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Abstract

The core concept of genetic information flow was identified in recent calls to

improve undergraduate biology education. Previous work shows that students

have difficulty differentiating between the three processes of the Central

Dogma (CD; replication, transcription, and translation). We built upon this

work by developing and applying an analytic coding rubric to 1050 student

written responses to a three-question item about the CD. Each response was

previously coded only for correctness using a holistic rubric. Our rubric cap-

tures subtleties of student conceptual understanding of each process that previ-

ous work has not yet captured at a large scale. Regardless of holistic

correctness scores, student responses included five or six distinct ideas. By ana-

lyzing common co-occurring rubric categories in student responses, we found

a common pair representing two normative ideas about the molecules pro-

duced by each CD process. By applying analytic coding to student responses

preinstruction and postinstruction, we found student thinking about the pro-

cesses involved was most prone to change. The combined strengths of analytic

and holistic rubrics allow us to reveal mixed ideas about the CD processes and

provide a detailed picture of which conceptual ideas students draw upon when

explaining each CD process.
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1 | INTRODUCTION

Several national groups have made calls to reform science
education to emphasize critical thinking, rather than
memorization of facts. These calls include identifying
core concepts that all undergraduates should learn.1,2

Vision and Change in Undergraduate Biology Education:
A Call to Action (hereafter Vision and Change) identified
five core concepts; among them is the genetic concept of
information flow, exchange, and storage.3 Previous work
identified gene expression as critical for understanding
information flow.4,5
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The Central Dogma (CD) of molecular biology pro-
vides a framework for understanding gene expression in
terms of three processes, replication, transcription, and
translation. Understanding the genetic aspects of infor-
mation flow supports understanding of the other Vision
and Change core concepts including evolution.6,7 Gene
expression is an essential part of a genetics education
which is increasingly focused on concepts foundational
to “omics” (e.g., metabolomics, proteomics) research.8–10

Undergraduates on a variety of career paths will interact
with genetic data and thus must understand the mecha-
nism of gene expression, that is, the CD, as a basis for
understanding the significance of genomic technologies.

Gene expression is difficult to learn. Understanding
and distinguishing between the molecules produced and
processes involved are challenging11–17 and some miscon-
ceptions persist after instruction.18,19 Technical genetics
and biology vocabulary are a source of confusion.12,20,21

Students may incorrectly apply the three-nucleotide code
(codons) to the processes, or do not understand how gene
structure affects gene expression.14,19,22–24 Furthermore,
students who have completed introductory genetics
retain mostly low-level factual information; for example,
the names of the bases or monomers that make up poly-
mers.11 Focusing on low-level knowledge relating to the
CD is in conflict with educational reforms focused on
practices and conceptual understanding.

To help expand student understanding of gene
expression from memorized facts to conceptual under-
standing, instructors must first identify what students
know using formative assessments.25 Instructors might
evaluate student understanding using multiple-choice
(MC) assessment through the use of personal response
systems (PRS or “clickers”). However, students can arrive
at a correct MC response by ruling out possibilities or
guessing. In such instances, MC questions may hinder
critical thinking and inaccurately or incorrectly measure
student learning.26–28 Constructed response (CR) ques-
tions require students to respond in their own words.
Responses to CR questions are thought to better diagnose
student misconceptions and can contain mixtures of nor-
mative and nonnormative ideas.26,27,29,30 Studies on CR
instruments demonstrate that they are capable of eliciting
key concepts and misconceptions and that student verbal
responses in an interview closely match written
responses.27,31 Including CR items in assessment instru-
ments can provide instructors with an opportunity to more
accurately assess student conceptual understanding.

An instructor who identifies student conceptions can
focus instructional methods and practices to support stu-
dents' scientific thinking.32 Teaching toward conceptual
change has been proposed as a means to guide instruc-
tion, and different types of assessment aid identification

of the complex way students think about a concept.33 As
CR items can reveal mixed student thinking, there is
value in adding them to an assessment strategy. How-
ever, there are significant barriers to implementation of
CR items, including time to develop and use a grading
rubric, cost of grading, and interpretation of
responses.34,35 These barriers can be overcome by using
computer-automated analysis methods that provide rapid
reports representing student thinking in a consistent
manner. Such analysis can produce computer scores that
are nearly equivalent to human scores for multiple biol-
ogy topics,35–38 and can provide instructors with a rapid,
in-depth look at student understanding.

Holistic or analytic rubrics can be used to evaluate CR
items. Holistic rubrics assign a single score (e.g., correct,
incomplete, or incorrect) to a response and are capable of
capturing a wide variety of student ideas and evaluating
multiple criteria at once.39,40 Instructors may find using
holistic rubrics faster for grading purposes, but the scores
may reflect a complex mixture of ideas including combina-
tions of normative and nonnormative ideas.40,41 Analytic
rubrics assign one or more codes for specific components
(e.g., concepts or ideas) within a response. Analytic rubrics
improve the reliability of scoring, student self-assessment,
provide precise diagnostic information, and help focus
instruction.39,42–44 Additionally, categories in analytic
rubrics can co-occur and thus have the potential to reveal
mixed student thinking. Studies that applied analytic and
holistic approaches simultaneously to rate student writing
demonstrated complementary effects that improve scoring
reliability and validity and provide more detailed insight
into student responses than each method alone.40,45,46

Used in combination, analytic and holistic scoring
schemes may provide instructors with complementary
ways to interpret student responses.

This study aims to obtain a fine-grained picture of
students' explanations of the effect of a stop codon on
each of the CD processes following a base change in a
gene coding region. Building upon prior work14 we inves-
tigate the following research questions:

1. Which concept(s) do students include as part of an
explanation about the effect of a changed DNA nucle-
otide base on each of the CD processes?

2. Which ideas are associated with holistically scored
correct, irrelevant, or incorrect answers?

3. How does student thinking change after instruction,
as evidenced by concept(s) prone to change after
instruction?

For this purpose, we developed and applied an ana-
lytic rubric to analyze student responses describing the
effect of a base change on each of the CD processes. We
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then compared the analytic codes to previous holistic
codes.14 This approach combines the strengths of a holis-
tic rubric and analytic rubrics.

2 | RESEARCH METHODS

2.1 | Item and data collection

This study is an analysis of previously collected student
responses to a CR item (see below) derived from a MC
item in the Genetics Concept Assessment.14,19,47 We refer
to the three-question item as the “stop codon” item for
convenience. The item elicits student thinking about
which CD process a stop codon affects, and can be used
to identify student confusion about the three processes:

The following DNA sequence occurs near the middle
of the coding region of a gene:

DNA 5' A A T G A A T G G* G A G C C T G A A G G
A 3'

There is a G to A base change at the position marked
with an asterisk. Consequently, a codon normally
encoding an amino acid becomes a stop codon.

1. How will this alteration influence DNA replication?
2. How will this alteration influence transcription?
3. How will this alteration influence translation?

The data used in this project are from two previously
published sets of student responses to the questions. The
first data set comprises responses from students in introduc-
tory cell and molecular biology courses and was originally
analyzed using lexical analysis and human holistic scor-
ing.14 The second data set was previously analyzed with an
automated holistic scoring model to assess student learning
after an instructional intervention in college biology
courses.19 For the current analyses, we randomly selected
350 responses from each data set. The current study was
designated exempt by Michigan State University's Institu-
tional Review Board (IRB x10-577). For information about
the demographics of the student population in the previous
studies, see Prevost et al.14 and Pelletreau et al.19

2.2 | Rubric development and
refinement

We developed three analytic rubrics, one for each question
(namely replication, transcription, and translation) using
an approach of emergent coding and expert review, that
our group has used successfully for similar work.30 Some
of the ideas targeted by our rubrics were originally identi-
fied via lexical analysis, which groups and quantifies words

and phrases in text.14 In contrast to lexical analysis, catego-
rization with an analytic rubric uses words and phrases in
context of the entire response. Each analytic rubric cate-
gory captures one conceptual idea, which may be
expressed in a variety of ways. Every response was coded
for each analytic category dichotomously for presence
(1) or absence (0), thus multiple categories can co-occur
within a single response. The rubrics were refined through
an iterative process of independent scoring, coder discus-
sion and disagreement resolution, revision of rubrics, and
use of statistical text analysis software.48 The final set of
analytic categories for each CD process has a parallel struc-
ture to allow us to compare student thinking about the
three processes. Detailed rubrics including coding rules
and example responses are found in Tables S1–S3.

2.3 | Human coding and machine
learning

Paired coders coded batches of 50–100 responses for each of
the three questions independently and met after each batch
to discuss and resolve coding disagreements. Where agree-
ments could not be reached between a pair of coders,
responses were brought to a third coder to resolve. This pro-
cess was iterated until paired coders reached sufficient over-
all agreement on all categories for each of the three rubrics
(see below). The coders were blinded to the previous holistic
codes to avoid bias. We used Cohen's kappa49 as a measure
of inter-rater reliability (IRR), with a kappa ≥0.6 as our
threshold for satisfactory agreement.50 All categories within
the three rubrics had kappa ≥0.6 with one exception in the
transcription rubric, Protein or translation affected, which
had a kappa of 0.593 (Table S4). Once IRR thresholds were
reached, the rubrics were finalized, and a single coder coded
the remaining dataset. Additionally, we used a supervised
ensemble machine learning algorithm on the coded
responses for each of the three questions.24,51 The algorithm
produces a set of predicted codes for each category as well
as a probability that the predicted code is accurate. We lev-
eraged the consistency of algorithmically predicted catego-
ries as an error check for human codes. Where an
algorithmically predicted code did not match the human
code and the human code was deemed to be incorrectly
applied, the code was corrected to match the predicted code.

2.4 | Data and analysis of student ideas
for the three CD processes

To address Research Question 1, we randomly selected
350 holistically expert-coded student responses from
Prevost et al.14 and human-coded these responses using
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our analytic rubric. In order to compare student ideas
across the three CD processes, we named the rubric cate-
gories such that they capture similar ideas or reasoning
for each process (Table 1). For example, the categories
Replication is not affected, Transcription is not affected,
and Translation stops are named Correct effect on process
throughout the paper.

We represent co-occurrence of rubric categories as con-
ditional frequency: a ratio of the frequency with which a
given pair of categories co-occurs to the frequency of the
category within the entire dataset, see (1).

Conditional frequency =
N Cateogryð jCo−occurrent CategoryÞ

N Co−occurrent Categoryð Þ
N Categoryð Þ

N

, ð1Þ

A conditional frequency of 1 indicates no association,
or that two categories co-occur no more or less frequently
than each category does individually within the entire
data set. A conditional frequency of 0 indicates a negative
association, or that the two categories very rarely or never
co-occur. A conditional frequency greater than 1 indicates
that when one of the two categories is present, the other
is more likely to occur when compared to its occurrence
in the entire response set.

To address Research Question 2, we analyzed the
same random sample of 350 student responses from
Prevost et al.14 We tallied the holistic and analytic codes
in responses to determine the frequency of each analytic
code within an assigned holistic code.

2.5 | Data and analysis of student
responses before and after instruction

To address Research Question 3, we randomly selected
350 paired student responses from a preinstruction and
postinstruction intervention condition (for a total of
700 responses) from a subsample of four institutions that
participated in a previous study conducted by Pelletreau

et al.19 We coded these 700 responses using our analytic
rubrics. Then, we categorized each set of paired responses
the according to analytic category preintervention and
postintervention in one of the following four groups:
Never used, which represents students who did not
include the idea in either their preinstruction or
postinstruction responses; Removed, which represents
students who included the idea preinstruction but did
not include it postinstruction; Maintained, which repre-
sents students who included the idea in both their
preinstruction and postinstruction responses; and Added,
which represents students who did not include the idea
preinstruction but included it in their postinstruction
responses. We compared the proportion of each analyti-
cally categorized idea in student responses preinstruction
and postinstruction using McNemar's test.52

3 | RESULTS

3.1 | Research Question 1: Which
concept(s) do students include as part of an
explanation about the effect of the stop
codon on each CD process?

We analytically coded 350 responses for each of the three
questions, which were previously categorized using a
holistic rubric.14 Each response can include zero, one, or
more analytic categories. Most students' responses
included the ideas Correct effect on process and/or Incor-
rect effect on process (a total of 69% of all responses in rep-
lication, 66% transcription, 66% translation; Figure 1).
However, about half of the students included more than
one idea in their response (mean number of categories
per response = 1.6 for replication, 1.4 for transcription,
and 1.7 for translation). In responses to the three ques-
tions, the most common product category is the Identify
product category, identified by students in approximately
equal proportions (36% replication, 32% transcription,
43% translation). The Product is changed category occurs

TABLE 1 Comparison of rubrics for the three Central Dogma questions

Correct effect
on process

Incorrect effect on
process

Identify
product

Product is
changed

There is
mutation

Affects another
process

Replication Replication is not
affected

Replication stops or
DNA is shorter

Product is
DNA

The DNA is
different

There is
mutation

Protein or translation
affected

Transcription Transcription is
not affected

Transcription stops or
RNA is shorter

Product is
RNA

The RNA is
different

There is
mutation

Protein or translation
affected

Translation Translation stops
or protein is
shorter

Translation is not
affected

Product is
protein

Protein structure
and/or function
is changed

There is
mutation

Replication or
transcription
stopped
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more frequently in responses to the translation question
than to the other two questions.

To explore the combination of ideas included in stu-
dent responses, we looked at co-occurrence of analytic
categories for each question using conditional frequency
(Figure 2). Because the most common categories in stu-
dent responses are those that describe an effect on the
process, we first looked at ideas that co-occur with pro-
cess descriptions. Not surprisingly, students rarely discuss
the Incorrect effect on process together with the Correct
effect on process for any of the three questions (condi-
tional frequency = 0.02 replication, 0.03 transcription,
0.26 translation). In the rare case that these ideas co-
occur, students' responses contain statements that may
be perceived as contradictory, such as this response to
the translation question “The gene will be able to trans-
late all of the strand however it still remains that the stop
codon causes the remainder of the steps to be stopped”
(underlining added by authors to indicate coded words).
The Product is changed category also tends to have a neg-
ative association with the Incorrect effect on process idea
for all three questions, indicating that students rarely dis-
cuss an effect other than the product being shorter (con-
ditional frequency = 0.15 replication, 0.00 transcription,
0.34 translation).

Next, we looked for frequently co-occurring ideas in
student responses. We found a positive association

between the ideas Identify product and Product is changed
for all three questions (conditional frequency = 2.07 rep-
lication, 2.20 transcription, 1.61 translation). Responses
to the replication and transcription questions with this
pair of ideas tend to describe a changed base on the
newly synthesized DNA or RNA strand. For example, a
student response to the replication question states, “It
will have a T on the complementary strand instead of a
C". Responses to the translation question with this pair
of ideas occasionally describe a changed amino acid but
more often describe a change in protein function. For
example, a student wrote, “This will create a non-
functional protein. Stopping translation early removes
the necessary amino acids to make the protein function.”
In responses to the replication and transcription ques-
tions, the ideas There is mutation and Affects another pro-
cess also frequently co-occur. (conditional
frequency = 1.67 replication, 1.71 transcription). While
these ideas co-occur in responses to the translation ques-
tion, they are nearer to a neutral association (conditional
frequency = 1.22). Finally, we note that one idea used in
replication responses (Product is changed) rarely co-
occurs with either Affects another process (conditional fre-
quency = 0.13) or with There is mutation (conditional fre-
quency = 0.11). That is, students who describe the
expected change to the replication product do not include
effects on translation or a mutation in their responses.

3.2 | Research Question 2. Which ideas
are associated with holistically scored
Correct, Irrelevant, or Incorrect answers?

We associated the analytic categories for each response
applied in this work with the original holistic codes,
where responses were categorized as Correct, Incomplete/
Irrelevant (Irrelevant hereafter), or Incorrect, see Refer-
ence 14. Correct responses state or imply that the process
was not affected (replication and transcription) or that
the process stopped (translation) and Incorrect state or
imply the inverse effect. Incomplete/Irrelevant responses
contain some, but not all, correct information, or do not
refer to the process in question. For brevity in this paper,
we will refer to this holistic code as Irrelevant. A surpris-
ing number of ideas were represented in each holistic
code for each process. On average, 5.8 distinct analyti-
cally categorized ideas were found in each holistic code
(range 5–6, see Figures 3, S1, and S2, Table 2).

The most common analytic category within the holistic
Correct code was Correct effect on process (76% replication,
71% transcription, and 94% translation). These percentages
indicate that the presence of one analytic category does not
fully explain the holistic code, so we looked at the number

FIGURE 1 Student thinking about each of the Central Dogma

(CD) processes. The most frequent analytic categories in student

responses refer to the effect on the process (correct and incorrect).

Number of responses = 350 for each process. Note that the total

number of ideas may be greater than 350, as ideas can co-occur in a

response
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of analytic categories in each holistic code. The number of
categories in each holistic Correct response ranges between
zero and five with an average of 1.7 replication, 1.6 tran-
scription, and 1.9 translation (Table S5). The next most fre-
quent analytic categories in holistically Correct responses
are Identify product (41% replication, 37% transcription,
and 50% translation) and Product is changed (24% replica-
tion, 35% transcription, and 25% translation).

In replication and transcription responses, the most
common analytic category within the holistic Incorrect
code was Incorrect effect on process (92% replication &
81% transcription). However, no single analytic category

occurs in a majority of holistically Incorrect translation
responses, including Incorrect effect on process (16%). The
number of categories in a holistic Incorrect response
range from 0 to 5 with averages of 1.6 replication, 1.4
transcription, and 1.5 translation (Table S5). In replica-
tion and transcription responses holistically coded Incor-
rect, additional frequent analytic categories include
Identify product (42% replication and 32% transcription)
and There is mutation (18% replication and 10% transcrip-
tion). In translation responses holistically coded Incorrect,
the most frequent analytic category included is Affects
another process (42% of Incorrect responses).

FIGURE 2 Pairwise conditional frequencies among rubric categories identified in student responses across the three Central Dogma

(CD) processes. For each of the three CD processes, students tend to pair the ideas There is mutation and Affects another process. Any pair of

analytic codes can co-occur for any of the three CD processes
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The Irrelevant holistic codes for all three questions
were not associated with a particular analytic category
and were more likely to include a single category than
either of the other holistic codes (range 0–3; averages of
1.0 replication, 0.9 transcription, 1.3 translation;
Table S5). The analytic categories There is mutation
(35%) and Affects another process (47%) are most

common in replication responses holistically coded
Irrelevant. In transcription responses, the most common
analytic category (Product is changed) only occurs in
26% of holistic Irrelevant responses. The analytic cate-
gories Product is changed (54%) and Identify product
(39%) are most common in holistic Irrelevant transla-
tion responses.

FIGURE 3 A mosaic plot showing the categorization of student responses as holistically and analytically coded for translation. Holistic

codes include ideas from multiple analytic categories. Column widths are proportional to the number of student responses categorized as

Correct (199 responses), Incorrect (79 responses), or Irrelevant (72 responses). Number of student responses categorized in a given holistic and

analytic category are printed on graph. Note that analytic codes can occur in zero or more categories for each response so the total number

of codes within a holistic category is the sum of the analytic category codes and may be greater than 350. Therefore, the number of analytic

category codes does not equal to the number of holistically coded responses

TABLE 2 Percent of responses for each question and holistic code that are categorized as containing each of six analytic ideas

Replication Transcription Translation

Category
Correct
(%)

Incorrect
(%)

Irrelevant
(%)

Correct
(%)

Incorrect
(%)

Irrelevant
(%)

Correct
(%)

Incorrect
(%)

Irrelevant
(%)

Correct effect
on process

76 1 2 71 2 12 94 23 10

Incorrect effect
on process

0 92 5 0 81 2 2 16 4

Identify product 41 42 8 37 32 19 50 29 39

Product is
changed

24 1 2 35 2 26 25 24 54

There is
mutation

16 18 35 7 10 14 15 14 15

Affects another
process

11 11 47 6 10 16 4 42 4

Note: Note that analytic ideas can co-occur and thus may not equal 100%.
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3.3 | Research Question 3: How does
student thinking change after instruction?

To answer our third research question, we analytically
coded 350 pre instruction responses and 350 paired post
instruction responses from a dataset previously collected
to assess the effects of an instructional intervention. The
instructional intervention included a clicker case study
designed to address common student misconceptions
about the CD.19 Student responses were categorized to
reflect whether the student used an idea, as captured by
the analytic rubrics, before and/or after the intervention
as (1) Never used, (2) Removed, (3) Maintained, (4) Added
(Figure 4).

Student responses to the replication and transcription
questions have similar patterns of change after instruc-
tion, where students Add the idea Correct effect on process
(152 replication and 169 transcription) and Remove the
idea Incorrect effect on process (107 replication and
100 transcription). Many of the students who Removed
the Incorrect effect on the process replaced it by Adding
the Correct effect on process (94 replication and 86 tran-
scription). Students removed two other ideas from their
responses to the replication and transcription question:
Identify product (109 replication and 83 transcription)
and Product is changed (87 replication and 80 transcrip-
tion). The ideas There is mutation and Other process
affected did not substantially change in either the replica-
tion or transcription responses after instruction.

The patterns of change were slightly different for
responses to the translation question. Inclusion of the
Incorrect effect on process idea did not change while 125 stu-
dents Added the Correct effect on process idea to their
responses. Two other ideas were added after instruction:

Identify product (90 students) and There is mutation (67 stu-
dents). The ideas captured by the categories Product is
changed and Affects another process did not substantially
change after instruction. For co-occurrence of analytic cate-
gories pre and post instruction, see Figures S3–S5.

4 | DISCUSSION

The previously applied holistic rubric14 produced a rapid
tally of the number of students who could differentiate
between the three processes by correctly describing that
the stop codon only affects translation. Because the holis-
tic rubric places student responses into one of three
mutually exclusive scores, Correct, Incorrect, or Irrelevant,
additional ideas included in student responses may be
masked from instructors. We developed and applied an
analytic rubric that reveals a nuanced picture of student
understanding that can help reveal the range and mix of
ideas in student written explanations. We found that stu-
dents mix ideas in their written responses pre and post
instruction, across all three CD processes, and regardless of
whether their answers were Correct, Incorrect, or Irrelevant.
This suggests that no individual analytic category can fully
explain a holistic code and underscores the importance of
analytic categorization of concepts in student writing.

Analytic rubrics allow us to identify ideas and capture
the context in which students use them in responses. For
example, the word DNA in reference to replication could
refer to the template, the new daughter strand, a change
in sequence, or the DNA sequence provided in the item.
Our coding scheme captures the ideas Product is DNA or
The DNA is different as a way to differentiate two of these
potential uses. This approach helps us better identify

FIGURE 4 Butterfly plot of analytic categories in paired student responses preintervention and postintervention; 350 preinstruction

responses and 350 postinstructional intervention. Students often add correct ideas about the three Central Dogma (CD) processes. Never

used, absent pre and post. Removed, present pre and absent post, Maintained, present pre and post. Added, absent pre and present post
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potential issues in students' explanations and
understanding.

The analytic categorization helps uncover ideas stu-
dents include in holistically Irrelevant responses.14 Identi-
fying the ideas students include in an Irrelevant response
is key for targeting instruction. Irrelevant responses
included ideas in all analytic categories and a significant
portion of student responses included relevant ideas
about the CD processes. Irrelevant responses to the tran-
scription and translation questions often include the
ideas Identify product or Product is changed, and
responses to the replication question often include the
Mutation idea. These ideas alone do not necessarily rep-
resent misconceptions, though without connecting to
other ideas, students cannot exhibit complete under-
standing of the effects on each process. Two interventions
specifically address effects of mutations in the CD.19,24 To
address issues with CD products, an instructor might
consider in-class discussions to help students focus on
relating the CD processes to the production of the rele-
vant macromolecules.

We found that the holistic Incorrect code for the trans-
lation question was not strongly associated with the ana-
lytic Incorrect effect on process category. Incorrect responses
include a wide variety of analytic categories; representing
the variety of ways students think about and describe trans-
lation. Analytic categorization can help the instructor to
pinpoint and address misconceptions. A misconception
that replication is stopped requires additional work on the
(lack of) effect of a stop codon on replication, while a
misconception that translation continues requires addi-
tional work on the process of translation. The ideas Affects
another process and Product is changed often co-occur in
translation responses, which indicates how the student was
incorrect. Thus, by employing a combination of scores that
provide a rapid overview (holistic) of student responses as
well as a more detailed (analytic) report of student think-
ing, it becomes possible to more clearly interpret some
holistic codes, including when students mix ideas.

We found that students add the Correct effect on pro-
cess to responses about all three processes after instruction.
This is consistent with the instructional intervention
targeted at dispelling the misconceptions that a stop codon
would affect replication or transcription.19 Students also
added to their translation responses the ideas Product is
changed and There is mutation. Our analysis on ideas
prone to change after instruction could be extended to the
assessment of other targeted instructional interventions,
including the Product is changed idea as we found that this
idea was associated with other normative ideas such as
Correct effect on product and with holistic Correct codes.

The combination of holistic and analytic rubrics pro-
vides a useful formative assessment tool for instructors

to monitor student ideas and potentially tailor instruc-
tion. In the goal of improving student learning, forma-
tive assessment involves identifying where the learner is
and how to get the learner to the desired learning
goal.25,53 The instructor's role is to elicit student under-
standing to make informed instructional decisions.53

When students use ideas in a nonexpert-like manner,
for example, using an idea about mutation without
referencing the effect on the relevant CD process,
instructors can help students understand the connec-
tions between a mutation and the processes of gene
expression.15,19,24 Furthermore, when students mix
ideas32 for example the protein will be shorter because
replication stops, instructors can help students examine
the validity of each idea. Knowing what students are
thinking at a conceptual level can help instructors make
informed decisions about instruction, a critical piece of
active-learning classrooms.54

Leveraging the work from this project, we developed
automated scoring models for instructor use that allows
new student responses to be coded at the analytic level
(this work) or the holistic level.14 The “stop codon” item
and computer automated categorization models, includ-
ing a variety of ways for instructors to analyze student
responses are available for instructor use at https://
beyondmultiplechoice.org.
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