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Abstract

Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences
within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host
proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for
efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally
concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins
are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids
in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and
Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated
into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that
the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or
viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles.
These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the
site of viral assembly for its function as a catalyst in retroviral RNA packaging.
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Introduction

Foamy viruses, the only genus in the retrovirus subfamily

Spumaretrovirinae, are complex retroviruses that infect all non-

human primates, cats, cows, and horses. Humans are not natural

hosts but can acquire primate foamy viruses as zoonotic infections

[1]. The genome of foamy virus encodes three structural proteins,

Gag, Pol, and Env, as well as other regulatory proteins. Gag

protein, as in all other retroviruses, is the major structural protein

for formation of viral capsids. However, the Gag precursor

protein of foamy virus is not cleaved into matrix, capsid, and

nucleocapsid subunits which are characteristic of orthoretroviral

Gag in mature virions. Instead, cleavage of foamy virus Gag is

rather inefficient during maturation, leading to a cleavage

product of p68 polypeptide by removing 3 kD from the C-

terminal end of p71 Gag precursor protein [2]. The assembly

pathway of foamy virus is similar to that of betaretroviruses such

as Mason-Pfizer monkey virus [3]. The newly synthesized Gag

capsid proteins of foamy virus are targeted to an intra-

cytoplasmic site near the centrioles, also known as microtubule

organizing center (MTOC), where they are assembled into

capsids [4]. Although lentiviruses such as human immunodefi-

ciency virus (HIV) assemble at the plasma membrane, the initial

interaction of Gag with viral RNA is thought to occur at the

pericentriolar site [5]. This intracellular region near the MTOC

could serve as a scaffold for recruitment of viral elements and

cellular factors for viral replication and assembly. One key step

during the assembly process is to incorporate the virus genome

into particles. For retroviruses, packaging is usually initiated

when a cis-acting packaging signal in the viral RNA is recognized

by the nucleocapsid domain of Gag. While packaging sequences

in the RNA and protein motifs in the nucleocapsid protein are

well studied, the contribution of host factors to the process of viral

RNA packaging is largely unknown.

In eukaryotic cells, translationally repressed mRNAs are

often sequestered in discrete cytoplasmic RNA granules called

P bodies, where they are either degraded or stored for later

translation. If mRNAs are stalled in a translation preinitiation

complex (in response to stresses like heat shock, oxidative stress,

UV irradiation, or viral infection), they are packaged into

another form of granules named stress granules. Components of

P bodies and stress granules are closely associated with RNA

metabolism. P bodies include components of the 59-39 mRNA

degradation pathway such as Dcp1, Dcp2, Ago1, Ago2,

MOV10, and DDX6 (reviewed in [6]). Stress granules contain

many of the early translation initiation factors including the

poly(A)-binding protein PABPC1. When cells are subjected to

stresses, some P body proteins like Ago1, Ago2, MOV10, and

DDX6 can be redistributed to stress granules (reviewed in [7]).

Proteins associated with P bodies and stress granules also play
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important roles in the life cycles of viruses as an antiviral

defense or a requirement for viral replication (reviewed in [8]).

For example, overexpression of MOV10, a putative RNA

helicase, can inhibit replication of HIV and other retroviruses

at multiple stages including reverse transcription [9–11]. In

contrast, several P body proteins including Dhh1p, the yeast

homologue of DDX6, are required for retrotransposition and

virus-like particle assembly in yeast retrotransposons Ty1 and

Ty3 [12–15].

DDX6, also known as RCK/p54, is an abundant protein

found bound to non-translating mRNA in the cytoplasm,

although it is often concentrated in both P bodies and stress

granules (reviewed in [16]). DDX6 belongs to the DEAD-box

RNA helicase family, named after a highly conserved Asp-Glu-

Ala-Asp (D-E-A-D) amino acid motif. These proteins contain

nine conserved motifs that together are responsible for the RNA-

dependent ATPase and ATP-dependent RNA helicase activities.

The DEAD-box helicases are involved in various RNA-related

biological processes as a result of their ability to mediate

conformational changes of their RNA substrates through ATP

hydrolysis, and to unwind double-stranded RNA duplexes via the

helicase activity (reviewed in [17]). Members of the helicase

family are known to play different roles in the replication of

viruses. For example, DDX6 and another helicase DDX3 are

both required for efficient replication of hepatitis C virus [18–20].

In HIV, DDX6 is implicated in negatively regulating viral

replication [21], [22], whereas DDX3 can enhance Rev-

dependent nuclear export of unspliced viral transcripts by

interacting with Rev [23].

Our previous work has shown that capsid assembly of prototype

foamy virus (PFV) occurs mainly in the cytoplasm near the

MTOC where Gag capsid protein accumulates [4]. In this study,

we have explored the roles of cellular proteins within P bodies and

stress granules in viral replication and assembly. We demonstrate

that the DEAD-box RNA helicase DDX6 re-localizes to the site of

foamy virus assembly where viral RNA and Gag proteins are

concentrated, and is required for encapsidation of virus genome

during the assembly process.

Results

Effects of P body and stress granule proteins on viral
infectivity

Six P body and stress granule proteins were individually silenced

using gene-specific siRNA to examine whether or not they were

required for replication of prototype foamy virus (PFV). PFV was

originally isolated from a human tumor cell line, but is now known

to be a chimpanzee foamy virus that was zoonotically transmitted

to the human from whom it was cultured [24]. HT1080 cells were

transfected twice with 120 nM control or specific siRNA. At 24 h

after the 2nd siRNA transfection, cells were infected with PFV for

48 hrs, and culture supernatants were analyzed by the FAB assay

to measure infectious titers [25]. Cytotoxic effect was found after

transfection with the siRNA; however, it was mainly caused by

the transfection procedure, especially the amounts of siRNA and

transfection reagents, since cells transfected with the control

siRNA exhibited a similar level of effects as specific siRNAs.

Although cell morphology changed slightly by DDX6 siRNA,

there was no apparent increase of cytotoxicity when compared to

the control siRNA. To account for the non-specific cytotoxic

effects, results of viral infectivity and biochemical analyses were

always normalized to the levels of GAPDH and Gag in cells. As

shown in Fig. 1A, 90-98% of protein expression was reduced for

each gene when cells were transfected with 120 nM siRNA.

Knockdown of DDX6 had a dramatic effect on viral infectivity

with a 33-fold reduction while depletion of PABPC1 caused a 5.5-

fold decrease in titer (Fig. 1B). In contrast, infectivity was increased

by 5.6 fold when Dcp1 was silenced. Knockdown of MOV10,

Ago1, or Ago2 had no effect on virus titers. The effect of DDX6

knockdown on viral infectivity was similar no matter whether cells

were infected with PFV or transfected with pcPFV, an infectious

clone (data not shown). Since transfection with a proviral DNA

bypasses the early events in the infectious cycle such as adsorption,

penetration, uncoating, or integration, the effects of DDX6

knockdown are unlikely caused by interruption of an early step

in infection. Thus, some, but not all, P body and stress granule

proteins are critical for the replication of foamy virus.

DDX6 specifically re-localizes to the viral assembly site
For yeast retrotransposons Ty1 and Ty3, their viral RNAs,

Gag proteins, and virus-like particles all accumulate in P bodies

where particle assembly and RNA packaging occur [13–15]. We

asked if there was any association of cytoplasmic P bodies and

stress granules or their components with foamy virus assembly

site. HT1080 cells were infected with PFV or transfected with

proviral DNA pcPFV/gag-gfp where the GFP polypeptide was

inserted at the C-terminus of Gag. Cells were then fixed and

stained with specific primary antibodies to detect endogenous

cellular proteins. In cells, DDX6 is often concentrated in both P

bodies and stress granules where Dcp1 is a commonly used

marker to detect P bodies. In the absence of foamy virus

infection, DDX6 typically co-localized with Dcp1 in cytoplasmic

P body granules (Fig. 2A). Transfection with DDX6 siRNA

caused little change in distribution of Dcp1-associated P-bodies

even though expression of endogenous DDX6 was clearly

suppressed (Fig. 2B). When cells were infected with PFV or

transfected with proviral DNA pcPFV/gag-gfp, Gag proteins

were accumulated near the MTOC (Fig. 2C & 2D) where

particles were assembled as previously reported [4], but there was

no co-localization of Gag with Dcp1 or Dcp1-associated P body

granules (Fig. 2C). Similarly, we found no difference in

distribution of other P body and stress granule proteins such as

Dcp2, GW182, Ago2, and PABPC1 after PFV infection (data not

Author Summary

Foamy viruses are complex retroviruses that infect non-
human primates, cats, cows, and horses. Humans are not
natural hosts but can acquire primate foamy viruses as
zoonotic infections. During foamy virus assembly process,
viral RNAs and Gag capsid proteins are targeted to a
discrete intra-cytoplasmic site where viral particles are
assembled. One key step in this process is to effectively
incorporate the virus genome into particles. For retrovi-
ruses, encapsidation of viral genomic RNA is known to
initiate when specific packaging sequences within the viral
RNA are recognized by the nucleocapsid domain of the
Gag polypeptide. However, the contribution of host
factors to the assembly process is largely unknown. In
this study, we find that after foamy virus infection some of
the cellular DEAD-box RNA helicase DDX6 specifically re-
localizes to the viral assembly site, and is needed for
efficient packaging of viral RNA into particles. Our data
suggest that the ATP hydrolysis and RNA unwinding
activities of DDX6 function in remodeling the structure of
viral RNA and/or RNA-Gag ribonucleoprotein to facilitate
its incorporation into particles. Our work provides the first
report of an evolutionarily conserved host protein involved
in the assembly of retrovirus genomes into particles.

DDX6 on Retroviral RNA Packaging
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shown). However, the localization of DDX6 dramatically

changed in the presence of foamy virus Gag in that an intense

staining of DDX6 was detected at the MTOC area where Gag

capsid proteins were concentrated (Fig. 2D). We quantified the

amount of DDX6 that re-localized to the assembly site after viral

infection or transfection (see Materials and Methods), and found

that about 15–25% of total endogenous DDX6 proteins were

located in the MTOC area after infection. Therefore, specific re-

localization of DDX6, but not the other P-body or stress granule

proteins tested, to the viral capsid assembly site implies a possible

role of DDX6 in the life cycle of foamy virus.

DDX6 is a RNA binding protein and a RNA helicase, leading

to a hypothesis that DDX6 is involved in transporting viral

elements, particularly viral RNA, to the viral assembly site. To

characterize subcellular localization of foamy virus RNA in vivo,

we adapted a pumilio-based bimolecular fluorescence comple-

mentation (BiFC) reporter system developed by Tilsner et al.

[26]. Pumilio is a sequence-specific RNA binding protein. The

RNA-binding domain of pumilio, PUMHD, consists of eight

three-amino-acid repeats that recognize 8-base RNA sequence

UGUANAUA. Because each three-amino-acid repeat binds to a

single RNA base, the substrate specificity of PUMHD can be

altered by changing amino acid residues within each repeat. In

order to increase binding specificity and reduce background

signals, wild type and a mutant PUMHD are fused separately to

split halves of a fluorescent protein. Only when both polypep-

tides concurrently bind to the two neighboring recognition

motifs in the RNA it can bring the split halves of the fluorescent

protein into a close proximity to generate a specific fluorescent

signal. For PFV, two adjacent 8-bp sequences, TGTAAATA and

TGTAGATA, were introduced at the 39 end of gag, resulting in

minimal changes from the wild-type sequences. Consequently,

all viral genomic RNAs as well as unspliced gag and singly spliced

pol mRNAs contained UGUAAAUA and UGUAGAUA in their

sequences (Fig. 3A). These motifs were target substrates for wild-

type PUMHD(wt) and a variant PUMHD(3794) that had been

fused separately to either the C- or N-terminal half of mCitrine,

a yellow-green fluorescent protein. Binding of both PUMHD

polypeptides to target sequences in the viral RNA could lead to

the BiFC effects and thus allow detection of virus-specific RNA

(Fig. 3B). Virus derived from this modified DNA pcPFV/gag-

pum was as infectious as wild type pcPFV. No background signal

was found when pcPFV/gag-pum was co-transfected with only

one expression vector (either PUMHD-wt or PUMHD-3794)

(Fig. 4A & 4B). The background was also very low when wild

type pcPFV was co-transfected with both expression vectors

pcmv-PUMHD(wt)_CitC and pcmv- CitN_PUMHD(3794)

(Fig. 4C). In contrast, co-transfection of pcPFV/gag-pum with

both expression vectors produced fluorescent signals that are

lightly dispersed throughout the cytoplasm (Fig. 4D, 4E, & 4F),

reflective of ribosome-bound gag and pol mRNA. Noticeably, a

higher concentration of viral RNA was detected at the MTOC

area (as stained by c-tubulin antibody) (Fig. 4D) where Gag and

DDX6 were co-localized (Fig. 4E). Interestingly, DDX6

knockdown had little effect on the concentration of viral RNA

and Gag near the MTOC (Fig. 4F). These results show that

DDX6 co-localizes with viral RNA and Gag at the viral

assembly site but DDX6 is not required for trafficking of viral

RNA or Gag to the MTOC area.

DDX6 knockdown affects assembly of viral RNA into
extracellular particles

To identify the role of DDX6 in viral replication, we examined

viral RNA and proteins in both intracellular and extracellular

fractions from DDX6-knockdown cells. When cells were

transfected twice with 120 nM siRNA as shown in Figure 1,

more than 98% of DDX6 was depleted and viral infectivity was

reduced for more than 30 fold. To minimize cytotoxicity from the

siRNA for biochemical analyses, 60 nM siRNA was used and

about 85% of DDX6 was reduced (Fig. 5A) and virus titers were

decreased 3–8 fold (Fig. 5C). Under this condition, the levels of

Gag and Pol in the cell lysates were minimally affected as shown

in Fig. 5A where the lower band of Gag, p68, represented the

cleavage product of Gag precursor protein, p71 (the upper band).

Culture supernatants from cells that were treated with 60 nM

control or DDX6 siRNA and subsequently infected with PFV

were filtered and pelleted through 20% sucrose cushion by

ultracentrifugation. The amounts of supernatants that were used

to pellet the viruses were adjusted for each sample according to

the level of intracellular Gag proteins that had been normalized

to the level of the cellular protein GAPDH. Despite an 8-fold

reduction in viral titer, the pelleted virus particles contained

similar amounts of Gag with or without DDX6 (Fig. 5B),

indicating that viral protein expression and particle assembly and

release were relatively unaffected by DDX6 siRNA. However, the

level of Pol in these extracellular particles was decreased even

though proteolytic cleavage of p71 Gag into p68 was efficient

(Fig. 5B). Since it has been shown that foamy virus protease can

be activated in the absence of Pol packaging into assembling

particles [27], proteolytic cleavage of Gag precursor p71 into p68

could occur in cells even without assembly of Pol into virions.

When equal numbers of virus particles from each sample

(determined by its extracellular Gag level) were analyzed by

quantitative RT-PCR, the level of viral nucleic acids in the

pelleted extracellular particles was much lower after DDX6

knockdown (Fig. 5C). It is worth noting that different from other

retroviruses, assembly of foamy virus Pol into capsids requires

viral genomic RNA [28]. A decrease in Pol packaging after

DDX6 knockdown (Fig. 5B) was thus consistent with a lower level

of virus genome assembled into virions. These data suggest that

DDX6 plays an important role in viral RNA packaging.

Figure 1. Effects of gene-specific siRNA knockdown on viral
infectivity. (A) HT1080 cells were transfected twice with 120 nM
control siRNA (Lanes 1) or specific siRNA (Lanes 2). 1st siRNA transfection
was performed at time 0 and 2nd siRNA transfection at 24 h. At 24 h
after the 2nd transfection, half of the cells were infected with virus and
the other half were analyzed by immunoblot for each specific protein
(top panels) and GAPDH (bottom panels). (B) Culture supernatant was
harvested at 48 h after infection and used to infect FAB cells to measure
infectious titers. Relative infectivity of viruses derived from cells
transfected with specific siRNA compared to those with control siRNA.
Means and standard errors from at least four separate experiments are
shown.
doi:10.1371/journal.ppat.1002303.g001

DDX6 on Retroviral RNA Packaging
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DDX6 does not interact stably with Gag nor is it
incorporated into particles

To understand the specific role of DDX6 in the assembly of

virus genome, we wanted to find out whether DDX6 interacted

with the viral RNA or Gag capsid proteins. Although DDX6 co-

localized with Gag at the assembly site, it was unclear if DDX6

bound to Gag proteins directly. Cell lysates from pcPFV-

transfected 293T cells were immunoprecipitated using anti-

DDX6 or anti-Gag antibody. Because Dcp1 was known to

physically interact with DDX6 [29], [30], it was used as a positive

control for co-immunoprecipitation with DDX6. Our results show

that DDX6 was readily immunoprecipitated with Dcp1 (Fig. 6A &

6C), but not with Gag (Fig. 6B, & 6C), indicating that there was no

stable interaction of DDX6 with Gag capsid proteins. We then

asked whether DDX6, known to be a RNA binding protein, binds

to the viral RNA. However, there was very little evidence of

selective binding of DDX6 to any particular mRNA sequences or

species [16], [19]. It was thus difficult to discern binding of DDX6

to the viral RNA from other cellular RNA substrates. Nonetheless,

whether the binding of DDX6 to the viral RNA was sequence

specific or not, one possible consequence was that DDX6 was

incorporated into particles through a stable interaction with the

viral genomic RNA. Surprisingly, although DDX6 was abundant

in infected cell lysates, it was below the detection level in pelleted

extracellular particles (Fig. 6D), indicating that binding of DDX6

to viral RNA occurred either transiently or at a very low copy

number.

The ATPase/helicase activity of DDX6 is required for viral
replication

In vitro, DDX6 has RNA-dependent ATPase and ATP-

dependent RNA helicase activities that are determined by the

highly conserved DEAD box as well as sequences in its C-terminal

domain [17]. To test if the ATPase/helicase activity of DDX6 was

required for viral replication, wild type or mutant DDX6 was

expressed from a vector after endogenous DDX6 was silenced by

the siRNA. Both DDX6-EQ (a point mutation in the DEAD box)

and DDX6-dC (183 aa deletion at the C-terminus) lack ATPase

Figure 2. Immunofluorescent staining of DDX6 and Dcp1. HT1080 cells were mock-transfected (A), DDX6 siRNA-transfected (B), or transfected
with pcPFV/gag-gfp (C & D) for 32 hrs, and stained with anti-Dcp1 (A, B, & C) or anti-DDX6 (A, B, & D). Gag-GFP proteins were imaged as green
fluorescent color (Left panels, C & D). After merged together, the yellow color indicates co-localization of green and red signals. Images were taken
from a single 0.2 um Z- section using DeltaVision microscopy.
doi:10.1371/journal.ppat.1002303.g002

DDX6 on Retroviral RNA Packaging
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and helicase activities [19]. To prevent binding of siRNA to

DDX6’s sequences in the vectors, siRNA binding targets in wild

type pEYFP-DDX6a-wt and two separate clones of EQ mutants

(pEYFP-DDX6a-EQ6 and EQ11) were mutated yet maintained

wild type amino acid sequences. The siRNA binding site is absent

in pEYFP-DDX6-dC since the sequences reside in the region that

is deleted in the mutant. Expression of wild type DDX6 from the

vector pEYFP-DDX6a-wt successfully rescued viral infectivity

after siRNA knockdown of endogenous DDX6 (Fig. 7A, Lanes 1–

3). However, none of the helicase mutants DDX6a-EQ6, DDX6a-

EQ11, and DDX6-dC could restore virus titers (Fig. 7A, Lanes 4–

6) even though their expression levels were similar to DDX6a-wt

(Fig. 7B, Lanes 3-6). In contrast, exogenous expression of wild-type

DDX6 in the presence of endogenous DDX6 (without siRNA

transfection) led to only a modest increase in virus titers and the

helicase mutants had little effects (Fig. 7C), indicating that DDX6

is not limiting for viral infection and the helicase mutants did not

have dominant negative effects. Thus, these results indicate that

the intrinsic ATPase/helicase activity of DDX6 is essential for the

replication of prototype foamy virus.

Discussion

In this study, we find that the RNA helicase DDX6, a cellular

protein associated with P bodies as well as stress granules, is re-

directed to the site of foamy virus assembly and plays an important

role in assembly of viral RNA into particles. An intact ATPase/

helicase domain of DDX6 is essential for viral replication,

suggesting that the ATP hydrolysis and RNA unwinding activities

of DDX6 function in rearranging the structure of viral RNA and/

or RNA-Gag complex into a proper conformation to facilitate

viral RNA packaging.

About 20% of endogenous DDX6 proteins, but not other P

body/stress granule proteins tested, are re-located to the viral

assembly site near the MTOC where DDX6 co-localizes with viral

RNA and Gag capsid proteins. We have ruled out a possible role

of DDX6 in transporting viral RNA and Gag to the MTOC area,

and it is unclear how DDX6 is re-localized to the assembly site

which occurs specifically only after virus infection or transfection.

DDX6 could bind to Gag protein and/or viral RNA and be

transited to the MTOC area. However, we have no evidence for a

direct, stable interaction between DDX6 and Gag (Fig. 6). The

observations that DDX6 does not bind to Gag stably and its RNA-

dependent ATPase/helicase activity is essential for viral replica-

tion strongly imply that DDX6 interacts with viral RNA for its

function in RNA packaging. It is possible that a specific

ribonucleoprotein complex is formed through binding of DDX6

to the viral RNA, leading to segregation of the genomic RNA for

packaging from mRNA translation. It is also possible that binding

of DDX6 occurs via cis-acting packaging sequences in the viral

RNA to promote its recognition by Gag. More studies will be

needed to clarify these interactions and to understand the exact

role of DDX6 in the process of viral RNA encapsidation.

The biological functions of DDX6 in vivo are complex. Although

generally known as a translational repressor [31], [32], DDX6 can

interact with other factors including Dcp1 to increase efficiency of

the decapping enzyme Dcp2 [33], and is also implicated as a

proto-oncogene [34] as well as a regulator at the G1/S transition

[35]. Although DDX6 is known as a non-specific RNA binding

protein, selective binding of DDX6 could occur through

interactions with other factors bound to the same RNA substrate

[36]. The specific functions of DDX6 seem to be critically

influenced by its binding partners as well as the cellular

environments. It is believed that the diversity of DDX6’s functions

in vivo is due to its ability to mediate the conformational change of

its RNA substrates and thus affect the fate of DDX6-complexed

RNA [16]. Therefore, it is very possible that the role of DDX6 in

viral RNA packaging involves other protein partners, cellular or

even viral proteins. Even though we have no evidence of a direct,

stable interaction between DDX6 and Gag by co-immunoprecip-

itation (Fig. 6), we cannot rule out the possibility that binding of

DDX6 to Gag occurs transiently. Further experiments such as

CLIP (in vivo cross-linking and immunoprecipitation) could help in

addressing this question.

We have also identified two other cellular proteins that affect

foamy virus replication; silencing of the poly(A)-binding protein

PABPC1 (a stress granule protein) results in a decrease in viral

infectivity. PABPC1 is a translation initiation factor but is also

involved in many aspects of mRNA metabolism [37]. In contrast,

knockdown of Dcp1 (a P body protein) leads to an increase in virus

titers, suggesting that Dcp1 is a negative factor for viral replication.

It is possible that Dcp1 acts to negatively regulate viral replication

by sequestering DDX6 in a protein-protein complex. Alternative-

ly, Dcp1, an activator of the 59-39 mRNA decapping enzyme

Dcp2, could enhance decapping and subsequent destabilization of

viral genomic RNA. More studies are needed to understand the

specific role of Dcp1 on foamy virus replication. In summary, the

results in this study have revealed a unique and dynamic

interaction between P body/stress granule proteins and foamy

virus infection where Dcp1 negatively regulates viral RNA

packaging but DDX6 is required for efficient encapsidation of

virus genomes.

Materials and Methods

Cells and viruses
HT1080, 293T, and FAB cells were grown in Dulbecco’s

modified Eagle’s media (DME) supplemented with 10% fetal

Figure 3. Schematic presentation of the pumilo-based BIFC
system designed for pcPFV/gag-pum. (A) Two eight-nucleotide
sequences (TGTAAATA & TGTAGATA) that were separated by 5
nucleotides were introduced at the 39 end of gag in the proviral
DNA pcPFV/gag-pum. Consequently, all viral genomic RNAs as well as
unspliced gag and singly spliced pol mRNAs contained UGUAAAUA
and UGUAGAUA in their sequences. (B) These motifs were target
substrates for wild-type PUMHD(wt) and a variant PUMHD(3794) that
had been fused separately to either the C- or N-terminal half of
mCitrine, a yellow-green fluorescent protein. When pcHFV/gag-pum
was co-transfected with expression vectors pcmv-PUMHD(wt)_CitC
and pcmv- CitN_PUMHD(3794), viral RNA containing PUMHD-binding
sequences is viewed in green fluorescent color.
doi:10.1371/journal.ppat.1002303.g003

DDX6 on Retroviral RNA Packaging
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bovine serum. All virus stocks were derived from an infectious

clone of prototype foamy virus, pcPFV [38]. Virus titers were

determined using FAB indicator cells [25].

Antibodies
Rabbit polyclonal anti-Gag and mouse monoclonal anti-Pol

have been described previously [4]. Rabbit polyclonal anti-

Figure 4. Co-localization of DDX6 with viral RNA and Gag near the MTOC. HT1080 was co-transfected with pcPFV/gag-pum plus either
pcmv-PUMHD(wt)_CitC (A) or pcmv-CitN_PUMHD(3794) (B), or co-transfected with pcPFV-wt (C) or pcPFV/gag-pum (D, E, & F) plus both expression
vectors pcmv-PUMHD(wt)_CitC and pcmv-CitN_PUMHD(3794). At 32 h after transfection, cells were stained with rabbit anti-Gag (A to F) and mouse
anti-DDX6 (C, E, & F) or mouse anti-c-tubulin (D). Cells in Panel F were first treated with DDX6 siRNA before co-transfected with pcPFV/gag-pum and
both expression vectors. Viral RNA containing PUMHD-binding sequences was viewed in green color (Left panel, D to F). Images were captured using
DeltaVision microscopy.
doi:10.1371/journal.ppat.1002303.g004
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hDcp1a was a gift from Jens Lykke-Andersen (U. Colorado,

CO). Rabbit polyclonal anti-rck/p54 was from MBL (Woburn,

MA). Mouse monoclonal anti-DDX6 and anti-Dcp1 were from

Abnova (Taipei, Taiwan). Mouse monoclonal anti-PABPC1

and anti-GAPDH were from Santa Cruz (Santa Cruz, CA).

Mouse monoclonal anti-Dcp2, anti-Ago2, anti-GW182, and

anti-c-tubulin were from Abcam (Cambridge, MA). Goat anti-

mouse or anti-rabbit secondary antibodies conjugated with

Alexa Fluor 488, 555, and 680 were from Invitrogen (Carlsbad,

CA).

Plasmids
Proviral construct pcPFV/gag-gfp was generated by inserting a

copy of the gfp gene at the 39 end of gag, creating a polypeptide

with GFP fused at the 631st amino acid of Gag. To generate

pcPFV/gag-pum, an oligonucleotide pair of 59-GACCATCA-

GATCAAGGTTCTGTAAATACTAGGCCTGTAGATAATC-

AAGCAGGCTCTGGG-39 and 59-CCCAGAGCCTGCTTGA-

TTATCTACAGGCCTAGTATTTACAGAACCTTGATCTG-

ATGGTC-39 was used to create two adjacent eight-nucleotide

sequences (TGTAAATA and TGTAGATA) at the 39 end of gag.

To create BiFC effects, the sequences encoding the split Citrine

halves that had been separately fused to either the wild-type or

mutant PUMHD domain were cloned into a mammalian

expression vector. Thus, pcmv-PUMHD(wt)_CitC and pcmv-

CitN_PUMHD(3794) were made by inserting an AflII/XhoI

fragment from pGEMTE.PUMHD_CitC or pGEMTE.CitN_

PUMHD3794 (gifts from J Tilsner and K Oparka, U. Edinburg,

UK) into an AflII/XhoI digested pcDNA3.1 vector.

siRNA
siRNAs specific to DDX6, Dcp1, PABPC1, Ago1, Ago2, and

MOV10, as well as control siRNAs (siCONTROL Non-Targeting

siRNA #1 and #5) were from Dharmacon (Lafayette, Colorado),

and some were supplied by Dr. Vineet KewalRamani (NCI,

Frederick) . DDX6: 59-CGAAAUGGCUUAUGCCGCAUU-39

or 59-GCAGAAACCCUAUGAGAUU-39; Dcp1a: pool of 59-

GCAAGCUUGUCGAUAUAUAUU39, 59-ACUCAUGGCU-

GAUGUGGUAUU-39, 59-ACAAGCAUCUGACGGUAGAU-

U-39, and 59-CCAAUUCAUUCCUACCAUUUU-39; PABPC1:

pool of 59-CAUGUAAGGUGGUUUGUGAUU-39, 59-GAG-

CAAGGAAACGUAAUUUUU-39, 59-GGACAAAUCCAUUG-

AUAAUUU-39, and 59-UGGAUGAGAUGAACGGAAAUU-39;

MOV10: pool of 59-CGGCAAGACUGUCACGUUAUU-39, 59-

GGUCAGAUAUCAGCAAACAUU-39, 59-GCCAUGAGGCA-

CAUUGUUAUU-39, and 59-CAAUUAAGCAGGUGGUGAA-

UU-39; Ago1: pool of 59-GCACAGUAUUUCAAGCAGAUU-39,

59-CAACGAACGGGUCGACUUUUU-39, 59-UGACAAGAA-

UGAGCGAAUUUU-39, and 59-GGAAGUACCGCGUGUGU-

AAUU-39; Ago2: pool of 59-GCACGACUGUGGACACGA-

AUU-39, 59-CCAAGGCGGUCCAGGUUCAUU-39, 59-GGU-

CUAAAGGUGGAGAUAAUU-39, and 59-CAAGCAGGCCU-

UCGCACUAUU-39.

Figure 5. Viral proteins and RNA in cell lysates and extracel-
lular particles after DDX6 knockdown. HT1080 cells were
transfected twice with 60 nM control siRNA or DDX6 siRNA. 1st siRNA
transfection was done at time 0. 2nd siRNA transfection was performed
at 24 h, followed by the infection with foamy virus at 48 h (i.e. 24 h
after 2nd siRNA transfection). Cells and culture supernatants were
harvested at 45 h after infection. (A) Immunoblot analyses of Gag, Pol,
DDX6, and GAPDH in infected cell lysates. (B) Immunoblot analyses of
Gag and Pol in extracellular particles. (C) Relative quantities for viral
infectivity, Gag and Pol proteins, and viral RNA in extracellular particles
obtained from transfection with DDX6 siRNA compared to that with
control siRNA. Means and standard errors were results for each analysis
from at least four independent experiments.
doi:10.1371/journal.ppat.1002303.g005

Figure 6. Co-immunoprecipitation of DDX6 with Dcp1 but not with Gag. (A) 293T cells were transfected with pcPFV for 45 hrs. Cleared cell
lysates were immunoprecipitated with normal rabbit serum (referred to as N) or rabbit anti-rck/p54 (referred to as aDDX6), and analyzed by
immunoblot using mouse anti-Dcp1. (B) Immunoprecipitation of transfected cell lysates using normal rabbit serum (N), rabbit anti-rck/p54 (aDDX6),
or rabbit anti-Gag, and analyzed by immunoblot with mouse anti-Gag. (C) Cell lysates were immunoprecipitated by normal rabbit serum (N), rabbit
anti-Gag, or rabbit anti-hDcp1a (referred to as aDcp1), and analyzed by immunoblot with mouse anti-DDX6 antibody. (D) HT1080 cells were infected
with virus at an moi of 2 for 45 hrs and subjected to immunoblot analyses using rabbit anti-Gag and mouse anti-DDX6 in the infected cell lysates and
extracellular virus particles.
doi:10.1371/journal.ppat.1002303.g006
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siRNA Transfection
HT1080 cells were seeded at 16105 cells per well in a 6-well

plate. The next day, 4 ul of Lipofectamine RNAiMAX (Invitro-

gen, Carlsbad, CA) was mixed with 11 ul of sera-free, antibiotics-

free DME and incubated for 10 min at RT. This mixture was then

combined with 10 ul of the siRNA (either 60 or 120 uM) that had

been diluted in 175 ul of sera-free, antibiotics-free DME. After

20 min at RT, the mixture was added to the cells in 0.8 ml of sera-

free, antibiotics-free DME. After incubation for 6 hrs at 37u, the

complex was removed and replaced with 3 ml of complete media.

Cells were transfected with the siRNA again the next day to

maximize the knockdown effects.

Infection and immunoblot
24 hours after the second siRNA transfection, cells were

infected with virus at an moi of 2 for 6 hrs, washed, and replaced

with fresh media. Virus titers in culture supernatants were

determined by the FAB assay [25]. Half of the cells were subjected

to quantitative Western blot analysis using the Odyssey detection

system (Li-Cor, Lincoln, NE) according to the manufacturer’s

protocol. The other half of the sample was used to extract RNA

that was analyzed by quantitative real-time RT/PCR. Intracellu-

lar protein and RNA levels were normalized to the level of

GAPDH protein or RNA respectively as internal controls.

Immunofluorescence
56104 HT1080 cells seeded in a 12-well plate were infected

with virus, transfected with 0.7 ug pcPFV or pcPFVgag-gfp, or

co-transfected with 0.5 ug pcPFV/gag-pum, 0.1 ug pcmv-

PUMHD(wt)_CitC and pcmv- CitN_PUMHD(3794) using Poly-

fect (QIAGEN, Valencia, CA). Cells were fixed and stained by

primary antibodies and Alexa Fluor-conjugated secondary anti-

bodies as described previously [4]. Fluorescent images were first

visualized using a fixed-stage Nikon Eclipse E800 microscope.

Three dimensional images in Z-stacks (a series of images with the

same X and Y coordinates but varying along the vertical focus or

Z axis) are captured and reconstructed using Deltavision RT wide-

field deconvolution microscopy, which is equivalent to confocal

microscopy. Quantitative analysis of co-localization was per-

formed using the full set of 3-D data obtained from Deltavision

microscopy by Volocity Quantization software (PerkinElmer,

Waltham, MA).

Extracellular virus particles
Culture supernatants were filtered and pelleted through 20%

sucrose cushion by ultracentrifugation to obtain extracellular

particles. The amounts of supernatants to be pelleted were

determined according to each sample’s intracellular Gag level that

was first normalized by GAPDH. The pelleted material was

Figure 7. Exogenous expression of wild type or mutant DDX6. (A & B) HT1080 cells were transfected with control siRNA (Lanes 1) or DDX6
siRNA (Lanes 2 to 6) for 24 hrs. Cells were then transfected with pEYFP (Lanes 1 & 2), pEYFP-DDX6a-wt (Lanes 3), pEYFP-DDX6a-EQ6 (Lanes 4), pEYFP-
DDX6a-EQ11 (Lanes 5), or pEYFP-DDX6-dC (Lanes 6). At 24 hr later, cells were infected with the virus at an moi of 2 for 6 hrs, washed, and incubated
for another 40 hrs. Culture supernatants were assayed by FAB indicators cells to measure the virus titers. (A) Viral infectivity relative to the
transfection with control siRNA and pEYFP (Lane 1). (B) Immunoblot analyses of GAPDH, endogenous DDX6, and vector-expressed YFP or YFP-DDX6
proteins in infected cell lysates. Molecular weight standards are marked for each gel. (C) HT1080 cells were transfected with pEYFP, pEYFP-DDX6a-wt,
pEYFP-DDX6a-EQ6, pEYFP-DDX6a-EQ11, or pEYFP-DDX6-dC, and then infected with the virus at an moi of 2. Results are shown as relative viral
infectivity compared to the transfection with the control vector pEYFP. Means and standard errors were results for each analysis from at least four
independent experiments.
doi:10.1371/journal.ppat.1002303.g007
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treated with 0.5 mg/ml substilisin (Sigma, St Louis, MO) at 37uC
for 2 hrs to remove non-specific aggregates, mixed with 0.5 mg/

ml PMSF to stop the reaction, and analyzed by Odyssey Western

blot.

Quantitative RT/PCR
Total cellular RNAs were extracted using RNeasy Mini Kit

(QIAGEN). To obtain RNA from the extracellular particles, equal

numbers of particles in each sample, as determined by its

extracellular Gag level, were treated with RNase-free DNaseI

before using QIAamp Viral RNA Mini Kit (QIAGEN). Viral

RNA or 1 ug of total cellular RNA from each sample was reverse

transcribed using random primers and ThermoScript RT-PCR

system (Invitrogen), and subjected to quantitative PCR reactions in

triplicates using SYBR Green PCR Core Reagents and ABI

7900HT Real Time PCR Systems (Applied Biosystems, Foster

City, CA). In the quantitative PCR reactions, GAPDH was used as

an internal control for cellular RNA with a primer set of 59-

CTACTGGCGCTGCCAAGGCTGT-39 and 59-GCCATGAG-

GTCCACCACCCTGT-39. Primer sets of 59-CATAGCGGGA-

CCCGTATAAAAG-39 and 59-CAACCAGAGCTTCAACATC-

AAG-39 were used to detect unspliced gag RNA.

Immunoprecipitation
293T cells were transfected with pcPFV for 45 hrs. Cells were

washed by ice-cold PBS and incubated for 30 min on ice in a lysis

buffer containing 100 mM Tris, pH 7.4, 100 mM NaCl, 10 mM

EDTA, 50 mM KAc, 0.625% of NP40, and protein inhibitors.

Lysates were centrifuged at 2000 rpm for 10 min followed by

another centrifugation at 12,000 rpm for 2 min. The cleared

lysates were then incubated with normal rabbit serum, rabbit anti-

rck/p54 (referred to as anti-DDX6), anti-hDcp1a, or anti-Gag at

4u for 2 hrs before addition of protein A sepharose (GE

Healthcare, Piscataway, NJ). After incubation overnight, the

beads were washed 5 times with a wash buffer containing

100 mM Tris, pH 8.0, 100 mM NaCl, and 10 mM EDTA,

eluted in 26 SDS-PAGE sample buffer, and analyzed by

Immunoblot using mouse anti-Dcp1, mouse anti-DDX6, or

mouse anti-Gag.

Exogenous expression of DDX6
Expression vector pEYFP-RCK/p54 (referred to as pEYFP-

DDX6-wt) was a gift from T. Rana (U. Massachusetts, Worcester,

MA). pEYFP-DDX6-EQ and pEYFP-DDX6-DC (referred to as

pEYFP-DDX6-dC) were gifts from S. Lemon (U. Texas, Galveston,

TX). pEYFP-DDX6a-wt and pEYFP-DDX6a-EQ were created

using primers (59-TCGTGTATTTCATGATTTCCGGAACG-

GTCTCTGTAGCAATCTTGTTTGCACTGATC-39 and 59-

GATCAGTGCAAACAAGATTGCTACAGAGACCGTTCCG-

GAAATCATGAAATACACGA-39) that contains 7 changes in the

binding sequences to DDX6 siRNA yet maintains wild type amino

acid sequences. 56104 HT1080 cells per well of a 12-well plate were

treated with 120 nM DDX6 siRNA for 24 hrs, transfected with

0.6 ug pcEYFP-C1, or 0.8 ug pEYFP-DDX6a-wt, pEYFP-DDX6a-

EQ, or pEYFP-DDX6-dC for 24 hrs, infected with virus at an moi

of 2 for 6 hrs, washed, and incubated for another 40 hrs.
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