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Abstract: The knowledge of genetic variants in genes involved in drug metabolism may be translated
into reduction of adverse drug reactions, increase of efficacy, healthcare outcomes improvement and
economic benefits. Many high-throughput tools are available for the genotyping of Single Nucleotide
Polymorphisms (SNPs) known to be related to drugs and xenobiotics metabolism. DMETTM platform
represents an example of SNPs panel to discover biomarkers correlated to efficacy or toxicity in
common and rare diseases. The difficulty in analyzing the mole of information generated by DMETTM

platform led to the development and implementation of algorithms and tools for statistical and data
mining analysis. These softwares allow efficient handling of the omics data to validate the explorative
SNPs identified by DMET assay and to correlate them with drug efficacy, toxicity and/or cancer
susceptibility. In this review we present a suite of bioinformatic frameworks for the preprocessing
and analysis of DMET-SNPs data. In particular, we introduce a workflow that uses the GenoMetric
Query Language, a high-level query language specifically designed for genomics, able to query public
datasets (such as ENCODE, TCGA, GENCODE annotation dataset, etc.) as well as to combine them
with private datasets (e.g., output from Affymetrix®DMETTM Platform).
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1. Introduction

In the era of precision medicine, the identification of germline variants related to the inter-individual
variability observed in response to the same drug represents a great opportunity for evidence-based
drug prescription. Individual drug response is influenced by multiple and highly variable factors which
impact on the pharmacokinetic (PK) and/or pharmacodynamic (PD). In fact, both physiological and
pathological conditions (aging, kidney and liver function, comorbidities, environmental conditions)
together with genetic background may interfere with drug efficacy and/or toxicity. Although many
studies have identified germline polymorphic variants in genes involved in Adsorption, Distribution,
Metabolism and Excretion (ADME) of drugs in relation to inter-individual variability, their identification
as part of common clinical practice remains an active challenge. In the post genomic era the terms
pharmacogenetics and pharmacogenomics are interchangeable and are here referred to as PGx.
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The objectives of PGx include safer prescriptions, powerful and appropriate drugs, reduction of
healthcare costs and treatment toxicities. In the field of oncology, the role of biomarkers for the
development of precision medicine provides a strategic opportunity for technological developments
to improve human health and reduce health-care costs. While oncogenic somatic alterations are
well known to influence drug response, germline mutations, such as those in BRCA, PALB2, ATM,
and CHEK2 genes, were thought to simply determine individual predisposition to develop breast,
ovarian and other cancers [1–3]. However, among germline alterations, the polymorphic variants
in genes encoding for drug-metabolizing enzymes can be used as predictive biomarkers for drug
efficacy and drug-induced toxicity [4]. Therefore, germline and somatic variants are both potential
PGx predictive biomarkers for drug targets, drug related toxicity and inter-individual variability in
drug response, in the perspective of precision medicine. In PGx studies, the genetic variants evaluated
are Single Nucleotide Polymorphisms (SNPs), nucleotide insertions, deletions, short tandem repeats,
copy number variations (CNV) and chromosomal translocations [5]. SNPs are common inherited
variations (90%) that exert a biological role only when they occur within a regulatory region or in
a gene coding sequence. SNPs are inherited within haplotype blocks and exist in strong linkage
disequilibrium (LD) with a specific genetic variant. In other words, the identification of a specific SNP
allows one to assume the presence of the co-inherited genetic variant. For this reason, SNPs can be
used as tag markers for unseen causative alleles. The closely linked SNP alleles are in blocks, separated
by regions of high recombination (hotspots), in which there are few or many polymorphic variants
which also could be associated with a disease or drug-response phenotype [6]. Keeping this in mind,
the genotype-phenotype correlation assumes high importance in PGx studies and in determining the
individual response to pharmacological therapy.

The identification of polymorphic variants with impact on phenotype has evolved through
three approaches: (1) the candidate gene approach, where a small number of well-known PK or
PD-related markers are tested in a small sample size; (2) the genome wide association study (GWAS)
approach, a hypothesis-free method performed on large populations where high numbers of markers
are simultaneously tested, identifying only common variants but with the need of stringent statistical
correction [7]; (3) the pre-defined SNPs panel approach which includes only thousands of candidate
SNPs relevant pharmacogenes with putative importance. Advancement in technologies, such as next
generation sequencing (NGS), contemplate a diagnostic tool where whole genome or exome sequences
are interrogated as comprehensive PGx genotyping tool in a rapid and large-scale DNA sequencing
technology [8]. Therefore, there has been a revolution in tumor treatment prescription and in drug’s
labeling PGx recommendation towards a more tailored therapy. The candidate gene approach has
the limitation of high rate of false positives, replication of results and overestimation of effect size,
while the multiple comparisons correction used in GWAS leads to false negatives. In addition, GWAS
arrays have a good coverage of PK genes but include a limited number of known PD genes. The SNP
panel represents an ideal compromise between the other two approaches through the simultaneous
genotyping of SNPs with known relevance in PK-PD and a limited need for statistical stringency for
multiple comparisons [9]. Users have the option to customize a SNP-panel choosing the candidate
genes and SNPs that suite best their needs.

The DMETTM platform represents an example of the SNPs panel widely used to discover
biomarkers correlated to efficacy or toxicity in common and rare diseases [10–15]. The difficulty
in analyzing the mole of information generated by DMETTM platform led to the development and
implementation of algorithms for statistical as well as data mining analysis. Moreover, in order to
integrate and validate big-data derived from omics technologies, high-performance software tools, that
are able to deal with these vast amounts of data, are necessary. Software tools allow efficient handling of
omics data to validate the explorative biomarkers identified by DMET assay and to correlate them with
drug efficacy, toxicity and/or cancer susceptibility. These analyses should lead to identifying potentially
predictive biomarkers to be confirmed in well-designed clinical trials for translating purposes. In this
review, we aimed to describe software tools developed specifically for DMET genotyping analysis.
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In addition, we describe how to employ the available software tools in order to integrate information
derived from analysis of matched data (disease, treatment, stadiation, race). The latter might represent
a new approach for biomarkers validation.

2. DMETTM Genotyping Platform

The DMET™ Plus array (Thermo Fisher Scientific, Inc., Waltham, MA, USA) is a PGx
high-throughput genotyping assay, based on microarray technology. It allows to analyze
comprehensively, by a single multiplexed assay, 1931 SNPs and five copy number variations (CNVs)
located in 231 genes encoding phase I and II metabolism enzymes, drug transporters, drug targets and
modifiers, approved by Food and Drug Administration (FDA) as involved in drugs and carcinogenic
metabolism (Supplementary Table S1) [16]. The DMETTM platform is recognized for research
application only. The assay starts from 1 µg of genomic DNA extracted from peripheral blood,
formalin fixed-paraffin-embedded tissue, or buccal swab. The DMETTM Plus assay uses Molecular
Inversion Probe (MIP) technology [17] to amplify the sequence-specific targets for each 1936 marker.
MIPs are single-stranded oligonucleotides consisting of a common linker containing universal PCR
primer binding sites flanked by target-specific probes. The assay probe pool contains one or more MIPs
for each of the genotyping markers. The target-specific probes simultaneously hybridize to the same
DNA fragment, forming a circular structure with the intended target captured between the probes
(annealing); addition of polymerase and ligase results in gap filling and completion of the circular
form by incorporation of the intervening target sequence (gap fill and ligation). Library formation is
performed by cleaving the circular form (exonuclease digestion and inversion), followed by standard
multiplex PCR. PCR products were than fragmented, labeled with biotin and hybridized overnight
(16–18 h) to the array. Finally, arrays were scanned to generate the file containing the intensity signal
for all probes.

After normalization of raw signal values, genotypes are generated using the Affymetrix®DMET
Console software (Version 1.3, Thermo Fisher Scientific, Inc., Waltham, MA, USA) as single-sample
genotyping and converted to standardized name (star nomenclature) to track known polymorphic
variants. Genotypes are determined for each SNP site and reported as homozygous wild-type,
heterozygous, homozygous variant, ‘no call’ or Possible Rare Allele (PRA) in the case of lack of
genotype call. The reproducibility of genotyping results with Sanger sequencing or TaqMan SNP
genotyping assays is 100% [18]. The DMETTM Console generates CEL files containing the raw data
produced by chip-array scans. The CEL files are translated in CHP files and after are exported as
xlsx (excel) or plain text files, formats suitable for statistical or data mining analysis. The analysis
of microarray data is conducted through four steps: (a) preprocessing, which allows background
correction, summarization and normalization; (b) annotation (process which associates to each
gene a set of functional information) and translation (process which converts the genotype calls
(reported in CHP files) to tracked functional allele calls); (c) statistical/data mining analysis; and
(d) biological interpretation. The conversion of intensity value in actionable knowledge can be
conducted by DMETTM Console, apt-DMET-genotype and DMET Analyzer. Affymetrix®DMET
Console and apt-DMET-genotype allow the summarization/normalization of CEL files, the annotation
and translation of genotype calls, then the CHP file and ARR sample files are merged and annotated
using standardized nomenclature. DMET-Analyzer allows the automatic analysis of data provided by
Affymetrix®DMET Console [19]. A scheme of the DMET analysis workflow is represented in Figure 1.
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3. Software Tools to Analyze Genotyping Data

Software tools have become needful to support researchers in omics science and to efficiently
process the vast amounts of data produced by high-throughput technologies. The continuing
improvements in microarrays and NGS mainly due to the continuous reduction of costs, along with the
improvement in the number of variants and/or genes that can be investigated in a single experiment,
spur for the development of software frameworks able to transform the available amount data in
actionable knowledge. The development of appropriate software frameworks and algorithms for
the efficient and scalable data analysis will allow researchers to analyze considerable amounts of
genotyping data in a short time as well as to provide enhancement in the accuracy of the results due to
the capability to investigate the problems from a boarder perspective. Thus the most suitable software
tools can contribute to move the first steps towards the so called Predictive, Preventive, Personalized
and Participatory Medicine (P4 medicine) [20].

Although vendors of genomics platforms provide its proprietary software frameworks with which
it is possible only to handle raw data, i.e., convert the intensity data file in gene expressions or SNPs
value. Vendors do not offer any software tools capable to extract actionable knowledge from the data.

Algorithms and software frameworks able to manage the converted, annotated and summarized
genotyping raw data, they can support researcher in the phase of data analysis to identify knowledge
buried into the data and not easily available. For example, in a case-control study, to identify
the SNPs related to an adverse drug reaction into the population under investigation, without
the support of a specific analysis framework, the analysis should be done manually, a long and
error prone task considering the huge amount of data that must be analyzed. Instead, the use of
specific software frameworks can speed up and simplify the knowledge extraction, since can be
accomplished automatically.
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In this section we present suite of bioinformatic frameworks for the preprocessing and analysis
of DMET-SNPs data. The Affymetrix®DMETTM platform allows us to identify genes involved in
ADME functions obtained in case-control studies. Below we review the open-source bioinformatics
frameworks developed at the Bioinformatics Laboratory of the University of Catanzaro, along with five
other tools providing an overview of their main technical and functional features [21]. A description of
the investigated software tools is presented below. Furthermore, a methodology to integrate genomic
data by using GMQL-Web and a case study are provided.

• DMET-Analyzer [22] is a software framework for the automatic association analysis between the
variations present in the patients’ genome and their clinical conditions, i.e., the different response
to drugs. DMET-Analyzer simplifies the identification of relevant variations into the population
under investigation through the automation of the whole statistical analysis workflow. Moreover,
DMET-Analyzer can annotate SNP data by automatically retrieving the information available
in existing SNP databases, e.g., dbSNP, as well as to interpreter the biological process in which
variants are involved through the association of SNP within a pathway, by automatically retrieving
the information stored in specialized databases, e.g., PharmaGKB. DMET-Analyzer is written in
Java making it compatible with Unix/Linux, MacOS and Windows operating systems, it presents
a simple graphical user interface that allows non-programming users (e.g., doctors and biologists)
to analyze DMET files interactively produced using the Affymetrix DMET-Console. Moreover,
DMET-Analyzer implements the FDR and Bonferroni statistical correctors, the Odds-Ratio and
HardyWeinberg equilibrium calculator. DMET-Analyzer can analyze only DMET files in xlsx (i.e.,
excels files) or plain tab delimited format (i.e., plain text files). Results can be easily saved by
clicking on it and saved in textual format (txt), markup language (html) and so on. DMET-Analyzer
is freely available under the GNU General Public License version 2.0 [23].

• DMET-Miner [24] is a software tool for mining association rules from DMET SNP datasets.
DMET-Miner through the association rules can correlate the presence of multiple allelic variants
with the clinical condition of the patients. Allowing the users to overcome the limitation of the
univariate statistics implemented in DMET-Analyzer that can extract associations among a single
allelic variant and the clinical conditions of samples. For example, the most frequent association
among alleles responsible for the different response to a treatment. DMET-Miner enables users to
automatically mine association rules from a whole DMET datasets, conversely from other available
tool e.g., Weka requiring to the user to preprocess the input file in order to handle missing value,
trivial data and so on. DMET-Miner is written in Java, making it available for all the operating
systems compatible with Java. It presents a simple graphical user interface, allowing the users
to analyze a dataset through some mouse’s clicks. DMET-Miner is distributed under Creative
Commons license and is freely downloadable for academic and not-for-profit institutions [25].

• OS-Analyzer [26] is a software framework implemented in Java for the analysis of SNP microarray
datasets enriched with survival events. OS-Analyzer comes with a simple, effective and intuitive
graphical user interface for the automatic computation and visualization of Overall Survival (OS)
and Progression Free Survival (PFS) curves of case patients, evaluating their association with
ADME gene variants. Moreover, to simplify the researchers work, results according to statistical
significance obtained by comparing the area under the ROC (Receiver Characteristic Curve) curves
are ranked. Statistical Relevance is computed by using the log-rank test, allowing a quick and easy
analysis and visualization of high-throughput data. OS-Analyzer is distributed under Creative
Commons License, is freely available for academic and not-for-profit institutions [27].

• Affymetrix®DMET Console allows to preprocess the raw data file generated by the Affymetrix
DMET for building a comprehensive table containing, for each probe and for each sample,
the detected SNP or a No call value (i.e., ambiguous nucleotide in the SNP). DMET Console
support probe-set summarization of a complete dataset of binary “.CEL” files (containing the
probe-level intensities), the management of resulting preprocessed files “.CHP” (containing the
gene-level information) and the building of tabular dataset containing the genotype call for all
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the probesets and all the samples of an experiment. Once the preprocessing phase is completed,
the relationship between the detected SNPs and the response to drugs must be tested. Because of
DMET Console does not allow this test, in order to discover statistically significant associations,
researches have to export and manually process SNPs tables produced by the DMET Console
thought the use of external tools (e.g., statistical software).

• Affymetrix Power tools suite (APT) is a set of command line programs that implement different
algorithms for preprocessing Affymetrix microarray data. Two of the most popular programs
in APT are: apt-dmet-genotype, for making genotype calls from Affymetrix genotyping arrays,
and apt-probeset-summarize for analyzing gene expression arrays. Such as DMET Console, both
programs are generally focused on .CEL file analysis.

• The GenoMetric Query Language (GMQL) [28] is a high-level query language, inspired by
classic traditions of data-base management, that extends conventional algebraic operations
with bioinformatics domain-specific operations specifically designed for genomics; thus, it
supports knowledge discovery across thousands or even millions of samples comparing genomic
regions on the basis of metric properties but also arbitrary attributes and metadata that concern
regions and samples, respectively. In particular, datasets are described by the Genomic Data
Model (GDM) [29], based on the notion of genomic region, which provides interoperability
between several data formats. In addition, GDM combines abstractions for genomic region data
with the associated experimental, biological and clinical metadata. GMQL system can be used
online through a specific Web interface which provides a user-friendly intuitive environment for
bioinformaticians and biologists who need to query genomic processed data (e.g., sourcing from
big consortia such as ENCODE, TCGA, GENCODE or RefSeq) as well as to combine them with
their private datasets (i.e., datasets created by a specific user as result of their own experiments
and studies, e.g., output from Affymetrix®DMETTM Platform). Such environment provides
portable and scalable genomic data management on powerful servers and clusters (based on
Apache Spark).

• PLINK [30] is a free, open-source tool for GWAS and research in population genetics. PLINK works
on five core functional domains: data management, summary statistics, population stratification,
association analysis and identity-by-descent estimation. Association tests can be run by PLINK
to evaluate case-control data to determine if an SNP has an effect on disease status. PLINK can
run either as a stand-alone tool (from the command line or via shell scripting) or in conjunction
with gPLINK, a Java-based graphical user interface (GUI) that offers a simple project management
framework to track PLINK analyses and facilitates the integration with Haploview.

• Haploview [31] is a comprehensive suite of tools, written in Java language, for analysis and
visualization of LD and haplotype maps. Haploview accepts input in a variety of formats and
generates marker quality statistics, LD information, haplotype blocks, population haplotype
frequencies and single marker association statistics. Haploview is fully compatible with data
dumps from the HapMap project. HapMap genome browser allows researchers to explore
a particular region of the genome and extract HapMap genotype data for all genotyped markers in
the selected region in a format accepted by Haploview. Haploview currently supports visualization
and plotting of PLINK whole genome association results [32].

The significant improvements because of the use of the microarrays have led to an increase in the
number of variants that it is possible to investigate in a single experiment as well as a reduction of the
analysis time, allowing to produce considerable amounts of data in ever shorter times. Therefore, it is
necessary to develop software tools and algorithms capable of managing ever-increasing volumes of
data. The following is a summarization of the parallel and web applications developed to efficiently
deal with huge genotyping datasets.
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• coreSNP [33] is a tool implemented in Java language, for the parallel pre-processing and statistical
analysis of DMET SNP datasets. The scalable implementation is obtained exploiting the
multi-threading capabilities of modern CPUs, allowing core SNP to manage huge amount
of DMET data. The automatic association analysis between possible genome variations of the
patient and the clinical conditions through the well-known Fisher’s Test is obtained. Moreover,
multiple-statistical correctors i.e., Bonferroni and False Discovery Rate, with which to improve the
statistical significance of results, are available. The visualization of the detected SNPs as heatmap
plot provides a visual feedback that simplifies the interpretation of the results.

• Parallel Association Rules Extractor from SNPs (PARES) [34] is a multi-thread software tool
developed in Java for the parallel extraction of association rules by which to correlate the presence
of a multiple allelic variants with the patients’ clinical condition, i.e., the most likely set of alleles
responsible for the onset of adverse drug reactions. PARES is a multi-thread version based on the
optimized version of the Frequent Pattern Growth (FP-Growth) algorithm. PARES encompasses
a customized SNP dataset preprocessing approach based on a Fisher’s Test Filter to prune trivial
transactions, allowing to shrink the search space as well as to reduce the FP-Tree size enabling
a better management of the main memory. PARES comes with a simple and intuitive graphic user
interface, where specific skills are not necessary to extract multiple relations between genomic
factors buried into the datasets. PARES is distributed by BioinfoLabUnicz, under Creative
Commons license, is freely downloadable for academic and not-for-profit institutions [35].

• GenotypeAnalytics [36] is a representational state transfer (RESTFul) service by which to mine
association rules from SNP-dataset through the use of a common web-browser. GenotypeAnalytics
can speed up and simplify the analysis of massive amount of SNPs data, highlighting in
a remarkable way only the SNP involved in the development of the disease or in adverse drug
reaction. GenotypeAnalytics can support researcher and medical doctors to discern new molecular
markers that can be (after further opportune validations) used into the clinical contexts. Possible
new molecular markers can be used to perform pathway enrichment to understand which SNPs
are responsible for the pathway’s anomalies or the SNPs that influence drug responses in subjects
with the same pathology following the same therapy.

• Cloud4SNP [37] is a Cloud software tool for the parallel pre-processing and statistical analysis
of DMET SNPs data. Cloud4SNP is the Cloud version of DMET-Analyzer [22] that has been
implemented on the Cloud using the Data Mining Cloud Framework, a software environment for
the design and the execution of knowledge discovery workflows on the Cloud. Cloud4SNP is
developed in Java and presents a simple graphical user interface that can be accessed by means
of a common web-browser. Providing the analysis workflow as a service, it allows the users
to upload and analyze the data without to buy expensive hardware or to setup the analysis
environment. Cloud4SNP allows one to identify the relevance of the presence of SNPs in one of the
two classes of samples using the well-known Fisher test, along with the use of multiple-statistical
correctors such as Bonferroni and FDR.

The main features of the presented software frameworks are summarized in Table 1.



High-Throughput 2020, 9, 8 8 of 16

Table 1. Main features of the presented software frameworks.

Software Availability Main Features IA Interface OS DM Statistical Prep CS Weaknesses Strengths

DMET-
Analyzer Free

Analysis of Variants
based on Statistical
test

Annotations
and direct link
to external
databases

Command
line, GUI

Platform-
independent NO YES YES L

Single allelic
variants discovery;
Unable to dig with
Affymetrix raw files;

It automatically
analyses data in
case-control
association
studies;

DMET-Miner Free
Analysis of Variants
using Association
Rules mining

Annotations
and direct link
to external
databases

GUI Platform-
independent YES NO YES L Manage small

Dataset
Multiple allelic
variants discovery

OS-Analyzer Free
computation and
visualization of OS
and PFS curves

Integration of
genomic and
clinical data

GUI Platform-
independent NO YES YES L

It cannot analyse
gene expression data
in order to plot OS
curves (3)

High performance
with respect to
other statistical
tools;
Automatic analysis
of whole DMET
SNPs Dataset

Affymetrix
DMET-Console Free*

Preprocessing of
raw data generated
by DMET

NO GUI Windows NO NO YES L

Lacks in the
possibility of doing
statistical and data
mining analysis;

It allows only the
preprocessing of
binary data

Affymetrix
Power tools suite
(APT)

Free*

They implement
algorithms for
analyzing and
working with
Affymetrix
Microarrays

YES command
line

Platform-
independent NO NO YES M

Lacks in the
possibility of doing
statistical and data
mining analysis

Analysis of
intensity
microarray data to
produce final
tabular dataset

The GenoMetric
Query Language
(GMQL)

Free

Query, Download
and Integrate
Public with Private
Genomic Datasets

Integrate
Public with
Private
Genomic
Datasets

Web interface Platform-
independent NO NO NO M

Allows to perform
only genometric
queries

It combines
private dataset
with publicly
available datasets

PLINK Free
Analysis of
genotype/phenotype
data

YES command
line, GUI (5)

Platform-
independent NO YES YES H

Allows to perform
only statistical
analysis

Data management,
statistical analysis,
association
analysis of
whole-genome
studies
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Table 1. Cont.

Software Availability Main Features IA Interface OS DM Statistical Prep CS Weaknesses Strengths

Haploview Free Haplotype analysis YES GUI Platform-
independent NO YES NO M

Allows to perform
only statistical
analysis

Graphical
computation of LD
statistics and
population
haplotype patterns

coreSNP Free
Parallel analysis of
Variants based on
Statistical test

NO GUI Platform-
independent NO YES YES L

single allelic variants
discovery;
Unable to dig with
Affymetrix raw files

Massive parallel
analysis of SNPs
dataset

PARES Free
Parallel association
rules extraction
from SNP Datasets

NO GUI Platform-
independent YES NO YES L Manage small

Dataset
Multiple allelic
variants discovery

Genotype
Analytics Free Web Services for

bioinformatics YES Web interface Platform-
independent YES YES YES L

Data mining and
statistical Web
Services to analyse
SNP Datasets

Cloud4SNP Free
Cloud Serices to
analyse SNP
Datasets

YES Web interface Platform-
independent NO YES YES L

Allows to perform
only statistical
analysis

Easy to use
through Web
Browser

Notes: This table summarizes the main features of the listed genomics framework tools. In the table, the column “Availability” provides information about the license of use of each tool.
Free* in Availability means that the tool is free to use after registration on the vendor web site. “Main features” column shows the main functionalities of the listed tools. “IA” stands for
Integrative Analysis specifying if IA is provided by the tool. “Interface” column provides information about how to access the tool functions. “OS” stands for Operating System, indicating
the compatibility between OS and each tool. “DM” is short for Data Mining, meaning if DM analysis is provided by the tool. “Statistical” indicates if Statistical Analysis is provided by the
tool. “Prep” stands for Preprocessing and it shows if Preprocessing is provided by the tool. “CS” stands for Computer Skills and it describes the levels of competency in using tools
(i.e., L indicates basic computer knowledge, M indicates limited computer knowledge, H indicates expert to manage software).
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4. A New Methodology to Integrate Genomic Public Data with Genotyping Private Data

The developments of high-throughput technologies have accelerated the accumulation of massive
amounts of omics data from multiple sources. In contrast to the traditional approaches in which data
from each source have been analyzed in isolation, integrative analysis of multi-omics and clinical
data has become a key for new biomedical discoveries and advancements in precision medicine [20].
Indeed, isolated omics studies frequently fall short when identifying the cause of complex diseases
such as cancer. Although there has been much technological progress, the integration across data sets
and data types remains limited. In this section we illustrate a methodology [38], based on the use
of GMQL System, for combining private datasets such as DMET Platform [19] output with public
datasets already available in the GMQL Repository as well as external (i.e., external public dataset
can be uploaded following the steps of workflow in Figure 1 such as for private dataset). A private
dataset is an alternative to public dataset and it is created by a specific user through some uploading
operations or it is a result of some GMQL queries. The methodology consists of the following main
three phases: data preprocessing, data ingestion and query-download results (Figure 2).
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4.1. Data Preprocessing Stage

This stage prepares raw data for further processing and it is necessary since most of the datasets
obtained as outputs from various systems are noisy, incomplete, inconsistent and contain outliers.
Data preprocessing is a method of resolving such issues. Once preprocessed, the dataset needs to
be transformed into a GDM compliant format in order to employ it within GMQL-web. Each GDM
dataset is a collection of samples with the same region data schema and with the same type features;
each sample, in turn, corresponds to a pair of files which contain:

(i) region data: describing the physical coordinates of the genomic areas (e.g., the genomic position
of the Affymetrix probes) and other optional genomic features (e.g., p-value, peak, q-value);

(ii) metadata: unstructured attribute-value pairs describing general properties (i.e., biological,
clinical, and experimental) of the sample;

It must be considered that conversion of genome coordinates between different assemblies is often
required for many integrative and comparative studies (e.g., Affymetrix DMET results are aligned to
GRCh37/hg19 genome build thus they could need to be remapped to current genome build GRCh38.

4.2. Data Ingestion Stage

GMQL-Web interface allows one to combine private datasets with public datasets through the
“Add/Upload new dataset” feature that allows the user to choose among two options for uploading
private datasets files:
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1. the standard file-format mode allows one to use a number of file standard formats directly supported
by the system [39] (e.g., BED, NarrowPeak, BroadPeak, VCF, etc);

2. the custom file-format mode can be chosen by selecting the “Custom (GTF or tab/delimited)” option
and it allows one to use a user-defined format following the guidelines of Gene Transfer Format
(GTF) [40] or TAB-delimited formats. In this case it is required the definition of an additional
Extended Markup Language (XML) format Schema file describing the structure of the dataset
to upload. Once uploaded, the private datasets are shown in the “interface datasets viewer”
under the “Private” folder and it can be managed independently or in combination with other
public datasets.

4.3. Query/Download Results Stage

A GMQL query is a sequence of operations, applied on one or more datasets, resulting in the
creation of new datasets. A query is expressed as a sequence of GMQL operations, each with the
following structure:

<OV> = OPERATOR (<params>) <IV1><IV2>

Where OV stands for output variable, an operator can be tuned using optional parameters, and IV1
and IV2 are input variables (Data-Driven Genomic Computing [41]).

Among all GMQL unary and binary operators, we here focus only on three of them, since they are
used in the reported following example:

SELECT creates a new dataset from an existing one by extracting a subset of samples from the
input dataset. Several conditions can be combined using Boolean operators;

MATERIALIZE writes the content of a dataset to a file and it registers the saved dataset in the
repository to make it usable in other queries;

MAP applies to two datasets, a reference and an experiment. For each sample in the experiment
dataset, it computes aggregates over the values of the regions that intersect with at least one region,
in at least one reference sample. The count aggregate counts the number of experiment regions that
intersect a specific reference region.

The right side of Figure 1 shows GMQL queries can be applied to public datasets optionally
combined with private ones (derived from the previous preprocessing and ingestion phases). The GMQL
Web “Query editor” allows one to write the query that will be later compiled and executed. Once
results are produced (i.e., materialized) they become available in the “Datasets viewer” for browsing,
further processing or downloading.

5. Case Study

5.1. Integration of Private DMET Platform Data with GENCODE Annotation Database

In this Section we illustrate a representative example of how to applicate our methodology for
integrating DMET platform genotype results, with dataset sourcing from GENCODE annotation
database [42]. The methodology used the workflow shown in Figure 3 involving DMET platform,
GMQL system and, in general, public genomic databases. Figure 4 focuses on the case study workflow
that specifically involved GENCODE as a public genomic database.
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outcome with GENCODE annotation database.

5.2. Data Preprocessing Stage

DMET-Console output is a tab-delimited file structured as a matrix with 1936 rows (probes) and
a number of columns related to the number of subjects enrolled in the analysis. The value contained in
the (i-th,j-th) cell is the SNP detected in the i-th probe and belonging to the j-th subject. The tab-delimited
file obtained from DMET Console needs be transformed into a GDM compliant format. We located the
position of the DMET SNPs within the genomic region by using the DMET [43] annotation file which
provided the genomic coordinates for each Affymetrix probe. In order to integrate the DMET SNPs
output with the GENCODE v27 dataset, already available in the GMQL Repository, the DMET probes
genomic coordinates were mapped to current genome build GRCh38 by using the UCSC Lift Genome
Annotations tool [44].

5.3. Data Ingestion

As depicted in Figure 2 (central part) the user can choose among two options for uploading private
datasets files. We have chosen the custom file-format mode. We created a tab-delimited file containing the
DMET dataset where the columns are defined as follows: the first is the Affymetrix Probe identifier (i.e.,
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a unique Affymetrix identifier for the probe set or SNP); the next four contain the values describing the
genomic regions (i.e., chromosome, start, stop, strand); the fifth and sixth columns contain respectively
the dbSNP RS ID (i.e., RS ID from dbSNP database, e.g., rs11584174, rs2501870, etc.) and the associated
identifiers in the PharmGKB database. The remaining columns contain the detected SNPs for each
subject. The XML schema file describing the structure of the dataset must be created before loading the
DMET dataset. Once the dataset file and its schema are obtained, we uploaded them in GMQL-Web
using the feature “Add/Upload”.

5.4. Query/Download Results

Once the DMET output file (containing the SNPs detected by 33 probes on 28 subjects) was
uploaded into GMQL Web system, the query in Listing 1 (Figure 5) was executed in order to:

• select SNPs from DMET Dataset;
• select exon regions from GENCODE annotation dataset;
• map exon regions on SNPs regions;
• select only SNPs regions that overlap at least one exon region.
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Figure 5. Listing 1—query for integrating DMET dataset with GENCODE dataset.

The result of the MAP operation (EXON_Map) was a dataset which contained SNPs equipped
with the count (SNP_count) of exons overlapping with that nucleotide. Many SNPs did not overlap
with exon, thus the SNP_count is zero. The select statement filters out samples containing a region
with null count. Results of this query (Figure 6) contain SNPs region coordinates (chromosome, start
and end positions, strand) and additional characterizing attributes (gene name, dbSNP ID, all SNPs
detected by DMET in that region and the number of overlapped exon regions).
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6. Conclusions

Comprehension of the role of common variations in ADME genes has the potential to significantly
improve clinical research by predicting the contribution of an individual genetic make up to PK
and PD activity. This knowledge may be translated into reduction of ADRs, increase of efficacy as
well as healthcare outcomes improvement and economic benefits. Many high-throughput tools are
available on the market for the genotyping, at different scale, of SNPs known to be related to drugs
and xenobiotics metabolism. Among these the DMET technology has been widely used in clinical
research. Understanding how genes are affected by SNPs associated with a pharmacological phenotype
is crucial for the prescription of the right drug for the right disease in the era of precision medicine.
The advancement in high-throughput technologies has urged to consult and integrate massive amounts
of public omics data from different sources as well as to validate private genotyping results. For instance,
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DMET plus SNPs platform applied to a limited and private sample of patients, allows one to identify
genotypes that may support the discovery of biomarkers in the optic of precision medicine.

However, genetic associations identified in the initial study need to be confirmed in an additional
non overlapping study samples in order to replicate the statistically correlation between the same
genetic variants and the trait of interest. Moreover, the biomarker validation process includes two
important concepts i) analytical validation and ii) clinical qualification. The first refers to the reanalysis
of all, or a subset of genetic variants investigated in the initial study, and includes the process to assess
the accuracy, the robustness and reproducibility of the assay. The clinical qualification regards the
correlation of the identified biomarker with biologic processes and clinical endpoints. The clinical
translation of a biomarker is regulated in the European Community (CE) and United States (US) by
different steps to achieve the inclusion in clinical practice guidelines [45] as FDA-cleared or CE-IVD
marked clinical diagnostic tests. In this scenario, annotated SNP effects need to be interpreted in
the broader context of genes, LD and molecular pathways, and so functional information could be
integrated from different repositories. The integration of genotype data with biological and clinical
information, could be possible using public databases including gene expression, methylation and
sequencing data. The functional validation of the impact of a genetic variant, hypothesized through the
integration of GWAS/exome, RNA-seq, and protein data, will contribute to reveal further translational
and protein structural effects of potential biomarkers.

In this work we described all the algorithms developed up to now to analyze genotyping data,
generated through DMET Console software and GMQL System, with the aim to integrate private
DMET Platform results, across data sets and data types output, with public datasets already available
in the GMQL Repository and external public dataset. In our model of analysis, the opportunity to insert
specific queries to interrogate a public dataset with the aim to identify predictive biomarkers of drug
efficacy/toxicity or disease susceptibility, allows us to characterize also the role of tag SNPs providing
useful confirmation of hypothesized models for gene and genome dynamics. The integration of
genotype data with biological and clinical information through the approaches described is important
for the understanding, expansion and validation of the knowledge on the SNP-association and its
clinical translation. The identification of predictive biomarkers is the major goal of biomedical research.
However, the ability to consult and integrate large-scale molecular data have not been largely applied,
precluding further advances in precision medicine. Additional efforts are needed to translate into
clinical practice the promise of genomic and other molecular data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-5135/9/2/8/s1.
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