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with subjective cognitive decline or mild cognitive impairment may help clinical decisions regarding
confirmatory biomarker testing for Alzheimer’s disease.
Methods: Algorithmfeature selectionwasconductedwithAlzheimer’sDiseaseNeuroimaging Initiative
andAustralian Imaging, Biomarkers and Lifestyle Flagship Study ofAgeing data. Probability algorithms
were developed in Alzheimer’s Disease Neuroimaging Initiative using nested cross-validation accompa-
nied by stratified subsampling to obtain 1000 internally validated decision trees. Semi-independent vali-
dation was conducted using Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing.
Independent external validation was conducted in the population-based Mayo Clinic Study of Aging.
Results: Two algorithms were developed using age and normalized immediate recall z-scores, with
or without apolipoprotein E ε4 carrier status. Both algorithms had robust performance across data sets
and when substituting different recall memory tests.
Discussion: The statistical framework resulted in robust probability estimation. Application of these
algorithms may assist in clinical decision-making for further testing to diagnose amyloid pathology.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: ADNI; AIBL; MCSA; Algorithm; Amyloid; Alzheimer’s disease; Biomarker; APOE ε4; Immediate recall
F.G. are employees of Biogen; S.B. is a former

J.J. received funding from Biogen, J.A.S. and J.A.

se; C.J. received research funding from the National

01 AG11378, R01 AG41851, P50 AG16574, U01

32438, U19 AG024904, R01 AG43392, U19

179, R01 NS89757, R01 AG49704, R01 NS92625,

AG51406, R21 NS94684, R01 NS97495, R01

491, R01 AG55151, R01 AG55444, R01 AG56366,

imer’s Association (ZEN-18-533411), and the Alex-

er’s Disease Research Professorship of the Mayo

t for Lilly; serves on an independent data monitoring

. has received unrestricted grants from Biogen and

sultant for Eli Lilly.

1These authors contributed equally to this work.
2Data used in preparation of this article were obtained from the Alzheim-

er’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.

usc.edu) and the Australian Imaging, Biomarkers & Lifestyle Flagship

Study of Aging (AIBL) database (https://aibl.csiro.au). As such, the inves-

tigators within the ADNI and AIBL organizations contributed to the design

and implementation of the ADNI or AIBL database and/or provided data but

did not participate in analysis or writing of this report. A complete listing of

ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

*Corresponding author. Tel: 11-617-914-4178; Fax: 11-877-480-

7256.

E-mail address: nancy.maserejian@biogen.com

/j.dadm.2019.09.001

he Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article under the CC BY-NC-ND

commons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://adni.loni.usc.edu
http://adni.loni.usc.edu
https://aibl.csiro.au
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:nancy.maserejian@biogen.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dadm.2019.09.001&domain=pdf
https://doi.org/10.1016/j.dadm.2019.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dadm.2019.09.001
https://doi.org/10.1016/j.dadm.2019.09.001


N. Maserejian et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 710-720 711
1. Introduction

Alzheimer’s disease (AD) dementia is a chronic neurode-
generative disorder that is both progressive and irreversible
[1,2]. Accumulation of brain amyloid beta (Ab) and tau pa-
thology are defining characteristics of the AD continuum
and occur decades before cognitive symptoms are present
[1,3–5]. Early intervention to alter the underlying Ab or
tau pathology is considered a potential approach to prevent
or delay AD progression, and such treatments are in
development [6–9].

Although biomarkers for Ab and tau pathology are often
used to diagnose AD in research settings, these biomarkers
are not typically used to diagnose AD in routine clinical
practice today, primarily owing to resource limitations and
costs [1]. If a new therapy targeting AD pathology were to
become available, methods to confirm the presence of AD
pathology, including positron emission tomography (PET)
imaging—the only US Food and Drug Administration–
approved biomarker for AD—and cerebrospinal fluid
(CSF) measures, are projected to remain inaccessible to
many patients [1,8,9]. As such, practical methods to deter-
mine which patients are most likely to benefit from more
invasive and costly confirmatory biomarker testing for the
presence of AD pathology may be helpful for prioritizing
potentially limited resources.

The objective of this work was to provide practical al-
gorithms to estimate the probability that a patient exhibit-
ing cognitive problems possibly due to AD is Ab positive,
using currently available inputs. Prior research has identi-
fied factors that are associated with Ab pathology, such as
age, cognitive impairment, apolipoprotein E (APOE) ge-
notype, CSF inflammatory or protein biomarkers [10],
and certain lifestyle factors [11–14]. However, risk
factor models do not directly translate into clinically
useful or practical algorithms. Many models lack
external validation, include inputs with small effect
sizes, or include inputs that are burdensome or costly
(e.g., extensive neuropsychological testing or imaging)
[10,15–17]. Recently, more practical algorithms to
estimate the likelihood of Ab positivity among patients
with subjective cognitive decline (SCD) or mild
cognitive impairment (MCI) were published [11,18,19].
For example, the Swedish BioFINDER study’s “optimal”
model used data on age, APOE genotype, and delayed
recall score [18]. Although performance, as measured by
area under the curve (AUC), has been acceptable in these
reports, the algorithms published to date have limited flex-
ibility because they require the input of APOE genotype
and a specified cognitive test. Moreover, the data sets
are composed of patients from highly specialized clinics,
and it is unknown whether the performance would remain
robust in a broader population of symptomatic individ-
uals.

Our intention was to develop algorithms that would sup-
port clinical decision-making regarding future biomarker
testing, while also allowing quick administration and flex-
ible inputs, such that providers could select their preferred
cognitive measures and use of genetic information. We
anticipated that algorithms using currently available inputs
would not replace Ab tests but rather allow providers to
more efficiently and confidently send symptomatic patients
for more invasive and costly Ab testing, if needed for diag-
nosis and treatment planning. To cast a broad net and
improve power to detect predictors, we first included all
nondemented participants across two data sets in the anal-
ysis to identify predictors; in the next phase of deriving
probability estimates, we focused on symptomatic patients
owing to the current clinical context in which symptoms are
ascertained before considering pathology. Given that there
are scenarios in which genetic testing is not conducted, we
designed two versions: one utilizing APOE ε4 data and
another without it. To achieve robust and generalizable al-
gorithms, we developed a multistage statistical framework,
using a combination of epidemiologic and random forest
decision tree modeling methods, with an independent
external validation using a community population-based
sample.
2. Methods

We developed a statistical framework and multiphase
approach to develop and validate the algorithms using 3
data sources: the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI), Australian Imaging, Biomarkers and Lifestyle
Flagship Study of Ageing (AIBL), andMayo Clinic Study of
Aging (MCSA). The analysis phases were (1) initial feature
(i.e., variable) selection in ADNI and AIBL, (2) deep devel-
opment of probability algorithms in ADNI, (3) semi-
independent validation in AIBL, and (4) independent
external validation in the population-based MCSA. The
goal was to develop an algorithm that was not over-fit to a
particular sample of individuals, and then test it in an entirely
different sample of individuals with SCD or MCI, achieving
good performance in both clinic-based and community-
based research cohorts. Therefore, the differences among
the cohorts are beneficial as external validation. Before initi-
ating the analysis, we conducted a literature review of factors
associated with Ab to provide critical context to interpret re-
sults of the subsequent data-driven approach.

2.1. Initial feature selection in ADNI and AIBL

The goal of this phase was to identify the variables that
most strongly predicted elevated brain Ab among nonde-
mented participants with consistency across two different
data sets, ADNI and AIBL. These variables, referred to as
“features” hereafter, would then be carried forward to the
next phase for the deep development of predicted probabil-
ities.

ADNI is a multisite longitudinal study launched in 2004,
observing the impact of aging via clinical assessment,
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imaging, and biomarkers in a population largely recruited
from memory clinics. AIBL is also a longitudinal study of
aging and was launched in 2006 with a focus on cognition,
biomarkers, and lifestyle factors in the development of
AD. Study designs were previously published for ADNI
[20,21] and AIBL [22], and updated methods are available
online: http://adni.loni.usc.edu and https://aibl.csiro.au.

ADNI and AIBL participants were included if they had a
completed Ab-PET scan and qualified as cognitively unim-
paired, SCD or MCI at their first Ab-PET scan. Feature se-
lection included cognitively unimpaired participants to
maximize the power of feature selection and understand
the importance of SCD indicators. Selection of candidate
features for the algorithm was driven by both quantitative
statistical measures and practical considerations (e.g., length
and ease of administration, suitability of the instrument to a
range of educational levels). A data-driven approach was
used to analyze all available demographic, medical history,
physical examination, vital signs, genetic, family history
and lifestyle factors, and neuropsychological tests including
summary scores, domain-level scores, and item-level scores,
as potential features for selection; 654 variables from ADNI
and 169 variables from AIBL were analyzed. Because the
objective was a quick, low-burden, and low-cost algorithm
that could be used in a primary care setting, data from mag-
netic resonance imaging or CSF biomarkers were not
considered as candidate variables. Internally validated deci-
sion trees were used to identify the strongest features from
ADNI (n 5 760 participants) and AIBL (n 5 746 partici-
pants). For primary analysis of predictors of Ab pathology,
80% of participant samples were used from each data set
and trained 100 ! 1000 times. Ab pathology was classified
as present by PET in accordance with the ADNI and AIBL
study protocols (Supplementary Material). The importance
of the potential features was evaluated by the frequency
that they were present in the simulated decision trees and
their average position when present. Once the key features
were determined, iterations of models were compared on
distribution of the AUCs to determine which combination
of features would provide the strongest overall performance.
2.2. Deep development of probability algorithm in ADNI

To derive the estimated probability of Ab positivity, we
developed a new simulation framework using nested cross-
validation accompanied by stratified subsampling proced-
ures of participants with SCD or MCI in ADNI and decision
tree methods. MCI status was ascertained according to the
ADNI and AIBL study criteria, which were consistent
with accepted clinical methods [23,24] (Supplementary
Material). SCD was classified as present in the ADNI data
set among participants who did not qualify as having MCI
if either the patient or informant Everyday Cognition Ques-
tionnaire score reached its respective threshold score (�1.31
informants or �1.36 participants) [25–27]. For AIBL, SCD
was classified as present by an IQcode 16-item short form
score of �3.38 [28,29]. The methods used to ascertain
SCD are not prescriptive components of the algorithms but
rather operationalization of the available measures in each
study to allow a reasonable representation of a target patient
population.

Two algorithms were developed, either omitting or
including APOE ε4 carrier status, which was confirmed to
be a strong predictor during the first phase of this analysis
(see the Results section). The statistical framework used
stratified resampling and maximum AUC–split criteria to
obtain internally validated decision trees averaged from
1000 iterations (Fig. 1). The decision tree method estimates
probability based on the proportion of amyloid-positive
samples in each class/category under each tree branch. The
procedure was repeated, with stratified sampling of 250 par-
ticipants resampled 1000 times, thereby simulating 1000
optimal decision trees trained from the target patient popula-
tion. Sampling was stratified by 5-year age groups and
MCI:SCD proportion within age group to resemble the
target clinical scenarios. The predicted probability of Ab
positivity was obtained using the average of 1000 optimal
decision trees for each combination of predictors.
2.3. Algorithm validation in AIBL and MCSA

Because AIBLwas used in the first phase of feature selec-
tion but not used to derive probability estimates, the AIBL
data set served as a semi-independent validation of the prob-
ability estimation of the algorithms. For this semi-
independent validation, the AIBL data set was analyzed
using 1000 iterations sampled by 5-year age groups and
SCD:MCI proportion within age groups to resemble the
target clinical scenarios, consistent with our method of the
ADNI sampling.

A fully independent external validation of the algo-
rithms was conducted using the MCSA, an epidemiologic
study of aging and MCI in a population-based cohort. The
study design was detailed previously [30].The primary
validation included 711 participants with SCD
(n 5 490) or MCI (n 5 221) at the most recent Ab mea-
sure occurring from November 2006 to August 2017. MCI
was defined using consensus agreement and published
criteria [24,30]. SCD was determined to be present if
the patient or informant Everyday Cognition Question-
naire score reached its respective threshold (�1.31 infor-
mants or � 1.36 participants) [25–27]. Ab positivity was
defined by Pittsburgh compound B PET standardized
uptake value ratio .1.42 [31]. A secondary validation
further included cognitively unimpaired participants
without SCD (n 5 1012) to evaluate the potential for
broader clinical application of the algorithms in all nonde-
mented (n 5 1723).

Algorithm performance was evaluated using AUC, spec-
ificity, sensitivity, positive predictive value (PPV), negative
predictive value (NPV), and positive likelihood ratio. A
probability threshold of 0.5 was applied to the primary

http://adni.loni.usc.edu
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Fig. 1. Statistical framework: procedure for one optimal decision tree. One thousand decision trees were used to derive the probability distribution of the al-

gorithm, with resampling without replacement using age-stratified and subjective cognitive decline:mild cognitive impairment–stratified sampling. Abbrevia-

tion: AUC, area under the curve.
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analysis of performance, and secondary analyses examined
performance using probabilities of 0.4, 0.6, and 0.7 as
thresholds to predict positive Ab status. Sensitivity ana-
lyses were conducted by age subgroup and by MCI or
SCD status.

Although the algorithm was derived using the normalized
immediate recall score on a word list learning task, its per-
formance using other recall measures was also evaluated.
Specifically, using the AIBL data, the Rey Auditory Verbal
Learning Test (RAVLT) immediate recall z-score was
substituted with the z-scores of the California Verbal
Learning Test (CVLT) immediate, short-delayed, and long-
delayed recall measures; using ADNI and MCSA data, the
CVLT z-scores were substituted with the RAVLT short-
delayed and long-delayed measures. Z-scores were obtained
from published norms that were age-adjusted or age- and
sex-adjusted.

To estimate the potential impact of the algorithm on refer-
rals to specialists or Ab confirmation testing, the perfor-
mance metrics from MCSA validation were applied to the
numbers of patients projected to be in the health care system
for possible SCD orMCI due to AD on approval of a disease-
modifying therapy for AD [8,9].
3. Results

3.1. Feature selection in ADNI and AIBL

Characteristics of the ADNI and AIBL samples are
summarized in Table 1. Of the 654 variables in ADNI
and 169 features in AIBL, output from the 100 ! 100 de-
cision trees indicated that APOE ε4 status, age, and cogni-
tive test consistently had the highest predictive value
(Supplementary Fig. 1). The combination of all three fea-
tures provided superior performance compared with combi-
nations of just two or one (e.g., all three AUC 5 78.3%;
age and APOE ε4 AUC 5 72.9%, ADNI; Supplementary
Fig. 2).

Iterative comparison of algorithm performance to
select an appropriate cognitive assessment indicated that
various cognitive assessments performed similarly well,
with median AUCs over 1000 iterations ranging from
0.72 to 0.76 in ADNI and 0.70 to 0.72 in AIBL
(Supplementary Fig. 3). Recall measures had slightly
higher median AUCs (e.g., 0.75 AVLT in ADNI; 0.72
CVLT in AIBL) than global measures such as the Mini–
Mental State Examination (0.73 in ADNI; 0.70 in
AIBL), clock drawing (0.72 in ADNI; 0.71 in AIBL), or
most measures of verbal fluency, language, attention,
and subjective cognitive decline, but differences were
not significant. The similarity across cognitive tests re-
mained when the iterative decision trees included APOE
status and age (AUCs in ADNI: 0.70 Alzheimer’s Disease
Assessment Scale-Cognitive to 0.72 Boston Naming Test;
AUCs in AIBL: 0.68 clock drawing to 0.70 CVLT). Given
this solid performance across cognitive tests, recall mea-
sures were selected for deriving predicted probabilities,
based on consistency with prior research [11,32], relative
ease of administration, and evidence that performance on
recall tests is less affected by education compared with
performance on other cognitive tests [33]. Because the
AUC was the same whether the algorithm used immediate
or delayed recall (e.g., ADNI AUC 5 0.75 for either im-
mediate or delayed; AIBL AUC 5 0.72 for either), the im-
mediate recall test was selected for time efficiency. The
available recall measures differed in ADNI and AIBL
(e.g., ADNI uses RAVLT [34], whereas AIBL uses
CVLT) [35]. To allow input of different measures, raw
scores were transformed to their normalized z-scores.
The final variables included age, APOE ε4 status, and
immediate recall z-score.

3.2. Probability distribution development in ADNI

To derive the predicted probabilities of Ab positivity for
each combination of predictors, 1000 optimal decision trees
were run for each algorithm: algorithm 1 using only age and
immediate recall z-score (RAVLT) and algorithm 2 also us-
ing APOE ε4 carrier status. For a display of the final proba-
bility distributions based on patient characteristics of age,



Table 1

Characteristics of the data sets used for development and validation

Characteristic

ADNI AIBL MCSA

Feature selection and probability

development

Feature selection and semi-independent

validation Validation

Ab1 Ab2 Total Ab1 Ab2 Total Ab1 Ab2 Total

Participants, n 311 307 618 152 108 260 352 359 711

SCD, n (%) 49 (15.7) 95 (30.9) 144 (23.3) 35 (23.0) 46 (42.6) 81 (31.1) 204 (57.9) 286 (79.7) 490 (68.9)

MCI, n (%) 262 (84.2) 212 (69.1) 474 (76.7) 117 (77.0) 62 (57.4) 179 (68.9) 148 (42.1) 73 (20.3) 221 (31.1)

Female, n (%) 147 (47.3) 143 (46.6) 290 (46.9) 63 (41.4) 44 (40.7) 107 (41.2) 156 (44.3) 141 (39.3) 297 (41.8)

Mean age, y (SD) 72.9 (6.9) 70.1 (7.2) 71.6 (7.2) 76.0 (6.5) 72.5 (7.5) 74.5 (7.1) 79.6 (7.9) 70.6 (10.4) 75.1 (10.3)

Higher education, n (%)* 201 (64.6) 216 (70.4) 417 (67.5) 44 (28.9) 35 (32.4) 79 (30.4) 132 (37.5) 138 (38.4) 270 (38.0)

APOE ε4 status, n (%)

Noncarrier 113 (36.3) 234 (76.5) 347 (56.1) 62 (40.8) 89 (82.4) 151 (58.1) 181 (51.4) 285 (79.4) 466 (65.5)

Carrier, heterozygous 154 (49.5) 64 (20.9) 218 (35.3) 61 (40.1) 13 (12.0) 74 (28.5) 146 (41.5) 64 (17.8) 210 (28.3)

Carrier, homozygous 43 (13.8) 8 (2.6) 51 (8.3) 15 (9.9) 0 15 (5.8) 18 (5.1) 1 (0.3) 19 (2.7)

Missing APOE ε4 data 1 (0.3) 1 (0.3) 2 (0.3) 14 (9.2) 6 (5.6) 20 (7.7) 7 (2.0) 9 (2.5) 16 (2.3)

Abbreviations: Ab, amyloid b; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker and Lifestyle Flagship Study of

Ageing; APOE, apolipoprotein E; MCSA, Mayo Clinic Study of Aging; SCD, subjective cognitive decline; MCI, mild cognitive impairment.

*Higher education was defined as years of education �16 in ADNI and MCSA and �15 in AIBL.
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immediate recall test z-score, and, if desired, APOE ε4 sta-
tus, the algorithms were expressed as heat maps (Fig. 2).
For both algorithms, the probability increased with
increasing age and decreasing recall z-score. For algorithm
2, probability also increased in APOE ε4 carriers, a strong
predictor such that all adult carriers over age 50 y had prob-
ability �0.5. With the heat map, individuals can be mapped
to a combination of their age and recall z-score to obtain the
estimated probability; if a certain probability threshold (e.g.,
�0.5) was deemed appropriate given available resources for
referral or Ab confirmation, then that threshold could be
overlaid onto the heat map (e.g., dashed red lines in
Fig. 2A, representing the�0.5 probability threshold). Alter-
natively, the inputs for a given patient could be entered into a
clinical calculator that outputs the predicted probability with
CIs. For example, for a patient aged 70 years with a recall z-
score of21.25, the estimated probability is 0.49 (interquar-
tile range 0.35–0.63); if it is known that the patient is an
APOE ε4 carrier, the estimated probability shifts to 0.70 (in-
terquartile range 0.68–0.78).

3.3. Validation

Performance metrics of each algorithm were consistent
in the ADNI, AIBL, and MCSA populations, indicating a
robust performance across these settings. Fig. 3 shows the
performance metrics when a 0.5 probability was applied
as the threshold of interest to predict Ab positivity in
the two validation data sets: with just age and recall z-
score, the algorithm achieved PPV 66% in MCSA and
67% in AIBL; including APOE ε4 input, the PPV was
69% in MCSA and 76% in AIBL. The 0.5 probability
threshold resulted in the best AUC, at 71%; however,
given the high cost of Ab testing, a higher PPV might
be more helpful. Table 2 shows the performance when
different probability thresholds were applied to the
MCSA validation data set. For example, a probability
threshold of 0.70 provided PPV 83%, with NPV 60%. Us-
ing a higher probability threshold also improved the pos-
itive likelihood ratio, from 2.3 to 5.0, indicating that the
potential impact of the algorithm on clinical decision-
making was increased.

The algorithms were further evaluated in subgroups,
stratifying the MCSA data by SCD, MCI, or age (50–64.9,
65–74.9, 75–84.9, �85.0 years) (Supplementary Table 1).
For both algorithms, PPV was higher among individuals
with MCI (71% or 76% with APOE ε4 status) compared
with those with SCD (58% or 63%), although specificity
was low in MCI (28% or 42%). For both algorithms, PPV
increased with increasing age. Additional sensitivity anal-
ysis stratified by sex or education showed that AUCs were
similar for males and females, although PPV was higher in
females and NPV was higher in males, and algorithm 2 per-
formed more consistently across education levels than did
algorithm 1 (Supplementary Table 1). In secondary analysis
that explored the performance among 1723 nondemented
(including cognitively unimpaired without SCD) MCSA
participants, AUC decreased slightly (algorithm 1: 66% to
64%; algorithm 2: 71% to 67%), NPV increased, and PPV
decreased (Supplementary Table 2). In separate analysis of
a small sample of MCSA participants with mild dementia
(n 5 23 for algorithm 1 and n 5 22 for algorithm 2), both
algorithms performed with 100% sensitivity and high PPV
(82%–83%).
3.4. Substitution of recall tests

Performance remained robust to substitution of different
recall measure z-scores, with the AUC, PPV, and NPV stable



Fig. 2. Average heat maps for predicted Ab positive status based on 1000 optimal decision trees. Algorithms generated using immediate recall test z-score and

agewithout (A) or with (B) consideration ofAPOE ε4 status. Red indicates higher probability of Ab positivity, blue indicates higher probability of Ab negativity.

The hatched red line indicates the threshold for a probability of .0.5 to be considered predicted positive; different probability thresholds can be applied as

appropriate depending on the clinical context and available resources. Abbreviations: Ab, amyloid b; APOE, apolipoprotein E
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within 1%–2% of the original result for algorithm 2 and
within 4%–5% for algorithm 1 (Supplementary Fig. 4).
3.5. Potential impact on projected health care system
constraints

On availability of a new AD-modifying therapy, approx-
imately 14 to 15 million patients with possible MCI due to
AD are estimated to be eligible for referral or biomarker
testing in the US or select European health care systems
[8,9]. Applying the algorithms as observed in the MCSA
validation to this projected population could prevent an esti-
Table 2

Impact of varying probability thresholds: MCSA validation data set*

Probability �0.7 �0.6 �0.5 �0.4

PPV 83% 79% 69% 64%

Specificity 93% 89% 67% 52%

NPV 60% 61% 73% 80%

Sensitivity 35% 43% 75% 87%

Likelihood

ratio

positive

(95% CI)

5.01

(3.32–

7.56)

3.84

(2.77–

5.31)

2.25

(1.92–

2.65)

1.81

(1.61–

2.04)

AUC 64% 66% 71% 69%

Abbreviations: AUC, area under the curve; MCSA, Mayo Clinic Study of

Aging; NPV, negative predictive value; PPV, positive predictive value.

*Data shown for algorithm using age, recall test z-score, and apolipopro-

tein ε4 carrier status.
mated 1.0 to 2.8 million negative Ab confirmation tests
while helping identify 0.1 to 3.4 million Ab-positive symp-
tomatic patients, depending on the desired probability
threshold (Table 3).
4. Discussion

We developed and validated two practical algorithms to
determine the probability of Ab positivity in patients with
SCD or MCI, using a rigorous statistical framework for
probability estimation in both clinical and population-
based data sets. Feature selection was guided by the princi-
ple that to increase efficiency of biomarker testing, an
algorithm ideally should be based on inputs that are quickly
administered and readily available while still performing
with high test characteristics. As such, algorithm 1 was
developed requiring only inputs of age and an immediate
recall test, which may be administered in approximately
5 minutes. Algorithm 2 also considered APOE ε4 carrier sta-
tus, a quick and often easily accessible genetic test. Both al-
gorithms were robust across clinic-based populations
(ADNI, AIBL) and the population-based sample participants
(MCSA).

A strength of this study was the creation of a rigorous
statistical framework as a foundation for the probability
estimation. By using nested cross-validation with stratified
subsampling procedures, problems caused by heterogene-
ity among data sets were reduced and modeling for the
specific target population was improved. This framework
prevents overfitting and increases reproducibility and
model robustness. Indeed, the algorithms’ performance
metrics were largely similar across ADNI, AIBL, and
MCSA, despite the differences in study settings and de-
signs. This statistical structure is generalizable and could
easily be extended to apply to different target populations
or biomarkers.

Compared with other published practical algorithms
for Ab probability in SCD or MCI, the predictive perfor-
mance of the current algorithms was similar, while car-
rying the added advantage of flexibility for the required
inputs and validation in an epidemiologic data set.
Although AUC was just slightly lower—at best 0.71 in
the validation data set using age, recall z-score, and
APOE ε4, compared with 0.75 to 0.82 for other models
[11,18,19]—other models were tested only in specialized
clinical sites. The AUCs we observed during feature se-
lection were in the same higher range as other models
(e.g., 78% for age, APOE ε4, and cognitive test,
Supplementary Fig. 2), and after we applied nested
cross-validation with stratified subsampling over 1000 it-
erations to derive probabilities, the AUCs decreased. This
observation supports the notion that the performance of
the algorithms derived here is tempered to yield more sta-
ble performance in various settings. Furthermore, AUC is
not necessarily the preferred performance metric when the
confirmatory test (e.g., PET) is costly and has limited



Table 3

Projected impact of applying Ab probability algorithms for the 14.9 million US patients aged �55 years projected to screen positive for MCI*

Scenario

RAND report projected number

Applying algorithmy

�0.6 Probability threshold �0.5 Probability threshold �0.4 Probability threshold

(No algorithm) Age, recall With APOE ε4 Age, recall With APOE ε4 Age, recall With APOE ε4

Send to Ab confirmation 6.7 M 5.1 M 4.0 M 7.7 M 8.0 M 9.9 M 10.0 M

Confirmed (true 1 sent) 3.0 M 3.6 M 3.1 M 5.0 M 5.5 M 6.1 M 6.4 M

Not confirmed (false 1 sent) 3.7 M 1.5 M 0.9 M 2.7 M 2.5 M 3.8 M 3.6 M

Abbreviations: Ab, amyloid b; APOE, apolipoprotein E.

*Projected numbers obtained from the RAND report for US health care system readiness for an Alzheimer’s disease–modifying therapy; projections for five

European countries were of similar magnitude, with an estimated 14.3 M patients in those health care systems screening positive for mild cognitive impairment

(data not shown) [8,9].
yAlgorithm listed as “age, recall” uses age and recall z-scores. Algorithm listed as “with APOE ε4” uses age, recall z-score, and APOE ε4 positive status.

Values in the “send to Ab confirmation” row refer to patients who would be predicted positive with the algorithm for a given threshold for probability (e.g.,

as displayed in table: 0.6, 0.5, and 0.4 probability). Values are derived from the performance of the algorithms in the Mayo Clinic Study of Aging validation

data set using Rey Auditory Verbal Learning Test immediate recall z-score.
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availability [36]. Rather, PPV and positive likelihood ratio
may be most relevant because a higher PPV more directly
reduces the number of Ab tests returned as negative
(reducing unnecessary cost and burden), and a higher pos-
itive likelihood ratio conveys a larger impact on the clin-
ician’s initial judgment [36,37]. While a 0.5 probability
best balances sensitivity and specificity, the probability
threshold best suited for a given clinical scenario depends
on numerous factors that vary across clinics, such as pa-
tient volume and availability of PET scanners or special-
ists. With this in mind, our analysis considered alternative
probability thresholds that may be relevant in different
settings based on resource availability and provider pref-
erences.

These algorithms were developed to maintain flexible in-
puts for application in clinical practice. As such, unlike pre-
viously developed algorithms, the algorithms do not require
the use of specific cognitive and genetic tests [11,18,19].
Although APOE ε4 status is a strong predictor of Ab pathol-
ogy, there may be scenarios in which genetic counseling is
problematic or not easily attainable. Probability values
were derived both with and without APOE ε4 information,
resulting in different probability distributions across the
two algorithms; APOE ε4 information is not simply an addi-
tive component. Another strength is that the algorithms do
not specify which recall test must be used, as a variety of
recall tests are effective at detecting MCI in clinical settings
[38], with episodic memory most consistently and strongly
related to cognitive decline due to AD pathology [39–41].
Recall tests are one of the most commonly documented
cognitive assessments in current primary care [42], indi-
cating that these algorithms can fit comfortably into current
clinical practice. The algorithms are also not prescriptive for
the assessment used for SCD, in line with the 2017 Geronto-
logical Society of America and 2018 Alzheimer’s Associa-
tion tool kits, which have flexible guidelines for
ascertaining SCD [43–45].
In clinical practice, these algorithms may be useful to
increase the confidence of primary care providers or spe-
cialists in their clinical decision-making and furthermore
improve efficiency by reducing the number of patients
sent for Ab testing. For patients with MCI, the use of these
algorithms could shift the estimated probability of Ab pos-
itivity from a prior probability of 0.45 to 0.50 [8,9,46,47]
to approximately 0.65 to 0.75 (Fig. 3). For patients with
SCD, the estimated probability may shift from approxi-
mately 0.20 to 0.30 [48] to approximately 0.60 (Fig. 3).
Confidence intervals provide reassurance on the estimated
probability. In light of limited resources and high costs of
confirmatory testing, providers could consider a patient’s
probability of Ab positivity and send only those patients
above a given probability threshold for confirmatory
testing. Patients below the threshold might be appropriate
for close monitoring (i.e., “watchful waiting”) and reas-
sessment at follow-up visits. Such targeted referrals to
specialists or Ab testing may be necessary to reduce
burden and increase access to those patients who are
most likely to benefit [8,9].

Although these algorithms are designed to help clinical
decision-making, they are not perfect predictors of Ab
PET. That is, while decreasing the number of false positives,
there will inevitably be patients with Ab pathology who do
not meet the selected probability threshold. For this reason,
the algorithms best serve as an adjunct to other consider-
ations in the decision for specialist referral, confirmation
testing, or watchful waiting. Follow-up assessments to
monitor cognitive decline are important for patient care.
The moderately good predictive performance of these algo-
rithms reflects the best of what is currently achievable for
practical and low-cost inputs (lacking validated blood-
based biomarkers and other potentially emerging technolo-
gies). Should a new therapy become approved for AD
intervention, an estimated 14.9 million patients over age
55 years may screen positively for MCI in a single year in
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the US, with a health care system ill equipped for confirming
pathology in this large population, and similar problems in
other countries [8,9]. Application of either of these algo-
rithms to this projected population could help diagnose indi-
viduals with underlying Ab pathology while preventing an
estimated 1 to 2.8 million negative Ab confirmation tests.
By applying a practical algorithm, there is potential to mini-
mize unnecessary costs and burdens to the patient, provider,
and health care system.
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RESEARCH IN CONTEXT

1. Systematic Review: We reviewed literature on pre-
dictive models for cerebral Ab. Numerous factors,
including age, cognitive impairment, APOE geno-
type, CSF inflammatory, or protein biomarkers
have been associated with Ab positivity. Available
predictive models are limited by lacking external
validation or requiring inputs that are burdensome
or not universally available.

2. Interpretation: We developed a multistep statistical
framework to obtain robust probability estimates
across clinical and nonclinical settings using two
different data sources and independently validating
in a third, nonclinical population-based cohort.
Compared with other published practical algorithms
for Ab probability, the predictive performance of the
current algorithms was similar, while carrying the
advantage of flexibility regarding the selection of
recall test and APOE ε4 test.

3. Future directions: While these algorithms may help
identify patients for biomarker testing, a validated
blood-based or other low-cost, low-burden biomarker
that can replace CSF or PET testing would critically
improve Alzheimer’s disease detection and diagnosis.
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