scape in Irf8�/� MDPs was closely related to that in wild-type
LMPPs (Fig. 5B). These results suggest that IRF8 is required for
compartmentalization changes from LMPPs to MDPs.
To better characterize the direct effect of IRF8 on compart-

ment switching, we performed integrated analysis of the IRF8
ChIP-seq and Hi-C data. In wild-type MDPs, 86.1% and 13.9%
of IRF8 binding sites were located in A and B compartments,
respectively (SI Appendix, Fig. S5C). We found that IRF8 mainly
promoted the incorporation into active compartments at its bind-
ing sites; among the 4,447 genomic regions showing IRF8 bind-
ing in wild-type MDPs, the number of chromatin regions with
reduction in PC1 values in Irf8�/� MDPs (942 regions) domi-
nated the number of those showing an increase (391 regions; Fig.
5C). For example, IRF8 binds to the Itgb8 gene locus in wild-
type MDPs. In these regions, there was a large increase in PC1
values during the transition from LMPPs to MDPs, which did
not occur in Irf8�/� MDPs (Fig. 5D).
To determine the effects of failure to switch to the A com-

partment in Irf8�/� MDPs on gene expression, we examined
the expression of genes associated with the 942 genomic regions
where PC1 values were reduced in the absence of IRF8. In
wild-type mice, the expression of these genes began increasing
at the CDP stage and peaked at the cDC1 stage. We found that

this increase was not observed in the remaining few Irf8�/�

CDPs (Fig. 5E), which was confirmed by gene set enrichment
analysis (GSEA) (Fig. 5F). The effect of IRF8 deficiency on
TAD establishment in MDPs appeared to be limited (SI
Appendix, Fig. S5D). These results indicate that IRF8 promotes
the active compartmentalization in DC progenitors, leading to
cDC lineage–specific gene expression (Fig. 5G).

Chromatin Structure of Host Defense Genes Is Preestablished
in Uninfected cDCs. During infection, cDCs are activated and
rapidly express host defense-related genes, such as those encod-
ing cytokines and chemokines (1, 2). For example, during
infection by intracellular microbes, such as Toxoplasma gondii,
cDC1s protect hosts against pathogens by producing proin-
flammatory cytokines such as IL-12 (44). To characterize how
the chromatin structure of defense-related genes is reorganized
during differentiation and infection, we performed RNA-seq
and Hi-C in splenic cDC1s on day 8 after intraperitoneal injec-
tion of T. gondii (Dataset S5). The cDC1s from T. gondii–
infected mice were named Tx cDC1s. Two biological replicates
for compartment PC1 values and intra-TAD interactions in Tx
cDC1s were highly correlated (SI Appendix, Fig. S6A). The
expression of 621 and 483 genes was induced and repressed,
respectively, in Tx cDC1s, compared to that in control cDC1s
(Fig. 6A). As expected, T. gondii–induced genes included those
for cytokines, such as Il12b, and were enriched in genes related
to “regulation of defense response” and “regulation of cytokine
production” (Fig. 6B and SI Appendix, Fig. S6B). We found
that genomic regions containing T. gondii–inducible gene loci
belonged predominantly to the A compartment throughout
cDC differentiation (Fig. 6C). Similar to other cDC-specific
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genes (Fig. 3 B and C), genomic regions containing these genes
began to show increased H3K27ac levels from the MDP stage.
Interestingly, intra-TAD interactions and TAD loop formation
at these genomic regions were already established in the unin-
fected cDC1s and were not reinforced by T. gondii infection
(Fig. 6C and SI Appendix, Fig. S6C). Notably, the chromatin
structures at genomic regions containing genes repressed in Tx
cDC1s showed similar kinetics (SI Appendix, Fig. S6D).
To investigate whether the chromatin structure of genes

induced by other stimuli in DCs was also preestablished before
infection, we performed additional analyses on other stimulus-
responsive gene sets in DCs retrieved from the Molecular Sig-
natures Database (45) (SI Appendix, Fig. S6E and Dataset S6).
We found that, regardless of the type of stimulus, intra-TAD
interactions at genomic regions containing induced genes were
enhanced in steady-state cDC1s and/or cDC2s. These results

suggest that higher-order chromatin structures of infection- and
stimulus-responsive genes are preestablished in steady-state
cDCs before stimulation (Fig. 6D).

Discussion

In this study, we determined the remodeling dynamics of
higher-order chromatin structures during cDC differentiation
and activation in vivo. Upon cDC differentiation, the composi-
tion of the active compartment changes, followed by the rewir-
ing of intra-TAD interactions, causing higher-order chromatin
structures to induce cDC-specific genes. One of the molecules
responsible for compartment changes is the transcription factor
IRF8, which promotes the formation of active compartments
in DC progenitors. Furthermore, we showed that higher-order
chromatin structures containing host defense-related gene loci
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are already preestablished in uninfected cDCs. These results
advance the understanding of mechanisms regulating gene
expression during immune cell differentiation and activation.
We demonstrated the order in which different levels of chroma-

tin structures were established during cDC differentiation. Previ-
ous studies suggested that changes in compartmentalization and
increased chromatin interactions within TADs precede or occur
simultaneously with gene expression during cell differentiation
and reprogramming (35, 46–48). In addition, TAD boundaries
were reported to be altered in genomic regions where compart-
ment changes occur during cell differentiation (35, 46, 47). How-
ever, the precise timing of active compartment formation and
TAD establishment during cell differentiation remains unclear. In
this study, we found that the formation of higher-order chromatin
structures containing cDC-specific gene loci exhibited two main
patterns: the genomic regions showing B-to-A compartment
change from the CDP stage and the regions that persistently local-
ize in the A compartment throughout cDC differentiation. The
TADs present in these A compartments show a substantial
increase in chromatin interactions and loop formation at later
stages than in CDPs, eventually resulting in cDC-specific gene
induction. Approximately 90% of cDC-specific gene loci are
present in the A compartments, with increased intra-TAD interac-
tions at the cDC stages, suggesting that active compartment for-
mation and subsequent TAD establishment are essential for gene
expression in cDCs.
Although IRF8 is an indispensable transcription factor for

the differentiation of DCs, especially cDC1s (49), its role in
higher-order chromatin structure establishment had not been

reported. We found that IRF8 induced active H3K27ac accu-
mulation at its binding sites during cDC differentiation and
induces some of these cDC-specific regions to switch to com-
partment A. However, the molecular mechanisms underlying
this compartmentalization change remain unknown. It has
been proposed that phase separation is involved in the forma-
tion of compartments (30, 43). Previous studies showed that
histone acetylation induces phase separation of chromatin in
the presence of bromodomain proteins, such as BRD4, thereby
contributing to the formation of active compartments (50, 51).
BRD4 itself is also involved in the phase separation process and
chromatin conformation changes (52, 53). IRF8 can form a
protein complex with BRD4 (54). Thus, histone acetylation
and BRD4 accumulation may be required for the compartment
switching induced by IRF8. To clarify the molecular mecha-
nism underlying IRF8-mediated compartmentalization, future
investigation of IRF8-interacting proteins and their involve-
ment in phase separation are needed.

The molecular basis of the increase in intra-TAD chromatin
interactions and loop formation surrounding cDC-specific gene
loci at the final stages of cDC differentiation is also unclear.
Intra-TAD interactions include promoter–enhancer interac-
tions that can be formed by structural proteins, such as the
cohesin complex and protein–protein interactions mediated by
transcription factors and chromatin regulators (25). Indeed,
CIITA, which is important for the regulation of MHC class II
gene expression, promotes enhancer–promoter interactions at
the MHC class II gene locus by bridging various transcription
factors (55). Previous studies showed that histone acetylation
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also contributes to the formation of promoter–enhancer inter-
actions (56). As enhanced intra-TAD interactions are accompa-
nied by H3K27ac enrichment in cDC differentiation, histone
acetylation may also be involved in increasing intra-TAD inter-
actions. Furthermore, TADs are established in a cDC1- or
cDC2-specific manner (Fig. 2A), suggesting that factors specific
to the cDC subpopulation regulate the increase in intra-TAD
interactions.
We also revealed the stage of hematopoietic cell differentia-

tion in which higher-order chromatin structures of infection-
inducible gene loci are established. Genomic regions containing
T. gondii infection-inducible genes were predominantly present
in the A compartments from the LMPP stage, followed by
enhanced intra-TAD interactions in uninfected cDC1s, despite
these genes being barely expressed until infection occurred.
Based on these observations, we hypothesize that the formation
of higher-order chromatin structures in immune cells prior to
infection contributes to their rapid response to pathogens.
Indeed, CTCF or cohesin depletion disrupts TAD organiza-
tion, leading to impairments in inflammatory gene induction
by lipopolysaccharides in macrophages (57–59). Previous stud-
ies showed that, in Drosophila melanogaster embryogenesis and
in a human cell line, chromatin interactions at many gene loci
are formed prior to the induction of gene expression and are
associated with paused RNA polymerase II (60, 61). In steady-
state macrophages, RNA polymerase is stalled at the promoters
of inflammatory genes, such as Tnf (62). In addition, it has
been reported that bivalent chromatin domains marked by
H3K4me3 and H3K27me3 are formed at some inflammation-
inducible genes such as Bmp2 in macrophages before stimula-
tion (63, 64). Thus, we envisage that the poised chromatin
state with RNA polymerase II pausing and bivalent chromatin
marks may be involved in the repression of genes at which
higher-order chromatin structures are already established.
Understanding the functional role of preformed higher-order
chromatin structures would help us understand the basic prin-
ciples underlying the induction of infection-inducible genes in
immune cells.

Materials and Methods

Detailed descriptions for all procedures are available in SI Appendix.

Mice. Male wild-type and Irf8�/� mice 8 wk to 10 wk old in a C57BL/6 back-
ground were used. All animal experiments were performed in accordance with
the specifications of the Association for Assessment and Accreditation of Labora-
tory Animal Care in the United States and Guidelines for Proper Conduct of Ani-
mal Experiments (Science Council of Japan) in Japan. Animal procedures were
performed according to animal study protocols (ASP# 17-044 and 20-144 in
NIH, F-A-17-018 in Yokohama City University, and 119050 in National Institute
of Infectious Diseases in Japan).

T. gondii Infection. T. gondii (Pru strain) parasites were maintained using
human foreskin fibroblasts as previously described (65); 104 T. gondii tachyzoites
were resuspended in phosphate-buffered saline and intraperitoneally inoculated
into mice.

Cell Isolation. Bone marrow and spleen cells were obtained by flushing the
femur and tibia and with Liberase and DNase I (Roche) treatment, respectively
(11). To isolate bone marrow progenitors, lineage marker negative (Lin�) cells
were enriched using Lineage Cell Depletion Kit (Miltenyi Biotech). Lin� cells
were further stained with fluorochrome-labeled antibodies, followed by
fluorescence-activated cell sorting (FACS) with FACSAria II. Because FACS separa-
tion of cDCs caused severe damage to the chromatin, cDC1s and cDC2s were iso-
lated using magnetic beads using CD8+ and CD4+ Dendritic Cell Isolation Kits,

respectively. The purity of the cell populations using FACS and magnetic beads
was >99% and >95%, respectively.

Hi-C. Hi-C was performed as previously described (66). Briefly, isolated cells
were fixed with formaldehyde. The nuclei were isolated with lysis buffer and
digested with DpnII (NEB) at 37 °C. The DNA overhangs were filled with biotin-
labeled deoxyadenosine triphosphate (Thermo) using Klenow DNA polymerase
(NEB). Samples were treated with T4 DNA Ligase (NEB) at 16 °C. The ligated
DNA was purified using phenol-chloroform-isoamyl alcohol (Sigma) and sheared
using Covaris ME220. Streptavidin C1 beads (Thermo) were used to enrich the
biotin-labeled DNA fragments. To generate Hi-C libraries, KAPA hyper prep kit
was used. Each Hi-C library was sequenced on Illumina HiSeq or NextSeq 500.

Mapping Hi-C Reads. Initial Hi-C data processing was followed by the instruc-
tion of Homer software website (http://homer.ucsd.edu/homer/interactions2/
HiCtagDirectory.html).

Identification of Nuclear Compartments. To identify the nuclear compart-
ment (29), primary component analysis of the Hi-C data was performed using
the Homer runHiCpca.pl module.

Identification of TADs. TADs were identified using the Juicer Arrowhead algo-
rithm (42). TADs in LMPPs, MDPs, CDPs, cDC1s, and cDC2s were merged into a
common set of unique TADs using the Homer merge2Dbed.pl module.

Data, Materials, and Software Availability. RNA-seq data on T. gondii
infection experiments and Hi-C data have been deposited in the DNA Data Bank
of Japan (DDBJ) and are publicly available as of the date of publication (acces-
sion code PRJDB13154) (67). Other sequencing data were previously published
and are available at the DDBJ (accession code PRJDB3411) (68) and Gene
Expression Omnibus (accession code GSE149762) (69).
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