
����������
�������

Citation: Dunham, B.; Ganapathiraju,

M.K. Benchmark Evaluation of

Protein–Protein Interaction

Prediction Algorithms. Molecules

2022, 27, 41. https://doi.org/

10.3390/molecules27010041

Academic Editor: Kyle Hadden

Received: 5 November 2021

Accepted: 23 November 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Benchmark Evaluation of Protein–Protein Interaction
Prediction Algorithms

Brandan Dunham and Madhavi K. Ganapathiraju *

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232, USA; brd86@pitt.edu
* Correspondence: madhavi@pitt.edu

Abstract: Protein–protein interactions (PPIs) perform various functions and regulate processes
throughout cells. Knowledge of the full network of PPIs is vital to biomedical research, but most of
the PPIs are still unknown. As it is infeasible to discover all of them experimentally due to technical
and resource limitations, computational prediction of PPIs is essential and accurately assessing the
performance of algorithms is required before further application or translation. However, many
published methods compose their evaluation datasets incorrectly, using a higher proportion of
positive class data than occuring naturally, leading to exaggerated performance. We re-implemented
various published algorithms and evaluated them on datasets with realistic data compositions
and found that their performance is overstated in original publications; with several methods
outperformed by our control models built on ‘illogical’ and random number features. We conclude
that these methods are influenced by an over-characterization of some proteins in the literature
and due to scale-free nature of PPI network and that they fail when tested on all possible protein
pairs. Additionally, we found that sequence-only-based algorithms performed worse than those that
employ functional and expression features. We present a benchmark evaluation of many published
algorithms for PPI prediction. The source code of our implementations and the benchmark datasets
created here are made available in open source.

Keywords: protein–protein interactions; computational prediction; evaluation; interactome

1. Introduction

Proteins are large macromolecules that perform a variety of functions necessary for an
organism. Biological processes are driven by multiple proteins creating a protein complex
or a signaling cascade through biophysical interactions. Understanding which proteins
interact with each other is an important first step towards understanding molecular mecha-
nisms of biological functions and of diseases, and in the design of therapeutics. Knowledge
of binary protein–protein interactions (PPIs) is also useful in conducting further research on
blocking or enhancing different interactions to control biological processes and functions,
and to design therapeutics. However, given that human genome contains approximately
20,000 protein-coding genes and therefore nearly 200 million unique protein pairs even
without accounting for multiple isoforms of genes, resolving all pairs of interacting protein
is not a trivial task.

Many experimental biology methods have been devised to find pairs of interacting pro-
teins. Benchwork experiments like co-immunoprecipitation (co-IP) are resource-intensive
and low-throughput, often leading to false negatives depending on experimental condi-
tions, for example due to ineffective antibodies or due to the transient nature of PPIs [1].
In contrast, high throughput screens such as yeast two-hybrid (Y2H) and tandem affinity
purification mass-spectrometry (TAP-MS), and more recently a sequencing approach called
PROPER-seq [2] attempt to capture tens-to-hundreds of thousands of PPIs in a single experi-
ment. In the past, statistical estimates suggested that Y2H had 25%–45% false positives, and
difficulties in detecting PPIs for certain subsets of proteins such as membrane proteins [3].
In later studies, it was shown that extensive filtering techniques can be used to decrease
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the false positive rate, usually by running multiple screens or comparing them to other
data sources to obtain a more precise subset of potential interactions [4]. In one recent
approach, a high quality protein interaction network of 53,000 PPIs was produced using
such an approach [4]. However, the overlap between PPIs identified by different large-scale
techniques remains low, with each method producing large amounts of PPIs unverified by
any other experiment [5].

Overall, most PPIs out of an estimated 500,000 to 3 million binary PPIs of the human
interactome remain unknown [4,6–8], which motivates the development of computational
approaches for PPI discovery. At minimum, computational approaches should identify
an accurate subset of likely interacting protein pairs that that can subsequently be vali-
dated with experimental techniques as true PPIs, thereby eliminating much of the cost in
testing millions of other pairs. A sizeable amount of literature has been published on the
computational prediction of PPIs, especially in model organisms like yeast, suggesting
their extrapolation to human interactome mapping. These methods represent pairs of
proteins by features of amino acid composition, protein functional annotations, or gene
co-expression, and develop machine learning models to classify each pair (a data instance)
as interacting or non-interacting.

Amino acid sequence-based predictors make up most of the literature for compu-
tationally predicting proteome-wide PPIs, except for yeast, where other features have
also been widely explored. Sequence-based predictors rely on features computed from
amino acid sequences, their physicochemical properties or unigram or n-gram counts.
Examples of such feature representations include auto covariance (AC), pseudo amino acid
composition (PSEAAC), and conjoint triads (CT), all of which have been widely used for
predicting PPIs [9–18]. Other approaches attempt to make a more direct usage of amino
acid sequences, either by generating per protein features from PSSMs using PSI-Blast, or
by encoding the amino acids into a numeric vector to use as the features [13,19–23]. Once
calculated, these values can build a numeric vector of equal length for each protein, creating
a representation of data typically used in machine learning.

Non-sequence-based predictors utilize functional, protein subcellular location, struc-
tural and other biological annotation and transcriptomic data to compute features (hence-
forth referred to as annotation-based predictors in contrast to sequence-based predictors).
These features rely heavily on Gene Ontology (GO), structural domain databases, and gene
expression databases to assemble the features of all protein pairs, although there may be
missing values for many pairs. They compute features of protein pairs, including cooc-
currence in subcellular locations, co-expression correlation across different experimental
conditions or across tissues, and semantic similarity of ontology annotations as input to
machine learning classification models [24–28]. Many previous works rely on not one but
a collection of these annotations, creating a feature vector per protein pair [29,30]. These
collection-based classification algorithms have built-in methodologies to handle missing
values so that entire protein pairs are not discarded when they miss some features.

Given the large number of unknown PPIs in the human interactome and the poten-
tial role of computational methods in discovering them, we must assess how accurately
they perform on ‘real-world’ application, and if proven successful, compare them against
each other to identify the best methods. In their original publications, most predictors
are claimed to be highly accurate, with several obtaining over 90% accuracy, and some
obtaining accuracies as high as 95–98%. Logically, if multiple classifiers exist that can obtain
such high accuracies, predicting the full interactome should be a trivial task. However,
the evaluations that these algorithms have been put through do not seem to consider
two important aspects of PPIs, namely, (i) the large number of known PPIs involving a
few hub proteins, and (ii) the rarity of PPIs among all possible protein-pairs. Here, we
seek to evaluate and benchmark the performance of these algorithms, taking these aspects
into account.

The common evaluation methodology for most PPI prediction methods is to utilize a
set of known PPIs from a public repository as positive-label instances, and to use randomly



Molecules 2022, 27, 41 3 of 21

sampled protein pairs (excluding the pairs that are known to interact) in place of negative-
label instances. Randomly chosen pairs are utilized due to a lack of known, non-interacting
pairs from experimental methods, as a failure to identify a PPI in a biological experiment
only suggests that a PPI was not observed under those experimental conditions and does
not prove that the two proteins never interact. Therefore, failed experiments do not create
negative-labeled data. This lack of ability to experimentally determine non-interacting
protein pairs prevents the creation of a traditional gold standard negative dataset. However,
taking into account that only 0.325–1.5% of protein pairs have PPIs, computational methods
utilize randomly sampled protein pairs as negatively labeled data, with the majority of
randomly selected pairs likely being truly non-interacting pairs.

Although it is estimated that there exist about 500,000 to 3 million PPIs out of a total
of 200 million protein pairs in humans (0.325–1.5%), most algorithms are trained and tested
on datasets containing 50% positive label data. This simple approach for assessing an
individual algorithm’s real-world application is questionable. Additionally, the protein
interactome is believed to be a small-world network [31]. Such networks have hubs, i.e.,
nodes that connect directly to many other nodes, or in this case, proteins with a large
number of PPIs. For example, The Biological General Repository for Interaction Datasets
(BioGRID) contains ~125,000 unique, non-self-interactions among ~14,500 proteins (rep-
resented by their gene names/symbols and not distinguishing isoforms; this aspect that
proteins are referred to by their genes is applicable throughout this paper except where
explicitly mentioned otherwise) [32]. This averages to around 17 interactions per protein;
however, currently 360 proteins have more than a 100 PPIs each, with one protein, APP,
involved in over 2000 PPIs. On the other hand, over 9000 proteins have 10 or fewer PPIs
each. While positive class PPI data are from a scale-free network, randomly paired data
(negative class) are sampled uniformly, and thus have a significantly different distribution
of proteins. This can lead to biasing problems in machine learning, where a single protein
appears far more times in the positive dataset, allowing machine learning algorithms to
simply predict pairs containing such proteins to be of positive labels, generating a high ac-
curacy on the test datasets from corresponding distributions. Past experiments in this field
have suggested similar findings, with works by Yu as well as Park and Marcotte suggesting
that many prediction algorithms primarily predict bias in underlying datasets [33,34].

In addition to dataset creation, evaluation metrics also play a role in correctly assessing
whether an algorithm can make good predictions on real data. In evaluating classifica-
tion algorithms for rare category data, accuracy and AUC are not suitable methods, and
precision-recall (P-R) curves are recommended [35]. In biological and clinical domains,
where the natural distribution of class labels may be highly imbalanced, a P-R curve
provides more reliable information and distinguishes models that are practical for real
world applications, whereas AUC may misleadingly convey more impressive accuracy
than are realistically achievable on the rare category that is of interest (e.g., an interacting
protein-pair or the presence of a disease) [36]. However, most published works have
used AUC/accuracy metrics. Both the aspects of data composition and evaluation metrics
were taken into account by Qi et al. in the seminal paper on proteome-wide human PPI
prediction (i.e., when a protein is compared against all the proteins) for membrane receptor
proteins [29]. They set their test data at 1:1000 positive to negative instances and evaluated
with a P-R curve. Our own method, called High-Precision Protein–Protein Interaction
Prediction (HiPPIP) for human interactome prediction also was evaluated on the lines of
Qi et al.’s, both in terms of rareness of positive class and using a P-R curve [37]. Addition-
ally, the HiPPIP method was also evaluated for its ability to predict proteome-wide PPIs,
by computing the cumulative number of true-positives versus the increasing number of
false-positives (note that in this scenario of proteome-wide evaluation (i.e., where a hub
protein is paired with every other protein in the human proteome), the unlabeled data may
not all be false-positives, and may indeed me true positives that are currently unknown) on
hub proteins with the reasonable assumption that many, if not all, of their PPIs are known;



Molecules 2022, 27, 41 4 of 21

this metric was used as a reasonable approximation of the number of accurate predictions
produced by HiPPIP.

In this study, we evaluate different PPI prediction algorithms to determine how
well they perform on realistically proportioned datasets. We first implement various
algorithms, using similar feature sets and classification models to those described in the
original publications. Where possible, we download the datasets used by these algorithms
to test whether our implementations produce similar results. Next, we created six new
evaluation datasets containing three proportions of positive label instances (50%, 10% and
0.3%) and two sampling methods (sampled randomly from the full list of proteins as is
commonly done in literature, henceforth known as Full), and using a held out set of proteins
for evaluation (referred to as Held-Out, known as C3 data in Park and Marcotte’s prior
work [33]). Finally, we also created control models to compare these predictors against,
by using illogical features (e.g., frequency of the proteins in the dataset or random vectors
to represent the proteins) with simple, naïve classifiers. These types of predictions do not
consider the pairwise compatibility of two proteins, and simply predict PPIs based on the
distinct distributions of proteins in positive and negative classes in the datasets. This allows
us to determine how well the algorithms perform relative to these illogical features.

2. Methods
2.1. Data

Datasets used to validate the implementation of various sequence-based interaction
predictors were downloaded from previous works. The datasets were adjusted from their
original formats where necessary to include only proteins with a sequence length greater
than 30 amino acids, as several algorithms have this requirement. Datasets which provided
only protein names instead of the sequences had protein sequence data downloaded from
UniProt (21 June 2021, 25 June 2021, 6 August 2021, 17 August 2021), with protein pairs
removed if the names no longer mapped to valid proteins.

For prediction methods that employ protein annotations, the data were not down-
loaded from original sources for validation because most methods do not provide their
datasets, and the availability of protein annotations such as domains, functions, expression
and localizations increases over time. Some annotation databases are no longer available
(e.g., InterDom), while others have increased their number of annotations since original
publications; thus, we cannot try to match our results from these methods against the
original publications. We treat our implementations of these as methods to be inspired by
the original publications rather than exact reproductions. To create the necessary features,
the Gene Ontology was download from the Gene Ontology Consortium (28 March 2021),
and GO annotations of proteins were downloaded from the Gene Ontology Annotation
Database (16 February 2021) [38,39]. Domain features were downloaded from InterPro
(27 March 2021), Prosite (17 September 2021), and Pfam (17 September 2021) to compute
domain and family-related features [40–42]. When annotations are provided using UniProt
Identifiers, a union of all features assigned to a given Entrez Gene ID was used as features
for a given protein [43].

Known PPI data were downloaded from the BioGRID (v4.4.198, compiled 25 May
2021). Only direct biophysical protein interactions, encoded by Proteomics Standards
Initiative—Molecular Interaction (PSI-MI) ontology identifier MI:0407 and its descendants,
were included. After filtering out pairs containing non-human proteins, self-interactions,
and protein-RNA bindings, the Entrez Gene IDs provided by BioGRID were then mapped to
UniProt IDs [43,44]. To account for Entrez Gene IDs mapping to multiple UniProt identifiers,
the longest amino acid sequence was assigned to the gene. To ensure compliance with
various sequence-based algorithms, protein sequences less than or equal to 30 amino acids
were removed. A total of 123,626 unique interactions among 14,678 proteins remained
as positively labeled protein pairs (i.e., PPIs). A total of 19,115 proteins with UniProt
ID to Entrez Gene ID mapping that met the minimum sequence length were used to
represent the full set of human proteins, with random pairs drawn from this dataset to use
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as negative labeled protein pairs (i.e., non-interacting protein pairs) (see Supplementary
File S1 for details).

Training and testing datasets were created using two methodologies: In the first, a
random set of non-overlapping interacting pairs and non-interacting pairs are sampled for
training and testing from the full set of all possible proteins (Full). This method is widely
used in the literature. We do not take any other precautions when randomly sampling
non-interacting pairs, such as selecting proteins in different subcellular locations, as this
could induce a bias towards the type of protein pairs chosen and creates a separate bias by
limiting the number of proteins available to use in the non-interacting dataset. The second
methodology is based on the work of Park and Marcotte, where some proteins are held out
and used exclusively in the test dataset (Held Out) [33]. For this dataset creation method,
we separated the proteins into 6 equal sized bins and hold out either 1 or 2 bins to create
the test data. No pair using a protein from these bins is used in training data. Training data
is created from bins excluding those held-out to create test data.

Multiple datasets were created for testing with different percentage compositions of
positively labeled protein pairs (known interactions). Specifically, training sets were created
with 50% and 20% positive data, while test sets were created with 50%, 10%, and 0.3%
positive data. Models generated to test both the 10% and 0.3% positive test datasets used
the 20% positive data for training, while 50% positive test datasets utilized 50% positive
train datasets for training. For data based on random pairs, the five 50% positive train and
test sets were created using stratified cross validation on a single set of 125,000 protein pairs.
Data for the 20% training set, and 10% and 0.3% positive test sets, were chosen randomly
from all pairs while ensuring that no test data overlapped with the training data. For the
second method, namely by holding out proteins used in test data, training and test sets
of the same ratios as mentioned earlier were created for each of the 21 combinations of
holding out 1 or 2 of the 6 bins. Again, the 10% positive and 0.3% positive test sets shared
the same training sets with 20% positive data.

2.2. Feature Computation

We replicated various sequence-based features as described in prior publications.
Some, such as auto covariance and conjoint triads are used in multiple papers we reim-
plement, whereas others such as the Weighted-Skip Sequential Conjoint Triad method are
used in only a single paper utilized in our recreations. While most methods listed can be
computed from the sequences of the proteins in the pair, two of the listed methods required
usage of other proteins’ sequence data. Skip-gram models compute the similarity of words,
or in this case, amino acids, by training a neural network with neighboring words to create
word embeddings [45]. For protein sequence features, we trained the skip-gram models
using all protein sequences related to the organism under study. The second method,
PSSMs (i.e., protein sequence similarity matrices), were computed using PSI-BLAST over
UniProt’s SwissProt protein sequence database, using 3 iterations and a significance value
of 0.001 [46]. If no hits were found, sequences were encoded using BLOSUM62 values.
For features relying on physicochemical properties (e.g., hydrophobicity, hydrophilicity,
polarity, charge, solvent-accessible surface area, etc.), we employed commonly used amino
acid property values unless otherwise specified (see Supplementary File S2 for details). Fi-
nally, where possible, we normalized values produced by different feature computations to
map to a low range of values, preferably between 0 and 1, or −1 and 1 (see Supplementary
File S2 for details).

For annotation-based features, we primarily focused on pairs of domains and GO
annotations appearing in known interactions, as well as semantic similarity calculations
on GO annotations. As proteins commonly have multiple GO annotations and domains,
many algorithms compute these features as a grid of scores between all possible pairs
of annotations between a pair of proteins and convert the grid to a single score through
an aggregation, such as average, max, sum, product, or the best matching average (see
Supplementary File S3 for details). All protein pairs where the necessary features did not
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exist were scored as zero to ensure that we could train and test using the same datasets
used for sequence-based prediction testing.

2.3. Model Construction

Classification models were constructed using Python (version 3.8.5) libraries Scikit-
Learn, PyTorch, LightGBM, and ThunderSVM, or an independently created Rotation Forest
library [47–51]. While methods in the selected publications have used other programming
languages and/or libraries, these should be capable of reproducing similar results.

Models for sequence-based features were constructed to match published methods as
closely as possible. For some models, such as support vector machines (SVMs), which are
highly sensitive to different scales between features, features were scaled using min-max
or standard scaling. Learning rates for neural networks implemented in PyTorch were
adjusted to obtain similar results as reported in prior works, and all models were fitted
with a decaying learning rate to ensure that the model would conclude quickly when
learning had plateaued, ensuring quick running times on larger datasets. For publications
that do not clearly state hyperparameters or other exact details used to construct models,
we utilized settings that seemed similar to concepts in the referenced publication or other
related publications, executed quickly, and performed comparably to reported results in the
publications on their datasets. A total of 36 algorithms utilizing random forests, rotation
forests, boosting, neural networks, and support vector machines were implemented based
on previously published literature (see Supplementary Files S4 and S5 for details related to
hyperparameters and any changes between previous work and our implementations).

For annotation-based features, a total of 6 models were created using domain and GO
data. Two of these models, based on the works of Chen et al. and Maetschke et al., use
large binary/ternary features to represent protein pairs. Chen et al. utilizes a pairwise sum
of binary features containing which domains existed in each protein [26]. Maetschke et al.
generated binary feature vectors from GO annotations, with non-zero values representing
all annotations up to the lowest common ancestor (LCA) common to both proteins [28].
The final 4 annotation-based models used significantly smaller feature representations
for each protein pair. Guo et al. and Zhang et al. each developed models relying on
semantic similarity using maximum aggregation. Guo et al. relied on a single metric per
ontology and a logistic regression model, while Zhang used 10 different semantic similarity
measurements to train an SVM [24,25]. Zhang et al. used a score based on different domain
databases to predict protein interactions, taking the maximum score across the databases
per domain pair and using product aggregation to create a final score [27]. As we are not
using pre-computed scores from domain databases, and the list of domains we obtained
do not natively map between databases, we created a variation of their algorithm by
computing the product aggregation score for each set of domain annotations, and used
logistic regression to compute a final score. We refer to this algorithm as the Domain Variant
model. Finally, inspired by approaches that utilize a large set of features, we created a
simple ensemble model using a random forest with features computed from best matching
average aggregations for level 2 GO annotations in protein interactions, our 3 domains
annotations in protein interactions, and Resnik semantic similarity as features [29,30]. See
Supplementary Files S3 and S5 for full details of each algorithm.

2.4. Illogical/Random Feature Models to Serve as Control

Five different models were created that use either illogical or random features to
demonstrate that the models may capture bias, rather than interaction-related properties,
in datasets. By illogical feature, we mean that there is no logical reason to expect the feature
to distinguish between interacting and non-interacting protein pairs. The expectation is
that accurate PPI prediction methods should outperform these illogical/random models.
See Supplementary Files S5 and S6 for full implementation details.

Count Bias simply counts how many more times the protein appears in positive train-
ing instances than negative training instances. A prediction score is simply the sum of these
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numbers for the two proteins in a data instance. Sequence Similarity Bias (Seq Sim Bias) is
analogous to Count Bias, except that instead of counting each individual proteins’ appear-
ance in the training data, it counts the positive and negative instances of up to the 5 most se-
quence similar proteins used in the training set, and performs a weighted average based on
their similarity. A third feature, Sequence Similarity + Protein Bias (Seq Sim + Prot Bias),
calculates the 5 most similar proteins, and their weights, from a combination of sequence
similarity and the number of overlapping proteins shared by a given pair of Entrez IDs.
This protein bias check is designed to ensure that non-sequence-based features (i.e., gene
annotation features) are not getting an advantage when aggregating features from proteins
that map to multiple genes. Sequence-based methods are not tested for this spurious
feature. Finally, random features for each protein are represented by vectors of 500 random
numbers, with pairs of proteins represented by a concatenation of these values. These
features are then utilized by either a random forest or a simple neural network. The neural
network architecture contains multiple shared layers before the protein pair’s values are
concatenated and run through a final prediction layer.

2.5. Evaluation Metrics

For our evaluations, test sets with 50% positive data are compared on accuracy (Acc)
and area under the receiver operating curve (AUC) measurements. These metrics allow
us to compare our results with previous literature, which most commonly utilize accuracy
to measure their model’s predictive capabilities. When data is imbalanced, as is common
in the biological domain, typically having many more negatively labeled instances than
positively labeled instances, precision recall curves (P-R) are recommended, as simple
accuracy and AUC calculations may be heavily influenced by predicting the negatively
labelled, non-rare class frequently [35,36]. Therefore, test sets with 10% or 0.3% positive
data are compared on the precision at 3% recall (Prec) and average precision (Avg P), rather
than relying on accuracy-based measures. 3% recall was chosen to determine whether the
algorithms are capable of making good predictions on their top scoring pairs, a necessity to
provide laboratories with good sets of protein pairs to test using experimental methods.
See Supplementary File S7 for additional notes on implementing these metrics.

3. Results

To illustrate the reasoning presented in the Introduction, we started by testing rep-
resentative methods by evaluating their predictions on hub proteins against the known
PPIs. First, HiPPIP is compared to Qi et al. as originally reported [37], but with recently
updated data of known PPIs from HPRD and BioGRID. See Figure 1, where 1A is recom-
puted on the same hub proteins as in [37], and 1B is computed for hub proteins in current
data with degree >100. In Figure 1B, a sequence-based predictor SPRINT [52], which in
its original publication reported 79–89% AUC on 1:1 data composition, was generated
from BioGRID; however, this high performance is not reflected at the proteome scale, and
it is outperformed by the seminal work by Qi et al., which was published in 2009, and
by HiPPIP.

We implemented various PPI prediction algorithms and tested most of them on
their original datasets and evaluation metrics for verifying that the results are reproduced
similarly. We created reusable datasets and evaluated the algorithms on these datasets, with
commonly reported evaluation metrics as well as metrics more suitable for this domain,
to benchmark their performance when predicting proteome-wide PPIs where interacting
protein pairs are very rare. We suggested suitable evaluation metrics and are releasing the
datasets and source code of re-implementations so that these together may lead to a rapid
advancement of computational approaches for PPI prediction and their benchmarking.

3.1. Realistic Datasets for Benchmark Evaluations

We created benchmark training and test datasets at various proportions of positive
class instances (1:1, 1:4, 1:9, and 1:332). In creating them, we employed two different
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approaches: the first approach selected pair-wise instances while ensuring that the pairs
used in training and testing did not overlap (referred henceforth as Full data); the second
approach held out proteins to be used exclusively in test data (referred henceforth as Held
Out data). The size of each dataset is shown in Table 1.Molecules 2021, 26, x FOR PEER REVIEW 8 of 22 
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where a hub protein is paired with every other protein in the human proteome), the unlabeled data
may not all be false-positives, and may indeed me true positives that are currently unknown.

Table 1. Sizes of different datasets created for testing. Pair sizes vary for the held-out data due to
the number of pairs drawn from a single bin (such as 4, 4) being half the size of drawing pairs from
2 bins (such as 3, 4). Held out test sets for 1:1 (50%) and 1:9 (10%) positive pairs use all positive data
per held out bin.

Pos Ratio Usage Instance Sampling Number of
Datasets Positive Pairs Negative Pairs Proteins in

Positive Data
Proteins in

Negative Data

1:1 (50%) Both Full 1 (5-fold CV) 62,500 62,500 12,895 19,082
1:4 (20%) Train Full 5 20,000 80,000 9250–9345 19,105–19,110
1:9 (10%) Test Full 5 10,000 90,000 6868–6987 19,109–19,111

1:332 (0.3%) Test Full 5 1500 498,500 2099–2170 19,112
1:1 Train Held Out 21 50,000 50,000 8849–10,762 12,734–15,899
1:1 Test Held Out 21 3170–7129 3170–7129 1530–3233 2770–5707
1:4 Train Held Out 21 20,000 80,000 6978–8297 12,749–15,927
1:9 Test Held Out 21 3170–7129 28,530–64,161 1530–3233 3185–6372

1:332 Test Held Out 21 300–600 99,700–199,400 398–846 3185–6372

3.2. Sequence-Based Predictors

We implemented 36 sequence-based PPI prediction algorithms with various different
feature representations (Table 2) and evaluated them on the same datasets that were used
in original publications (Table 3) to confirm that our implementations were comparable
(Table 4). Excluding Tian et al.’s SVM algorithm, our implementations had <1% difference
in accuracy on an average relative to those reported in those publications, with a corre-
lation around 0.89. Large differences (>5%) were primarily observed when testing the
smallest datasets (Martin Human and Martin H.Pylori). Overall, we obtained comparable
results without extensive tuning or performing other significant hyperparameter opti-
mization, showing that our implementations provide a good representation of previously
produced works.
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Table 2. Different preprocessing algorithms used on amino acid sequences prior to model training.

Amino Acid
Composition (AAC) Auto Covariance (AC) [9] Chaos Game

Representation [53] Conjoint Triad (CT) [54] Composition-Transition-Distribution
(CTD) [55]

Dipeptide Composition [56] Discrete Wavelet Transform
Physicochemical [57]

Encoding Based on
Grouped Weight

(EBGW) [58]
Geary Autocorrelation [59] Local Descriptor (LD) [60]

Multi-scale Local
Descriptor [61]

Multi-scale Continuous and
Discontinuous [62]

Multivariate Mutual
Information [63] Moran Autocorrelation [59] Normalized Moreau-Broto

Autocorrelation [59]

Numeric/One Hot encoding Pseudo Amino Acid
Composition [64] PSSM ([46]) PSSM(DPC)/PSSM(Bi-gram)

[13] PSSM Discrete Cosine Transform [19]

Quasi Sequence Order
Descriptor [65] Sequence Order [11] Skip Gram [45] Weighted Skip-Sequential

Conjoint Triad [13]

For each dataset used in previous literature, we compared our implementations of
sequence-based predictors against the illogical/random feature control models. These
comparisons are shown in Table 5. We can see that illogical/random feature models
perform about as well as most previous implementations. In fact, the best result of each
control model exceeds or falls within 4% accuracy of sequence-based predictors on all but
two datasets. Our explanation is that sequence-based predictors likely capture information
that some proteins are overrepresented in PPIs compared to random pairs (which is not
an aspect that can be exploited in real-world interactome prediction). Thus, the datasets
with much fewer proteins used in random pairs, such as Guo Multi Chen and both Pan
Human datasets, are the easiest to obtain high accuracy on, as having several proteins exist
in positive pairs without existing in negative pairs creates an easily exploitable bias when
making predictions. These results strongly suggest that sequence-based prediction models
inherently predict biases of individual proteins, or at least have been primarily evaluated
on datasets where the biases are easy to exploit.

3.3. Benchmark Evaluation of Sequence-Based Methods

Each sequence-based predictor was trained on each of our 52 training datasets (26 based
on Full data, and 26 based on Held Out data) and evaluated on the corresponding testing
datasets (see Table 1). The results of these experiments are shown in Table 6 and Figure 2.
Overall, most algorithms seem to be matched or outperformed by one or more of the control
methods. Specifically, when scoring on datasets generated from the Full set of protein pairs
with 1:1 positive class labels, using random numbers as features with a neural network
model tied for 3rd in accuracy, and scored 5th in AUC in comparison to the dozens of
sequence-based methods. In datasets where class distribution is skewed at 1:9, or more
realistically at 1:332, this model placed 6th and 13th in average precision, outperforming
over half of the sequence-based methods. Even when measuring precision at 3% recall on
the skewed-class data, it outperforms half of the sequence-based predictors.

When testing on protein pairs containing Held Out proteins for test data, the accuracies
and precisions of all published algorithms are much lower, with the best prediction accuracy
on 1:1 data falling below 70%, and the precision at 3% recall and average precision on the
1:332 data falling below 10% for all models. Biases that exploit the number of positive
and negative instances in the training data that each protein from the test dataset appear
in, such as simple counts and random numbers, are eliminated when using our Held
Out protein data generation method. This is shown by their prediction accuracies and
precisions reducing down to being nearly equal to the percentage of positive data in the
test set, implying random ordering. However, predicting on individual proteins based
on sequence similarity still places in the top half of all comparisons, and in the top 10 in
accuracy and AUC on 50% positive test data.
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Figure 2. (A–C, left) Results when selecting from the full set of protein pairs for training and testing
for a handful of the best algorithms (dotted lines) and the 4 illogical feature-based algorithms (solid
lines). (A) ROC curve with 50% positive data. (B,C) Precision-Recall curves using 10% and 0.3%
positive data in the test set. (D–F, right) Computations when performed on held out proteins instead
of selecting from the full set of pairs. When holding out protein pairs, the algorithms exhibit a
significant performance drop. Additionally, the algorithms and bias measurements score similarly
across all 6 tests.

Table 3. Datasets reported in prior publications. The original publications that created these datasets
are referenced in the first column. The next two columns report the species of the data and the
publications that report PPI prediction accuracies on these data. The data sizes (number of PPIs are
number of unique proteins) are reported after mapping protein names to UniProt and filtering to
remove proteins shorter than 31 residues.

Dataset Creator Species Dataset-Referencing
Paper Positive Pairs Random Pairs Proteins in

Positive Data
Proteins in

Random Data

Du [56] Yeast a Du [56] 17,257 48,594 4382 2521
Guo [9] Yeast b Chen [66] 5594 5594 2217 2421
Guo [67] Multi Chen [66] 32,959 32,959 11,527 1399
Jia [57] Yeast e,f Jia [57] 17,339 33,056 4436 3260
Liu [68] Fruit Fly Liu [68] 4156 4241 2463 4080



Molecules 2022, 27, 41 11 of 21

Table 3. Cont.

Dataset Creator Species Dataset-Referencing
Paper Positive Pairs Random Pairs Proteins in

Positive Data
Proteins in

Random Data

Martin [69] H.Pylori Jia [53] 1420 1458 1313 727
Martin [69] Human Pan [10] 937 938 828 740

Pan [10] Human Pan [10] 36,617 36,480 9473 2184
Pan [10] Human Pan [10] 3899 4262 2502 661
Guo [9] Yeast b Tian [15] 5594 5594 2521 1194
Li [17] Human c,d Li [17] 4096 4096 2805 1865

Richoux [22] Human c Richoux [22] 39,672 64,388 6676 15,869
a Only a random sample of random pairs are used to create a dataset of 50% positive data. b Different datasets
based on Guo’s yeast data were found in literature. Unless specified otherwise, we use Tian’s dataset by default.
c Data are provided in individual train and test sets, rather than used for cross validation. Test sets have fewer pairs
than train sets. d Data from Alzheimer’s disease network. e Original dataset contained inter-species pairs. Pairs
with non-yeast proteins were removed. f Jia’s yeast data is used in two different ways, split into a training/cross
validation set of 50% positive data (Jia Yeast Cross) and a held out test set of 30% positive data (Jia Yeast Held), or
for full cross validation (Jia Yeast Cross Full).

Table 4. Comparison of previous results to our implementations (increase or decrease of our imple-
mentations is listed in parenthesis, relative to the scores from the original publications).

Algorithm Dataset Accuracy AUC

Guo 2008 AC SVM [9] Guo Tian Yeast 87 (−2)
Pan 2010 PSAAC SVM [10] Martin Human 68 (−12)
Pan 2010 PSAAC SVM [10] Pan Small 91 (−18) 95 (−17)
Pan 2010 PSAAC Rot [10] Pan Small 95 (+3) 97 (+2)

Pan 2010 PSAAC Rand [10] Pan Small 96 (+2) 97 (+2)
Pan 2010 LDA Rot [10] Pan Large 97 (+1) 99 (+0)
Pan 2010 LDA Rot [10] Pan Small 96 (+2) 98 (+1)

Pan 2010 LDA Rand [10] Pan Large 98 (+0) 99 (+0)
Pan 2010 LDA Rand [10] Pan Small 96 (+2) 98 (+1)
Pan 2010 LDA SVM [10] Martin Human 69 (−6)
Pan 2010 LDA SVM [10] Pan Large 95 (+2) 98 (+1)
Pan 2010 LDA SVM [10] Pan Small 91 (+4) 95 (+3)
Pan 2010 AC SVM [10] Martin Human 51 (+15)
Pan 2010 AC SVM [10] Pan Small 89 (+7) 94 (+4)
Pan 2010 AC Rot [10] Pan Small 95 (+2) 96 (+3)

Pan 2010 AC Rand [10] Pan Small 96 (+2) 97 (+2)
Zhou 2011 SVM [70] Guo Tian Yeast 89 (+2) 95 (+1)
Zhao 2012 SVM [11] Liu Fruit Fly 81 (−4)
Zhao 2012 SVM [11] Martin H Pylori 89 (−3)

Jia 2015 RF [57] Jia Yeast Held 87 (−5)
Jia 2015 RF [57] Jia Yeast Cross 84 (−6)
Jia 2015 RF [57] Martin H Pylori 91 (−3)

You 2015 RF [61] Guo Tian Yeast 95 (−1)
You 2015 RF [61] Martin H Pylori 88 (−2)
Ding 2016 RF [63] Guo Tian Yeast 95 (−1)
Ding 2016 RF [63] Martin H Pylori 88 (+2)
Ding 2016 RF [63] Pan Small 98 (+0)
Du 2017 Sep [56] Du Yeast 93 (+0) 97 (−0)
Du 2017 Sep [56] Guo Tian Yeast 94 (+1)
Du 2017 Sep [56] Martin H Pylori 86 (+2)
Du 2017 Sep [56] Pan Small 98 (+1)

Du 2017 Comb [56] Du Yeast 90 (+1) 96 (+0)
Sun 2017 CT Auto [12] Pan Large 95 (−1)
Sun 2017 AC Auto [12] Pan Large 97 (−0)

Wang 2017 Rot [19] Guo Tian Yeast 90 (−0)
Wang 2017 Rot [19] Martin H Pylori 88 (−12)
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Table 4. Cont.

Algorithm Dataset Accuracy AUC

Göktepe 2018 SVM [13] Martin Human 74 (−6) 83 (−11)
Göktepe 2018 SVM [13] Martin H Pylori 89 (−5) 94 (−3)
Göktepe 2018 SVM [13] Pan Small 94 (+4) 93 (+6)

Gonzalez-Lopez 2018 [21] Du Yeast 93 (−1) 97 (−0)
Gonzalez-Lopez 2018 [21] Guo Tian Yeast 95 (−1) 98 (−0)
Gonzalez-Lopez 2018 [21] Martin H Pylori 85 (+1) 92 (−0)
Gonzalez-Lopez 2018 [21] Pan Small 98 (+1) 100 (−0)

Hashemifar 2018 CNN [20] Guo Tian Yeast 95 (+0)
Li 2018 CNN/LSTM [23] Pan Large 99 (−0)

Chen 2019 LGBM [14] Guo Tian Yeast 95 (−0)
Chen 2019 LGBM [14] Martin H Pylori 89 (−1)
Chen 2019 RNN [66] Guo Chen Yeast 97 (−1)

Jia 2019 RF [53] Jia Yeast C. Full 88 (−4)
Jia 2019 RF [53] Martin H Pylori 93 (−4)

Richoux 2019 LSTM [22] Richoux Strict 78 (−1)
Richoux 2019 Full [22] Richoux Strict 76 (−1)
Tian 2019 SVM [15] a Guo Tian Yeast 96 (−12)
Tian 2019 SVM [15] a Martin H Pylori 96 (−17)

Yao 2019 Net [71] Guo Tian Yeast 95 (+1)
Yao 2019 Net [71] Pan Small 99 (+0)

Zhang 2019 Deep [16] Du Yeast 95 (−4) 97 (−2)
Li 2020 Deep [17] Li AD 95 (+3) 95 (+5)

Czibula 2021 Auto SS [18] Guo Chen Multi 97 (+0) 97 (+2)
Czibula 2021 Auto SS [18] Pan Large 98 (−1) 98 (+1)
Czibula 2021 Auto SJ [18] Guo Chen Multi 97 (−0) 97 (+2)
Czibula 2021 Auto SJ [18] Pan Large 98 (−1) 98 (+1)
Czibula 2021 Auto JJ [18] Guo Chen Multi 98 (−1) 98 (+1)
Czibula 2021 Auto JJ [18] Pan Large 98 (−1) 96 (+3)

a Results of Tian are expected to be different due to differences in data preprocessing, see S6 for details.

Table 5. Comparisons of the range of values per dataset in previous literature and our implemen-
tations, versus 4 algorithms that rely on simple counting or random numbers. Only 1 dataset was
successfully predicted by an algorithm at a rate of over 10% above using random numbers, while
most algorithms struggle to predict any better than counting or using random numbers per protein.
Even the best results from each of the three datasets used in 10 or more previous implementations
only exceed predictions using random numbers by less than 3%, with several algorithms falling
below the bias-based predictions.

Dataset Referred by
Table 1 Column 1,

Column 2, Column 3
Count Bias Seq Sim Bias Rand Net Rand RF Number of Im-

plementations

Results
Reported in
Publications

Results of
Our Imple-
mentations

Max Improvement
over Bias Methods

Du Yeast 87.7 87.5 92.5 88.5 4 90–95.3 90.5–92.6 2.8%
Guo Yeast Chen 81.5 81.4 84 74.4 1 97.1 96.3 13.1%
Guo Yeast Tian 87 85.9 94.3 94 10 87.3–95.1 84.5–95.5 1.2%

Guo Multi Chen 93.5 93.1 98.7 96.4 3 96.9–98.2 96.6–97.3 −0.5%
Jia Yeast Cross 78.7 78.4 75.2 76.5 1 84.4 77.9 5.7%
Jia Yeast Held 82.9 82.5 81.3 80.7 1 86.5 82.0 3.6%

Jia Yeast C. Full 83.8 83.1 85.4 81.1 1 88 84.3 2.6%
Li AD 96.7 79.1 76.2 97.3 1 94.7 97.7 0.4%

Liu Fruit Fly 84.1 95.7 96.6 84.2 1 80.9 76.8 −15.7%
Martin Human 61.2 83.1 81.1 62.2 4 51–73.8 55.7–67.8 −9.3%
Martin H Pylori 83.6 61 59.2 89.6 10 85.2–93 75.9–89.9 3.4%

Pan Human Large 96.3 83.1 82.2 97.8 9 94.5–99 94.3–98.9 1.2%
Pan Human Small 94.5 93.1 98.8 98.6 14 89.3–98.7 72.5–99.4 0.6%

Richoux Strict 79.6 94.4 96.9 79.5 2 76.3–78.3 74.7–76.8 −18.6%
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Table 6. Accuracies, Area Under the Receiver Operating Curve, Precision, and Average Precisions
across all sequence based and illogical feature-based models and all datasets.

Algorithm
50% Pos Full 10% Pos Full 0.3% Pos Full 50% Pos Held 10% Pos Held 0.3% Pos Held

Acc AUC Prec Avg P Prec Avg P Acc AUC Prec Avg P Prec Avg P

Control Methods

Count Bias 84.2 91.5 91.9 56.4 28.0 6.5 50.0 50.0 10.0 10.0 0.3 0.3
Seq Sim Bias 82.3 90.0 84.5 53.0 14.8 5.2 65.6 70.7 41.8 21.6 2.1 0.9

Random Vec NNet 84.7 92.0 92.5 60.4 29.1 7.4 51.0 50.2 11.1 10.0 0.4 0.3
Random Vec RF 78.1 85.9 87.3 45.9 17.9 3.8 50.9 50.5 10.5 10.1 0.3 0.3

Sequence-Based Predictors

Guo 2008 AC SVM [9] 74.1 81.5 83.3 40.4 16.1 3.4 61.4 65.4 44.2 17.3 2.4 0.7
Pan 2010 PSAAC SVM [10] 64.2 68.4 46.7 21.3 2.7 1.4 63.2 67.1 43.5 19.2 2.2 1.1
Pan 2010 PSAAC Rot [10] 82.9 90.6 96.1 57.5 44.5 8.5 64.4 70.2 62.1 20.8 4.9 1.4

Pan 2010 PSAAC Rand [10] 83.7 91.4 96.8 59.9 46.9 9.3 66.4 72.5 65.7 22.6 5.4 1.5
Pan 2010 LDA Rot [10] 82.7 90.4 93.7 54.7 33.7 6.8 59.7 63.9 38.0 16.6 2.3 0.9

Pan 2010 LDA Rand [10] 83.5 91.1 94.2 57 35.9 7.4 61.3 65.9 44.6 17.9 3.1 1.0
Pan 2010 LDA SVM [10] 77.8 85.3 88.4 45.9 19.2 4.2 58.8 61.9 27.4 14.9 1.3 0.5
Pan 2010 AC SVM [10] 80.2 87.2 85.5 47.9 13.6 3.8 59.9 64.5 41.8 18.2 2.0 0.7
Pan 2010 AC Rot [10] 83.2 91.0 94.3 55.2 37.7 6.8 57.8 61.3 30.7 14.5 1.3 0.7

Pan 2010 AC Rand [10] 83.9 91.7 94.1 57.0 39.0 7.4 59.8 64.3 37.0 15.4 2.1 0.8
Zhou 2011 SVM [70] 80.4 88.2 89.0 51.7 23.6 5.4 60.6 64.5 33.6 17.1 1.5 0.6
Zhao 2012 SVM [11] 77.9 83.5 86.6 39.6 14.9 2.9 64.4 68.5 35.0 19.1 1.7 0.7

Jia 2015 RF [57] 84.6 92.2 95.9 60.7 41.8 8.7 65.1 70.4 51.1 19.5 3.3 1.2
You 2015 RF [61] 83.1 90.8 95.8 56.5 43.9 7.7 61.2 65.9 42.9 17.4 2.5 1.0
Ding 2016 RF [63] 84.7 92.3 96.9 61.1 49.8 10.0 64.1 70.0 58.3 18.3 4.6 1.2
Du 2017 Sep [56] 85.5 92.8 94.9 64.5 39.5 9.8 67.0 73.3 56.3 24.9 3.9 1.2

Du 2017 Comb [56] 83.2 90.6 94.7 59.0 33.8 7.9 65.1 70.7 58.5 23.5 4.1 1.1
Sun 2017 CT Auto [12] 74.4 82.0 61.7 37.8 4.3 2.0 58.8 62.2 26.9 14.4 1.0 0.5
Sun 2017 AC Auto [12] 77.3 84.4 74.1 42.5 8.8 2.9 58.1 60.5 22.4 14.5 0.8 0.5

Wang 2017 Rot [19] 70.2 73.5 33.0 21.8 1.3 0.8 56.2 57.1 16.1 11.8 0.5 0.4
Göktepe 2018 SVM [13] 82.5 90.2 93.6 57.0 29.2 7.1 65.6 71.2 59.4 24.0 4.6 1.2

Gonzalez-Lopez 2018 [21] 83 90.5 89.9 55.6 23.9 5.9 54.1 55.4 17.8 11.9 0.7 0.4
Hashemifar 2018 CNN [20] 82.2 89.3 84.8 48.9 15.0 3.9 61.4 65.5 30.8 16.8 1.4 0.6

Li 2018 CNN/LSTM [23] 84.3 91.8 93.6 60.9 28.3 7.3 56.0 58.5 24.7 13.6 1.1 0.5
Chen 2019 LGBM [14] 81.9 89.7 96.0 57.6 45.2 8.4 62.7 67.7 43.6 19.8 2.4 1.0
Chen 2019 RNN [66] 83.9 90.4 75.4 54.7 7.7 4.0 59.8 63.2 27.1 15.7 1.2 0.5

Jia 2019 RF [53] 83.2 91.0 97.1 59.5 52.7 10.0 66.0 72.0 68.2 23.2 5.6 1.6
Richoux 2019 LSTM [22] 80.0 87.0 91.6 52.8 25.2 5.8 54.3 55.5 15.6 11.9 0.6 0.4
Richoux 2019 Full [22] 82.8 90.4 91.7 57.9 25.7 6.5 55.2 56.8 15.1 12.2 0.6 0.4

Tian 2019 SVM [15] 76.0 83.6 86.4 44.3 18.8 4.1 65.3 70.8 57.7 22.0 4.3 1.0
Yao 2019 Net [71] 83.5 90.7 89.3 55.9 20.1 5.6 57.7 60.7 27.1 14.7 1.2 0.5

Zhang 2019 Deep [16] 81.4 88.1 74.8 51.0 8.0 3.7 59.5 61.7 38.2 17.1 1.9 0.6
Li 2020 Deep [17] 86.4 93.4 96.6 67.7 50.7 12.4 67.3 73.8 65.9 26.8 6.1 1.7

Czibula 2021 Auto SS [18] 76.5 84.7 66.8 36.5 5.7 2.1 53.1 54.0 11.3 11.3 0.7 0.4
Czibula 2021 Auto SJ [18] 66.6 74.8 66.6 33.3 5.9 1.8 53.0 54.4 18.2 11.6 0.8 0.4
Czibula 2021 Auto JJ [18] 74.7 82.6 67.9 35.8 5.8 2.1 55.7 57.2 40 12.9 1.7 0.5

3.4. De-Biasing Annotation-Based Predictors

Computations based on gene annotation features (non-sequence-based) can induce
biases when dealing with missing data. If the missing data is much more prominent in
the positive or negative class (which it can be for PPI prediction datasets [72]), algorithms
can learn to make predictions based on number of missing values as a spurious feature. In
Table 7, we show the amount of missing data for each dataset. While negative pairs have
more missing data, most pairs contain at least one of the three GO features, and some Pfam
and InterPro features. Given that more than half of the negative data contain information
from all 3 GO ontologies, more than 40% of them contain domain data from Prosite, the
feature that is most often missing, combined with the heavy skew of negative data in the
imbalanced datasets, we do not believe that, from these features, missing data alone would
provide a significant advantage to predicting PPIs.
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Table 7. Percentages of missing data in the positive and negative our benchmark datasets. Overall,
1–15% more negative data is missing from most datasets in each category. However, most pairs
appear to have at least some data, as shown by the GO Any and InterPro columns, each showing at
least 94–97% of all protein pairs have some data from GO and domains.

Dataset Pos% Data Type Class GO CC GO BP GO MF GO Any Pfam Prosite InterPro

Full 50% Train Positive 7.3 13.3 2.9 0.7 8.2 47.8 1.2
Full 50% Train Negative 13.6 22.2 17.9 5.9 11.9 57.7 2.3

Full 50% Test Positive 7.3 13.3 2.9 0.7 8.2 47.8 1.2
Full 50% Test Negative 13.6 22.2 17.9 5.9 11.9 57.7 2.3

Full 20% Train Positive 7.2 13.2 2.8 0.7 8.2 47.6 1.2
Full 20% Train Negative 13.8 22.2 17.9 6.0 12.0 57.8 2.4

Full 10% Test Positive 7.2 13.2 2.9 0.7 8.2 48.0 1.2
Full 10% Test Negative 13.7 22.0 17.9 6.0 12.1 57.8 2.4

Full 0.3% Test Positive 7.3 13.3 2.7 0.7 7.9 48.6 1.1
Full 0.3% Test Negative 13.7 22.1 17.9 6.0 12.0 57.8 2.4

Held Out 50% Train Positive 7.2 13.3 2.8 0.7 8.2 47.9 1.2
Held Out 50% Train Negative 13.7 22.0 17.8 6.0 12.0 57.8 2.4

Held Out 50% Test Positive 7.2 13.2 2.8 0.7 8.1 47.9 1.2
Held Out 50% Test Negative 13.9 22.1 17.9 6.1 12.0 57.6 2.3

Held Out 20% Train Positive 7.2 13.3 2.8 0.7 8.1 48.0 1.2
Held Out 20% Train Negative 13.7 22.0 17.9 6.0 12.0 57.8 2.4

Held Out 10% Test Positive 7.2 13.2 2.8 0.7 8.1 47.9 1.2
Held Out 10% Test Negative 13.6 22.0 17.9 5.9 12.0 57.8 2.4

Held Out 0.3% Test Positive 6.5 12.9 2.9 0.7 7.7 47.3 1.2
Held Out 0.3% Test Negative 13.7 22.0 17.9 6.0 12.0 57.7 2.4

Additionally, many of the published algorithms based on protein domains, and to a
lesser extent on GO annotations, utilized information related to interactions either directly,
by computing the probability that a pair of annotations belongs to known interactions, or
indirectly by utilizing a domain database that bases its scores on the probability of a pair
of domains belonging to protein interactions. When utilizing these data without filtering
out interacting pairs in the test data, the results could be biased such that rare pairs of
domains or GO annotations that occur in an interaction in the test dataset are scored highly
solely because of that interaction’s usage when generating the protein pair’s features. The
performance of our two algorithms using features that rely on interactions is shown in
Table 8 when allowing the features to be created using all, non-testing, and non-held out
proteins exclusively. Overall, there is a significant drop in accuracy when removing test
pairs from the feature creation process, with a more moderate drop when holding out entire
proteins instead of just the pairs in the test dataset. As test data should not influence feature
creation and training, we believe this shows a significant bias which must be accounted
for when calculating features. However, compared to sequence-based predictors, the drop
found when changing from holding out test data to holding out entire proteins is much
more moderate, suggesting less of a biasing issue when not holding out entire proteins.
While the difference is smaller, for the purpose of fair comparisons, we utilized features
calculated with proteins being held-out when comparing to sequence-based methods on
the Held Out datasets.

3.5. Benchmark Evaluation of Annotation-Based Methods

We tested our implementations of annotation-based methods on the benchmark
datasets. These results, along with predictions from illogical/random feature models
and some of the best sequence-based predictors, are shown in Table 9. Overall, the results
from these methods are worse than control models in several categories when not holding
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out any data. However, unlike control and sequence-based methods, the four methods
that use small feature vectors not relying heavily on individual protein data (i.e., excluding
‘Chen 2005 Dom RF’ and ‘Maetschke 2012 ULCA’) drop much less when running on held
out data, with some even improving their precision at 3% recall. Unlike the sequence-based
methods, these 4 methods manage to obtain over 85% precision at 3% recall on 1:9 positive
data, and 15–25% precision on 1:332 data. The latter result represents a 50x–80x performance
improvement over random data, over a 7x improvement over predicting based on similar
sequences, and a 2x–4x improvement over the best sequence-based methods at low recall
levels. While methods using aggregations showed the ability to make good predictions at
low recall levels, Chen et al.’s method using the pairwise sum of binary data per protein
and Maetschke’s method using a union of GO annotations between two proteins up to and
including their lowest common ancestor both struggled like sequence-based methods. This
may be a reflection of the large number of features used by these models, as well as how
the feature vectors utilized mostly reflect each individual protein’s features or a simple
calculation between individual protein’s features. A plot of the best annotation-based
predictors versus the best sequence-based predictors can be found in Figure 3. In both
precision recall curves, there is a clear gap in precision between the 4 best annotation-based
predictors and sequence-based predictors at low recall levels.

Table 8. Accuracy of a domain feature predictor (Zhang 2016 Domain Variant) and ensemble (Simple
Ensemble) predictor using all interactions, non-test interactions, and non-held out protein pair
interactions when computing features. Held out protein pairs are not valid for datasets created by
selecting random pairs. The accuracy of these predictors drops significantly when removing the test
interactions from the feature creation process.

Algorithm
50% Pos Rand 10% Pos Rand 0.3% Pos Rand 50% Pos Held 10% Pos Held 0.3% Pos Held

Acc AUC Prec Avg P Prec Avg P Acc AUC Prec Avg P Prec Avg P

Dom Var All 92.0 97.3 99.0 88.4 72.9 42.4 92.1 97.3 99.1 88.3 76.2 43.7
Dom Var NonTest 74.2 77.4 96.7 51.5 41.3 9.0 73.8 76.9 96.4 49.9 46.4 9.6
Dom Var HeldOut 63.3 64.2 91.8 28.7 25.6 2.8

Ensemble All 94.3 98.3 97.5 90.9 51.3 38.3 93.8 98.0 97.5 90.1 52.2 38.0
Ensemble NonTest 76.4 82.2 92.2 54.1 25.4 8.8 76.0 81.4 92.1 51.9 23.9 8.0
Ensemble HeldOut 64.7 67.2 88.4 27.9 16.4 2.3

Table 9. Results of non-sequence-based predictors versus control and annotation-based predictors.

Algorithm
50% Pos Full 10% Pos Full 0.3% Pos Full 50% Pos Held 10% Pos Held 0.3% Pos Held

Acc AUC Prec Avg P Prec Avg P Acc AUC Prec Avg P Prec Avg P

Annotation-Based Methods

Chen 2005 Dom RF [26] 75.9 82.7 77.1 41.8 8.8 2.8 65.1 69.6 58.8 23.1 4.3 1.0
Gou 2006 Sem [24] 66.3 72.1 90.1 33.7 15.7 2.9 66.3 72.2 89.5 33.1 22.1 3.3

Maetschke 2012 ULCA [28] 71.0 77.4 46.2 28.6 2.3 1.2 69.5 75.2 42.0 25.5 2.0 1.0
Dom Variant 74.2 77.4 96.7 51.5 41.3 9.0 63.3 64.2 91.8 28.7 25.6 2.8

Zhang 2016 Sem [25] 73.5 80.4 86.0 35.7 13.5 2.7 73.0 79.5 85.4 33.4 19.7 2.9
Simple Ensemble 76.4 82.2 92.2 54.1 25.4 8.8 64.7 67.2 88.4 27.9 16.4 2.3

Control Methods

Count Bias 84.2 91.5 91.9 56.4 28.0 6.5 50.0 50.0 10.0 10.0 0.3 0.3
Seq Sim Bias 82.3 90.0 84.5 53.0 14.8 5.2 65.6 70.7 41.8 21.6 2.1 0.9

Seq Sim Bias + Protein Bias 82.3 89.9 84.5 52.9 14.8 5.2 65.6 70.8 41.6 21.6 2.1 0.9
Rand Net 84.7 92.0 92.5 60.4 29.1 7.4 51.0 50.2 11.1 10.0 0.4 0.3
Rand RF 78.1 85.9 87.3 45.9 17.9 3.8 50.9 50.5 10.5 10.1 0.3 0.3

Selected Best-Performing Sequence-Based Methods

Pan 2010 PSAAC Rand [10] 83.7 91.4 96.8 59.9 46.9 9.3 66.4 72.5 65.7 22.6 5.4 1.5

Jia 2015 RF [57] 84.6 92.2 95.9 60.7 41.8 8.7 65.1 70.4 51.1 19.5 3.3 1.2
Ding 2016 RF [63] 84.7 92.3 96.9 61.1 49.8 10.0 64.1 70.0 58.3 18.3 4.6 1.2
Du 2017 Sep [56] 85.5 92.8 94.9 64.5 39.5 9.8 67.0 73.3 56.3 24.9 3.9 1.2

Göktepe 2018 SVM [13] 82.5 90.2 93.6 57.0 29.2 7.1 65.6 71.2 59.4 24.0 4.6 1.2
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Table 9. Cont.

Algorithm
50% Pos Full 10% Pos Full 0.3% Pos Full 50% Pos Held 10% Pos Held 0.3% Pos Held

Acc AUC Prec Avg P Prec Avg P Acc AUC Prec Avg P Prec Avg P

Li 2018 CNN/LSTM [23] 84.3 91.8 93.6 60.9 28.3 7.3 56.0 58.5 24.7 13.6 1.1 0.5
Jia 2019 RF [53] 83.2 91.0 97.1 59.5 52.7 10.0 66.0 72.0 68.2 23.2 5.6 1.6

Li 2020 Deep [17] 86.4 93.4 96.6 67.7 50.7 12.4 67.3 73.8 65.9 26.8 6.1 1.7
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Figure 3. (A). ROC curve for results on held out proteins on 50% positive data, comparing sequence
(dotted lines) an annoation-based methods (solid lines). (B,C). Precision Recall Curves for held out
proteins on 10% and 0.3% positive data, comparing sequence and non-sequence-based methods.
Non-sequence-based methods (solid lines) perform better at lower recall levels when positive data is
more rare than random pairs.

4. Discussion

We implemented different PPI prediction algorithms and evaluated them on bench-
mark datasets containing different class distributions. Our results show that most published
methods perform much lower than originally reported when evaluation data are created
with realistic proportions of positive and negative classes. We also showed that many of
these methods may be capturing spurious, illogical features that represent the frequency of
specific proteins in the data rather than meaningful information about PPIs themselves;
such methods will not translate to a real-world application of proteome-wide discovery of
PPIs where every protein will be tested against every other protein in the proteome.

In prior publications, most sequence-based predictors were evaluated on datasets
with 50% positively labeled instances, with randomly selected protein-pairs serving as
negative class data. In those datasets, PPIs (i.e., the positive class data) are drawn from a
scale-free network where some nodes are hubs, and therefore appear in many protein pairs,
whereas randomly paired negative class data are drawn from nearly complete-graph data.
Thus, the usage rates of different proteins, particularly hub proteins, in the positively and
negatively labeled instances are dramatically different, creating an easily exploitable bias.
Some of this can be inferred from Table 3, which shows far more unique proteins in positive
class data than in negative class data in many datasets. (If say 100 pairs are drawn from
scale-free distribution and there is one hub with 25 PPIs, it contains 26 unique proteins;
whereas, if that hub did not exist and it was drawn from a complete graph, the number
of unique proteins from those 25 PPIs would be between 26 and 50) When evaluating
these datasets, algorithms may assign class labels based on protein frequency rather than
true characteristics of an interacting protein pair, and falsely shows higher performance
in evaluations; the class label is assigned independently of the second protein in the pair
but learns a likely invalid premise for real world interactome prediction. Our experiments
showed that both on datasets from original publications and on our newly created Full
datasets, control models with illogical features that simply capture protein membership can
perform on par with most of the models from the literature. When analyzing the results
of test datasets with proteins not utilized in the training set (Held Out), we find that most
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algorithms’ accuracies drop significantly. Accuracies on our 1:1 test data dropped from their
original results of 75–85% accuracy down to 55–67% accuracy. On more relevant metrics,
namely precision at 3% recall on 1:332 positive class data and holding out test proteins gave
a mere 6.1% for the best sequence-based algorithm. Thus, when both the data ratio and
evaluation metric are suitably chosen, the true ability is revealed to be impractically low.

Some of the previous methods filtered out protein sequences that have a high sequence
similarity, which we have not implemented; however, we have mapped our data to gene-
level information, and so multiple isoforms are not included in our test data, minimizing
the number of highly sequence similar proteins in our data. It is likely that if we removed
proteins with similar sequences from our datasets, the results when predicting on held
out proteins would be lower, as exploiting sequence similarity provides similar results to
sequence-based methods. This may be analyzed in future work.

When training the methods from literature that were originally designed for 50%
positive training and test datasets, we did not make adjustments to the designs or imple-
mentations to adjust for the different ratios of data. Some methods, such as class weighting,
are commonly recommended when training models on imbalanced data. However, to
keep the models as similar to those found in previous literature as possible, we decided
not to implement adjustments per positive data ratio. We note that we did test all models
on 50% positive test data and found the results to be similar to what could be obtained
by prioritizing proteins by their number of known interactions. Therefore, we believe
it is unlikely that using concepts such as class-weighting would drastically increase the
precision of these methods.

When using annotation features, we found that feature representation has a significant
impact on the results of the model. Most methods we tested were unable to outperform
control models made from illogical features when generating data from all pairs of proteins.
However, using Held Out protein data showed moderate precision at 3% recall even on
heavily imbalanced class data, showing their predictive capabilities do not depend on
exploitable, individual protein-based biases in the underlying data.

Models that use features computed from pairs of protein domains and GO annotations
that appear in other interactions performed well at predicting interactions; these are well
recognized to be meaningful features in predicting interactions (e.g., that two protein
domains that are known to interact are highly likely to conserve that interaction/function
when those protein domains appear in other proteins). Thus, using the knowledge of
interacting protein domains or compatible GO annotations (specific ligand and receptor
annotation in the two proteins), and along with other protein features to learn an effective
classification machine learning model which helps shortlist protein-pairs for experimental
validation. We also note that the two methods using only 3 features, i.e., ‘Domain Variant’
and ‘Guo 2006 Sem’, performed as well or better than other non-sequence methods based
on 10–20 features. Surprisingly, our ensemble method, which contained Resnik semantic
similarity, GO annotation frequency, and all 3 domain features performed worse than
the methods using only 3 domain or Resnik semantic similarity features. This was most
likely due to the different aggregation methods, with Domain Variant and Guo 2006 Sem
using product and max aggregations respectively, while our ensemble used best matching
average aggregation. This could imply that using max or product aggregation is better
for predicting protein interactions, or this could suggest a bias where protein interactions
are primarily known for genes with a high number of annotations. If the latter is true,
product, sum, and maximum aggregations could exploit this bias, as all three functions
monotonically increase as more data are provided. We leave analyzing this to future work.

As for methods where the features used by the models were highly similar to features
produced for each individual protein, such as Chen 2005 Dom RF and Maetschke 2012
ULCA, we found that their performance mirrored the performances of sequence-based
methods. This implies that using sequences alone is not the problematic part for sequence-
based methods, but rather, any methodology that relies on producing unique feature sets
per protein and using simple combinations of these features to create data for machine
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learning methods seem to mostly make predictions based on underlying biases in generated
PPI datasets. Only when creating a small number of more complex features using pairs of
proteins, instead of individual proteins, do models see a significant improvement beyond
bias when positive interaction data are used as the rare class.

In conclusion, we compare P-R performance of HiPPIP with selected sequence-based
and annotation-based methods (Figure 4A) that performed the best and find that HiPPIP
outperforms all of them significantly. In this evaluation, for all predictors, known PPIs from
HPRD dataset are also included in assessing whether a prediction is a true positive. HiPPIP
was evaluated on two sets of test data, each set containing 10 datasets: in one set, the data
are created in the same fashion as Full data (‘HiPPIP-a’ in Figure 4A) and in the other, the
positive instances for test data are taken from BioGRID published January 2017 (‘HiPPIP-b’
in Figure 4A); Figure 4 shows aggregated results across the datasets in 4A and individual
datasets in Figure 4B,C for the two sets. The aforementioned caveat is: the specific pairs
used in training HiPPIP are unavailable; therefore, there may be some overlap with training
data; based on the number of known PPIs in BioGRID and considering that 20,000 PPIs
were used in training HiPPIP, it is estimated that HiPPIP-a and HiPPIP-b test datasets may
have 24% and 14% overlap for positive instances respectively, whereas overlap for negative
data are negligible.
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Figure 4. Evaluation of HiPPIP. (A) Comparison of HiPPIP with selected sequence-based and
annotation-based methods that performed the best. The two lines HiPPIP-a and HiPPIP-b correspond
to whether the known PPIs in the test data were drawn from recent version of BioGRID (May 2021,
same as used in this paper) or from an earlier version of BioGRID (January 2017). Both lines in
(A) show an average performance across 10 datasets, whereas performance on individual datasets
in each set are shown in (B) and (C), respectively. For all methods, including sequence-based and
annotation-based methods, pairs that appear in the HPRD database are also treated as true-positives
in this figure; there is no discernable difference between the results of the sequence-based and
annotation-based algorithms in Figure 3C and here, despite the inclusion of HPRD PPIs as positive
labels. It is estimated that HiPPIP-a and HiPPIP-b test datasets may have about 24% and 14% overlap
for positive instances respectively, because the specific pairs used in training HiPPIP are unavailable.

5. Conclusions

In this analysis, we compared protein interaction predictions from a variety of different
algorithms in the literature, including methods based on sequences, Gene Ontology, and
domain features. Overall, we found significant biases in several previous studies. When
removing these biases, our results showed that pairwise features, such as semantic similarity
and pairs of domains existing in known protein interactions, predicted interactions in
highly imbalanced data at low recall levels that outperformed other competing methods,
such as those using sequence-based features. When using methods involving feature
sets per protein, as is done with most sequence-based predictions, we found that most
algorithms fail to predict interactions significantly better than simple illogical features
based on individual proteins.

In these implementations, we did not make any significant adjustments or tuning of
the algorithm hyperparameters in order to compare these results with original reported
results. We believe that by releasing the source code and the datasets, the algorithms
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will continue to be improved by the scientific community by devising better features and
algorithms, or even by tuning the algorithms to handle the underlying skewed distribution.

Supplementary Materials: The following are available online. S1: Details of downloading and
processing positive protein interactions. S2: Implementation details of sequence-based features.
S3: Implementation details of annotation-based features. S4: Details of classification models and
hyperparameter processing. S5: List and brief descriptions of published algorithms that are re-
implemented here. S6: Implementation details of control models with illogical and random features.
S7: Evaluation Metric Notes.
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