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Abstract: Estimating an epidemic’s trajectory is crucial for developing public health responses 1 
to infectious diseases, but incidence data used for such estimation are confounded by variable 2 
testing practices. We show instead that the population distribution of viral loads observed under 3 
random or symptom-based surveillance, in the form of cycle threshold (Ct) values, changes 4 
during an epidemic and that Ct values from even limited numbers of random samples can 5 
provide improved estimates of an epidemic’s trajectory. Combining multiple such samples and 6 
the fraction positive improves the precision and robustness of such estimation. We apply our 7 
methods to Ct values from surveillance conducted during the SARS-CoV-2 pandemic in a 8 
variety of settings and demonstrate new approaches for real-time estimates of epidemic 9 
trajectories for outbreak management and response.  10 
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Main Text:  11 
Real-time tracking of infection incidence during an epidemic is fundamental for public 12 

health planning and intervention (1, 2). In the severe acute respiratory syndrome coronavirus-2 13 
(SARS-CoV-2) pandemic, key epidemiological parameters such as the time-varying effective 14 
reproductive number, Rt, have typically been estimated using the time-series of observed case 15 
counts, percent of positive tests, or deaths, usually based on reverse-transcription quantitative 16 
polymerase chain reaction (RT-qPCR) testing. However, reporting delays (3), limited testing 17 
capacities, and changes in test availability over time all impact the ability of routine testing to 18 
reliably and promptly detect underlying changes in infection incidence (4, 5). In particular, 19 
whether changes in case counts at different times reflect epidemic dynamics or simply changes in 20 
testing have been major topics of debate with important economic, health and political 21 
ramifications. Here, we describe a new method to overcome these biases and obtain accurate 22 
estimates of the epidemic trajectory, one that does not require repeat measurements and uses 23 
routinely generated but currently discarded quantitative data from RT-qPCR testing from single or 24 
successive cross-sectional samples. 25 

RT-qPCR tests provide quantitative results in the form of cycle threshold (Ct) values, 26 
which are inversely correlated with log10 viral loads, but they are often reported only as binary 27 
“positives” or “negatives” (6, 7). It is common when testing for other infectious diseases to use 28 
this quantification of sample viral load, for example, to identify individuals with higher clinical 29 
severity or transmissibility (8–11). For SARS-CoV-2, Ct values may be useful in clinical 30 
determinations about the need for isolation and quarantine (7, 12), identifying the phase of an 31 
individual’s infection (13, 14) and predicting disease severity (14, 15). However, individual-level 32 
decision making based on Ct values has not yet become a widespread reality due to the variability 33 
in measurements across testing platforms and samples, and limited data to understand SARS-CoV-34 
2 viral kinetics in asymptomatic and presymptomatic infections. These concerns do not necessarily 35 
hold at the population level: whereas a single high Ct value may not necessarily guarantee a low 36 
viral load in one sample, high Ct values in many samples will indicate a population with 37 
predominantly low viral loads. Indeed, the population-level distribution of Ct values does appear 38 
to change over time. For example, a systematic incline in the distribution of quantified Ct values 39 
has been noted alongside epidemic decline (12, 14, 16).  40 

We demonstrate that population-level changes in the distribution of observed Ct values can 41 
arise as an epidemiological phenomenon, and propose methods to use these quantitative values to 42 
estimate epidemic trajectories from one or more cross-sectional samples. 43 

Relationship Between Observed Ct Values and Epidemic Dynamics 44 

First, we show that the interaction of within-host viral kinetics and epidemic dynamics can 45 
drive changes in the distribution of Ct values over time without a change in the underlying 46 
pathogen kinetics. To demonstrate the epidemiological link between transmission rate and 47 
measured viral loads or Ct values, we first simulated infections arising under a deterministic 48 
susceptible-exposed-infectious-recovered (SEIR) model (Fig. 1A, Materials and Methods: 49 
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Simulated Epidemic Transmission Models). Parameters used are in Table S1. At selected testing 50 
days during the outbreak, simulated Ct values are observed from a random sample of the 51 
population using the Ct distribution model described in Materials and Methods: Ct Value Model 52 
and shown in Figs. S1 and S2. By drawing simulated samples for testing from the population at 53 
specific time points, these simulations recreate realistic cross-sectional distributions of detectable 54 
viral loads across the course of an epidemic. Throughout, we assume each individual is infected at 55 
most once, ignoring re-infections as these appear to be a negligible portion of infections in the 56 
epidemic so far (17). 57 

Early in the epidemic, infection incidence grows rapidly and the typical infection is thus 58 
recent; as the epidemic wanes, however, the average time since exposure increases as the rate of 59 
new infections decreases (Fig. 1B,E) (18); this is analogous to the average age being lower in a 60 
growing vs. declining population (19). Infections are often unobserved events, but we can rely on 61 
an observable quantity, such as viral load, as a proxy for the time since infection. Since Ct values 62 
change over time within infected hosts (Fig. 1C), random sampling of individuals during epidemic 63 
growth is more likely to measure individuals who were recently infected and therefore in the acute 64 
phase of their infection with higher quantities of viral RNA. Conversely, sampling infected 65 
individuals during epidemic decline is more likely to capture individuals in the convalescent phase, 66 
typically sampling lower quantities of viral RNA (Fig. 1D). The distribution of observed Ct values 67 
therefore changes over time, as measured by the median, quartiles, and skewness (Fig. 1G). While 68 
estimates for an individual’s time since infection based on a single Ct value will be highly 69 
uncertain, the population-level distribution of observed Ct values will vary with the growth rate, 70 
and therefore Rt, of new infections (Fig. 1F,H). Similar principles have been applied to serologic 71 
data to infer unobserved individual-level infection events (16, 20–22) and population-level 72 
parameters of infectious disease spread (20, 23–27).  73 

This phenomenon is also present, though less pronounced, among viral loads measured 74 
under symptom-based surveillance (Fig. S3). One might imagine that the typical time since 75 
infection would not depend on the epidemic trajectory in individuals systematically sampled soon 76 
after symptom onset. However, the distribution of delays between infection date and test date is a 77 
convolution of the infection incidence curve and the confirmation delay distribution (time from 78 
infection to testing of symptomatic infections) (28). Individuals tested due to recent symptom onset 79 
are more likely to have been recently infected with a short incubation period during epidemic 80 
growth than during epidemic decline, where more onsets are from older infections with longer 81 
incubation periods. The time-since-infection distribution of individuals tested based on symptom 82 
onset, and therefore their measured viral loads, is influenced by the stage of the epidemic.  83 
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 84 

Fig. 1. The cycle threshold (Ct) value distribution reflects epidemiological dynamics over the 85 
course of an outbreak. (A) Per capita daily incidence (histogram) and daily growth rate (blue 86 
line) of new infections in a simulated epidemic using a susceptible-exposed-infectious-recovered 87 
(SEIR) model. (B) Median days since infection vs. daily growth rate of new infections by epidemic 88 
day. Labeled points here and in (E–G) show five time points in the simulated epidemic. (C) 89 
Observed Ct value by day for 500 randomly sampled infected individuals. (D) Viral kinetics model 90 
(increasing Ct value following peak and subsequent plateau near the limit of detection), 91 
demonstrating the time course of Ct values (x-axis, line shows mean and ribbon shows 95% 92 
quantile range) against days since infection (y-axis). Note that the y-axis is arranged to align with 93 
(E). (E) Distribution of days since infection (violin plots and histograms) for randomly selected 94 
individuals over the course of the epidemic. Median and first and third quartiles are shown as green 95 
lines and points. (F) Skewness of observed Ct value distribution vs. daily growth rate of new 96 
infections by epidemic day. (G) Distribution of observed Ct values (violin plots and histograms) 97 
among sampled infected individuals by epidemic day. Median and first and third quartile are 98 
shown as purple lines and points. (H) Time-varying effective reproductive number, Rt, derived 99 
from the SEIR simulation, plotted against median and skewness of observed Ct value distribution.  100 
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By modeling the variation in observed Ct values arising from individual-level viral 101 
growth/clearance kinetics and sampling errors, the distribution of observed Ct values becomes an 102 
estimable function of the times since infection, and the expected median and skewness of Ct values 103 
at a given point in time are then predictable from the growth rate. This function can then be used 104 
to estimate the epidemic growth rate conditional on a set of observed Ct values. The relationship 105 
between observed Ct value and epidemic growth rate holds for any testing approach, though 106 
calibration is needed to define the precise mapping (i.e., using a different RT-qPCR instrument, a 107 
different Ct value threshold, or in a different lab; see Fig. S4).  108 

Inferring Epidemic Trajectory Using a Single Cross-Section 109 

 From these relationships, we derived a method to formally infer the epidemic growth rate 110 
given a single cross-section of RT-qPCR test results. The method combines two models: (1) the 111 
likelihood of observing a Ct value or negative result conditional on having been infected on a given 112 
day; and (2) the likelihood of being infected on a given day prior to the sample date. For (1), we 113 
used a Bayesian model and defined priors for the mode and range of Ct values following infection 114 
based on the existing literature (Materials and Methods: Ct Value Model and Single Cross-Section 115 
Model). For (2), we initially developed two models to describe the probability of infection over 116 
time: (a) constant exponential growth of infection incidence; or (b) infections arising under an 117 
SEIR model. Both models provide estimates for the epidemic growth rate, but make different 118 
assumptions regarding the possible shape of the outbreak trajectory: the exponential growth model 119 
assumes a constant growth rate, whereas the SEIR model assumes that the growth rate changes 120 
daily depending on the remaining number of susceptible individuals. 121 

 We first investigated how the distribution of Ct values and prevalence of PCR positivity 122 
changed over time in four well-observed Massachusetts long-term care facilities that underwent 123 
SARS-CoV-2 outbreaks in March and April 2020 (29). These facilities were relatively closed after 124 
outbreaks began, so we model the outbreak within each facility using an extended SEIR (SEEIRR) 125 
model, with additional exposed and recovered compartments to account for the duration of PCR 126 
positivity (Materials and Methods: Simulated Epidemic Transmission Models). In each facility, 127 
we have the results of near-universal PCR testing, including both residents and staff, from three 128 
time points after the outbreak began, including the number of positive samples, the Ct values of 129 
positive samples, and the number of negative samples (Materials and Methods: Nursing Home 130 
Data). Fig. 2 shows results for one of these facilities, while Fig. S5 shows results for the other 131 
three. 132 

In Fig. 2A, we fit the SEEIRR compartmental model to the three observed point prevalence 133 
values from the facility as a benchmark. The distribution of observed Ct values at each time point 134 
(Fig. 2B) shifts higher and becomes more left-skewed at later time points. We then fit the 135 
exponential growth and simple SEIR models using the Ct likelihood to each individual cross-136 
section to get posterior distributions for the epidemic trajectory up to that time point (Fig. 2C). 137 
Note that these fits do not use any longitudinal data; each is fit to the positive and negative Ct 138 
values from only one time point. To assess the fit, we compare the predicted Ct distribution and 139 
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point prevalence from each fit to the data (Fig. 2B,D) and compare the growth rates from these fits 140 
to those derived from the fits to the point prevalences. Posterior distributions of all Ct value model 141 
parameters are shown in Fig. S6. 142 

While both sets of results are fitted models and so neither can be considered the truth, we 143 
find that the Ct method fit to one cross-section of data provides a similar posterior median 144 
trajectory to the compartmental model fit to three point prevalences. In particular, the Ct-based 145 
models appear to accurately discern whether the samples were taken soon or long after peak 146 
infection incidence. Both methods were in agreement over the direction of the past average and 147 
recent daily growth rates (i.e., whether the epidemic is currently growing or declining, and whether 148 
the growth rate has dropped relative to the historic average). The average growth rate estimates 149 
were very similar at most time points, though the daily growth rate appeared to decline earlier in 150 
the compartmental model. Overall, these results demonstrate that a single cross-section of Ct 151 
values can provide similar information to point prevalence estimates from three distinct sampling 152 
rounds. 153 

To ensure that our method provides accurate estimates of the epidemic trajectory, we 154 
performed extensive simulation-recovery experiments using a synthetic nursing home population 155 
undergoing a stochastic SEIR epidemic. We assess performance using various models, including 156 
a version that uses only positive Ct values, and varying parameters of the simulation; details are in 157 
Materials and Methods: Simulated Nursing Home Outbreaks and results in Figs. S7–S9.  158 
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 159 

Fig. 2. Single cross-sectional distributions of observed cycle threshold (Ct) values can be used 160 
to reconstruct epidemic trajectories in a Massachusetts nursing home. (A) Estimated 161 
prevalence (faint teal lines show posterior samples, solid teal line shows posterior median, teal 162 
ribbon shows 95% CrI) and incidence (red line shows posterior median, red ribbon shows 95% 163 
CrI) from the standard compartmental (SEEIRR) model fit to point prevalence at three sampling 164 
times (error bars show 95% binomial confidence intervals). (B) Model-predicted Ct distributions 165 
(blue) fitted to the observed Ct values (grey bars) from each of three cross-sectional samples. 166 
Shown are the posterior median (black line) and 95% CrI for the expected Ct distribution (dark 167 
blue ribbon), and 95% prediction intervals based on simulated observations (light blue ribbon). 168 
Note that prediction intervals are much wider than credible intervals, as they result from simulating 169 
observations with a small sample size. (C) Each panel shows results from fitting the Ct-based SEIR 170 
model separately to three cross-sections of virologic data. Shown are random posterior samples 171 
(red lines) and the maximum posterior probability trajectory (purple line) for the incidence curve. 172 
(D) Ct model-predicted median (blue point) and 95% CrI (blue error bars) for the proportion of 173 
samples testing positive compared to the observed proportion tested positive (grey cross). (E) 35-174 
day (green) and 1-day (magenta) average growth rates from the Ct model estimates in part (C) at 175 
three time points (violin plots) compared to growth rate estimates from the SEEIRR model in part 176 
(A) (lines and shaded ribbons).   177 
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Inferring Epidemic Trajectory Using Multiple Cross-Sections 178 

 Next, we extended our method to combine data from multiple cross-sections, allowing us 179 
to more reliably estimate the epidemic trajectory (Materials and Methods: Multiple Cross-Sections 180 
Model and Markov Chain Monte Carlo Framework). In many settings, the epidemic trajectory is 181 
monitored using reported case counts, the definition of which can change during the epidemic (30). 182 
Limiting reported cases to positive test results, the number of new positives among the tests 183 
conducted each day can be used to calculate Rt (3). However, these data represent the growth rate 184 
of positive tests and not the incidence of infection, requiring adjustments to account for changes 185 
in testing capacity, the delay between infection and test report date, and the conversion from 186 
prevalence to incidence. When, instead, Ct values from surveillance sampling is available, our 187 
methods can overcome these limitations by providing a direct mapping between the distribution 188 
of Ct values and infection incidence. Crucially, the Ct-based methods are agnostic to changing 189 
testing rates, providing unbiased growth rate estimates where case count-based methods exhibit 190 
bias (5). 191 

To demonstrate the performance of these methods, we use them to recover parameters from 192 
SEIR-based simulations under a variety of testing schemes (Materials and Methods: Simulated 193 
Testing Schemes). We compare the performance of Rt estimation using reported case counts via 194 
the R package EpiNow2 (28, 31), where reporting depends on testing capacity and the symptom 195 
status of infected individuals, to the performance of our methods when one, two, or three 196 
surveillance samples are available with observed Ct values, with a total of about 0.3% of the 197 
population sampled (3000 tests spread among the samples). 198 

Figure 3 plots the posterior median Rt from each of the 100 simulations of each method 199 
when the epidemic is growing (day 60) and declining (day 88). Except when only one sample is 200 
used, the Ct-based methods fitting to an SEIR model exhibit minimal bias, even when testing 201 
capacity changes. Methods based on reported case counts, on the other hand, exhibit noticeable 202 
upward bias when testing rates increase over the period observed and substantial downward bias 203 
when testing rates decrease. The Ct-based methods do exhibit higher variability, however. This is 204 
captured by the Bayesian inference model, as all of the Ct-based methods achieve at least nominal 205 
coverage of the 95% credible intervals among these 100 simulations. The methods based on 206 
reported case counts have coverage below 70% when testing is falling at either time point and 207 
when cases are rising while the epidemic is declining.  208 
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 209 

Fig. 3. Inferring epidemic trajectory from cross-sectional surveillance samples with observed 210 
cycle threshold (Ct) values yields nearly unbiased estimates of the time-varying effective 211 
reproductive number, Rt, whereas changing testing rates lead to biased estimation using 212 
reported case counts. (A) Number of positive tests per day by sampling time in epidemic and 213 
testing scheme for reported case counts (top row) and surveillance Ct sampling (bottom row), from 214 
a simulated susceptible-exposed-infectious-recovered (SEIR) epidemic. Observation times are 215 
shown by vertical lines. (B) Rt estimates from 100 simulations for each epidemic sampling time, 216 
testing scheme, and estimation method. Each point is the posterior median from a single 217 
simulation. Rt estimates for reported case counts use EpiNow2 estimation and for surveillance Ct 218 
samples use the Ct-based likelihood for one or multiple cross-sections fitted to an SEIR model. 219 
True model-based Rt on the sampling day is indicated by the black star and dashed horizontal line, 220 
while an Rt of 1, indicating a flat outbreak, is indicated by the solid horizontal line.  221 
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Reconstructing Complex Incidence Curves Using Ct Values 222 

Simple epidemic models are useful to understand recent incidence trends when data are 223 
sparse or in relatively closed populations where the epidemic start time is approximately known 224 
(Materials and Methods: Epidemic Seed Time Priors). In reality, however, the epidemic usually 225 
follows a more complex trajectory which is difficult to model parametrically. For example, the 226 
SEIR model does not account for the implementation/relaxation of non-pharmaceutical 227 
interventions unless explicitly specified in the model. For a more flexible approach to estimating 228 
the epidemic trajectory from multiple cross-sections, we developed a third model for infection 229 
incidence, using a Gaussian Process (GP) prior for the underlying daily probabilities of infection 230 
(32). The GP method provides estimated daily infection probabilities without making strong 231 
assumptions about the epidemic trajectory, assuming only that infection probabilities on 232 
contemporaneous days are correlated, with decreasing correlation at increasing temporal distances 233 
(Materials and Methods: Gaussian Process Model). Movie S1 demonstrates how estimates of the 234 
full epidemic trajectory can be sequentially updated using this model as new samples become 235 
available over time.  236 

With the objective of reconstructing the entire incidence curve using routinely collected 237 
RT-qPCR data, we used anonymized, Ct values from positive samples measured from nearly all 238 
hospital admissions into Brigham & Women’s Hospital (BWH) in Boston, MA, between April 3 239 
and November 10, 2020 (Materials and Methods: Brigham & Women’s Hospital Data). We 240 
aligned these with estimates for Rt based on case counts in Massachusetts (Fig. 4A–C). The median 241 
and skewness of the detectable Ct distribution was correlated with Rt (Fig. 4B), in line with our 242 
theoretical predictions. Tests taken prior to April 3 were restricted to symptomatic patients only, 243 
while those after April 15 represented near-universal testing of all hospital admissions and non-244 
admitted ER patients. The median Ct value rose (corresponding to a decline in median viral load) 245 
and skewness of the Ct distribution fell in the late spring and early summer, as shelter-in-place 246 
orders and other non-pharmaceutical interventions were rolled out (Fig. 4C), but the median 247 
declined and skewness rose in late summer and early fall as these measures were relaxed, 248 
coinciding with an increase in observed case counts for the state (Fig. 4A).  249 

Using the observed Ct values we estimated the daily growth rate of infections using the 250 
SEIR model on single cross-sections (Fig. 4D,E, Fig. S10, Fig. S11) and the daily relative 251 
probability of infection over time using the GP model (Fig. 4F, Fig. S12). Similar temporal trends 252 
were inferred under both models, and the GP model provided growth rate estimates that followed 253 
those estimated using observed case counts (Fig. 4G). While these data are not strictly a random 254 
sample of the community, and the observed case counts do not necessarily provide a ground truth 255 
for the Rt value, this demonstrates the ability of this method to re-create epidemic trajectories and 256 
estimate growth or decline of cases using only positive Ct values collected through routine testing. 257 
Interestingly, our estimated epidemic trajectory using only routinely generated Ct values from a 258 
single hospital was remarkably similar to changes in viral loads obtained from wastewater data 259 
(Fig. S13) (33).  260 
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 261 

Fig. 4. Single cross-sectional distributions of observed cycle threshold (Ct) values can 262 
estimate growth rate and multiple cross-sectional distributions can estimate the complex 263 
statewide epidemic trajectory from hospital-based surveillance at Brigham & Women’s 264 
Hospital in Massachusetts. (A) Daily confirmed new cases in Massachusetts (gray bars) and 265 
estimated time-varying effective reproductive number, Rt. (B) Estimated Rt from the case counts 266 
vs. median and skewness of observed Ct value distribution by weekly sampling times. (C) 267 
Distribution (violin plots and points) and smoothed median (blue line) of observed Ct values by 268 
sampling week. (D) Posterior median (yellow arrow) and distribution (blue shaded area) of 269 
estimated daily growth rate of incident infections from a susceptible-exposed-infectious-recovered 270 
(SEIR) model fit to a single cross-section of observed Ct value data from the week commencing 271 
2020-05-24. Shading density is proportional to posterior density. (E) Posterior medians (yellow 272 
arrow) and full distributions (blue shaded area) of estimated daily growth rate of incident infections 273 
from SEIR models each fit to a single cross-section by sampling week used. Red box denotes the 274 
panel from (D). (F) Posterior distribution of relative probability of infection by date from a 275 
Gaussian Process (GP) model fit to all observed Ct values (ribbons show 95% and 50% credible 276 
intervals, line shows posterior median). (G) Comparison of estimated daily growth rate of incident 277 
infections from GP model (blue line and shaded ribbons show posterior median and 95% CrI) to 278 
that from Rt estimation using observed case counts (red and green line and shaded ribbons show 279 
posterior median and 95% CrI) by date. Note that the x-axis is truncated at 2020-04-01, but 280 
estimates stretch back to 2020-03-01 (Fig. S13).  281 
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Discussion 282 

 The usefulness of Ct values for public health decision making is currently the subject of 283 
much discussion and debate. One unexplained observation which has been consistently observed 284 
in many locations is that the distribution of observed Ct values has varied over the course of the 285 
current SARS-CoV-2 pandemic, which has led to questions over whether the fitness of the virus 286 
has changed (12, 14, 16). Our results demonstrate instead that this can be explained as a purely 287 
epidemiologic phenomenon, without any change in individual-level viral dynamics or testing 288 
practices. We find that properties of the population-level Ct distribution strongly correlate with 289 
estimates for the effective reproductive number or growth rate in real-world settings, in line with 290 
our theoretical predictions. 291 

Using quantitative diagnostic test results from multiple different tests conducted in a single 292 
cross-sectional survey, Rydevik et al. (18) demonstrated that epidemic trends could be inferred 293 
from virologic data. The methods we describe here use the phenomenon observed in the present 294 
pandemic and the relationship between incidence rate, time since infection, and virologic test 295 
results to estimate a community’s position in the epidemic curve, under various models of 296 
epidemic trajectories, based on data from one or more cross-sectional surveys using a single 297 
virologic test. Despite the challenges of sampling variability, individual-level differences in viral 298 
kinetics, and limitations in comparing results from different laboratories or instruments, our results 299 
demonstrate that RT-qPCR Ct values, with all of their quantitative variability for an individual, 300 
can be highly informative of population-level dynamics. This information is lost when 301 
measurements are reduced to binary classifications. 302 

Our results demonstrate that this method can be used to estimate epidemic growth rates 303 
based on data collected at a single time point, and independent of assumptions about the intensity 304 
of testing. Comparisons of simulated Ct values and observed Ct values with growth rates and Rt 305 
estimates validate this general approach. Results should be interpreted with caution in cases where 306 
the observed Ct values are not from a population census or a largely random sample, or when there 307 
are very few samples with detectable viral load. When testing is based primarily on the presence 308 
of symptoms or follow-up of contacts of infected individuals, people may be more likely to be 309 
sampled at specific times since infection and thus the distribution of observed Cts would not be 310 
representative of the population as a whole. This method may be most useful in settings where 311 
representative surveillance samples can be obtained independent of COVID-19 symptoms, such 312 
as the REACT study (34). These methods allow municipalities to evaluate and monitor, in real-313 
time, the role of various epidemic mitigation interventions, for example by conducting even a 314 
single or a small number of random virologic testing samples as part of surveillance.  315 

These results are sensitive to the true distribution of observed viral loads each day after 316 
infection. Different swab types, sample types, instruments, or Ct thresholds may alter the 317 
variability in the Ct distribution (15, 16, 35, 36), leading to different relationships between the 318 
specific Ct distribution and the epidemic trajectory. Setting-specific calibrations, for example 319 
based on a reference range of Ct values, will be useful to ensure accuracy. Here, we generated a 320 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2021. ; https://doi.org/10.1101/2020.10.08.20204222doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.08.20204222
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

viral kinetics model based on observed properties of measured viral loads (proportion detectable 321 
over time following symptom onset, distribution of Ct values from true specimens), and used these 322 
results to inform priors on key parameters when estimating growth rates. The growth rate estimates 323 
can therefore be improved by choosing more precise, accurate priors relevant to the observations 324 
used during model fitting. In cases where results come from multiple testing platforms, the model 325 
should either be adjusted to account for this by specifying a different distribution for each platform 326 
based on its properties or, if possible, the Ct values should be transformed to a common scale such 327 
as log viral copies. Results could also be improved if individual-level features that may affect viral 328 
load, such as symptom status, age, and antiviral treatment, are available with the data and 329 
incorporated into the Ct value model (14–16, 37, 38). A similar approach may also be possible 330 
using serologic surveys, as an extension of work that has related time since infection to antibody 331 
titers for other infectious diseases (26, 27). If multiple types of tests (e.g., antigen and PCR) are 332 
conducted at the same time, combining information can substantially reduce uncertainty in these 333 
estimates as well (18). If variant strains are associated with different viral load kinetics and become 334 
common (39), this should be incorporated into the model as well. 335 

This method has a number of limitations. While the Bayesian framework incorporates the 336 
uncertainty in viral load distributions into inference on the growth rate, parametric assumptions 337 
and reasonably strong priors on these distributions aid in identifiability. If these parametric 338 
assumptions are violated, inference may not be reliable. In addition, the methods described here 339 
and the relationship between incidence and skewness of Ct distributions become unreliable when 340 
there are very few positive cases, so results should be interpreted with caution and sample sizes 341 
increased in periods with low incidence. In some cases with one or a small number of cross-342 
sections, the observed Ct distribution could plausibly result from all individuals very early in their 343 
infection at the start of fast epidemic growth, all during the recovery phase of their infection during 344 
epidemic decline, or a mixture of both (Fig. 4E, Fig. S11). We therefore used a parallel tempering 345 
MCMC algorithm which is able to accurately estimate these multimodal posterior distributions. 346 
Interpretation of the estimated median growth rate and credible intervals should be done with 347 
proper epidemiological context: estimated growth rates that are grossly incompatible with other 348 
data can be safely excluded. 349 

This method may also overstate uncertainty in the viral load distributions if results from 350 
different machines or protocols are used to inform the prior. A more precise understanding of the 351 
viral load kinetics, and modeling those kinetics in a way that accounts for the epidemiologic and 352 
technical setting of the measurements, will help improve this approach and determine whether Ct 353 
distribution parameters from different settings are comparable. Because of this, quantitative 354 
measures from RT-qPCR should be reported regularly for SARS-CoV-2 cases and early 355 
assessment of pathogen load kinetics should be a priority for future emerging infections. The use 356 
of a control procedure in the measurements, like using the ratio of detected viral RNA to detected 357 
human RNA, could also improve the reliability and comparability of Ct measures. 358 

The Ct value is a measurement with magnitude, which provides information on 359 
underlying viral dynamics. Although there are challenges to relying on single Ct values for 360 
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individual-level decision making, the aggregation of many such measurements from a population 361 
contains substantial information. These results demonstrate how population-level distributions of 362 
Ct values can provide information on important epidemiologic questions of interest, even from a 363 
single cross-sectional survey. Better epidemic planning and more targeted epidemiological 364 
measures can then be implemented based on this survey, or use of Ct values can be combined 365 
with repeated sampling to maximize the use of available evidence.  366 
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