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Abstract: Background: Morphological alterations in intracranial pressure (ICP) pulse waveform
(ICPW) secondary to intracranial hypertension (ICP >20 mmHg) and a reduction in intracranial
compliance (ICC) are well known indicators of neurological severity. The exclusive exploration of
modifications in ICPW after either the loss of skull integrity or surgical procedures for intracranial
hypertension resolution is not a common approach studied. The present study aimed to assess
the morphological alterations in ICPW among neurocritical care patients with skull defects and de-
compressive craniectomy (DC) by comparing the variations in ICPW features according to elevations
in mean ICP values. Methods: Patients requiring ICP monitoring because of acute brain injury were
included. A continuous record of 10 min-length for the beat-by-beat analysis of ICPW was performed,
with ICP elevation produced by means of ultrasound-guided manual internal jugular vein compres-
sion at the end of the record. ICPW features (peak amplitude ratio (P2/P1), time interval to pulse
peak (TTP) and pulse amplitude) were counterweighed between baseline and compression periods.
Results were distributed for three groups: intact skull (exclusive burr hole for ICP monitoring),
craniotomy/large fractures (group 2) or DC (group 3). Results: 57 patients were analyzed. A total
of 21 (36%) presented no skull defects, 21 (36%) belonged to group 2, whereas 15 (26%) had DC.
ICP was not significantly different between groups: ±15.11 for intact, 15.33 for group 2 and ±20.81
mmHg for group 3, with ICP-induced elevation also similar between groups (p = 0.56). Significant
elevation was observed for the P2/P1 ratio for groups 1 and 2, whereas a reduction was observed
in group 3 (elevation of ±0.09 for groups 1 and 2, but a reduction of 0.03 for group 3, p = 0.01),
and no significant results were obtained for TTP and pulse amplitudes. Conclusion: In the present
study, intracranial pressure pulse waveform analysis indicated that intracranial compliance was
significantly more impaired among decompressive craniectomy patients, although ICPW indicated
DC to be protective for further influences of ICP elevations over the brain. The analysis of ICPW
seems to be an alternative to real-time ICC assessment.

Keywords: intracranial compliance; intracranial pressure; decompressive craniectomy; acute brain damage

1. Introduction

The skull content—the cerebrospinal fluid (CSF), the brain, and the blood volumes—is
a major component and determinant of intracranial pressure (ICP). The capacity to accom-
modate the different intracranial compartments is named intracranial compliance (ICC).
ICC is a property of dynamic volumes inside a cavity whose expansion is very limited,
indicating the hemostasis amongst them [1]. In addition, ICC may reflect the compen-
satory changes of vessels (mainly the great intracranial venous sinuses) and the CSF spaces
(cisterns, ventricles and subarachnoid), according to ICP elevations [2–4].
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Recently, the International Multidisciplinary Consensus Conference on Multimodality
Monitoring in Neurocritical Care made a list of recommendations that included ICP moni-
torization [5]. The consensus strongly recommends ICP monitoring to guide medical and
surgical interventions, and to detect life-threatening imminent herniation. Nevertheless,
the ICP threshold value for intervention is still uncertain. The continuous assessment
and monitoring of ICP, including waveform quality, is also strongly recommended [6].
In addition, the committee indicated that further research into the relationship between
ICP and clinical outcomes will benefit from automated, high-resolution monitoring and
alternate forms of analysis [5].

Likewise, in recent years the knowledge on the ICP pulse waveform (ICPW) has
advanced, as well as its clinical application. ICPW is an early marker of ICC impair-
ment [3,7–9] and is mainly represented by three distinct peaks: P1 (percussion wave), P2
(tidal wave) and P3 (dicrotic wave) [10]. Under physiologic conditions, P1 produced by
arterial contraction is the highest peak observed, with P2 reflecting both vascular and
ventricular repercussion of pressure pulse spread. As cerebrovascular resistance is nor-
mally lower [11] in comparison with other systems and organs, the tidal wave assumes
an amplitude lower than P1. When the buffering mechanisms described above are ex-
hausted and intracranial hypertension (ICH) is present, there is [12] deformation of ICPW,
with P2 assuming an amplitude higher than P1, and the ICPW becomes progressively
pyramidal [13], with the enlargement of the time interval between P1 and P2 [7] (Figure 1).
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All the findings described above have been investigated in animal models or clinical
observational studies; however, ICPW changes after ICH treatment surgery have been
poorly assessed. Surgery for mass lesion removal or decompressive craniectomy (DC)
changes brain architecture and dynamics [14], which makes ICP thresholds also change. In
this environment, multimodal monitoring becomes essential to guide therapeutic interven-
tions [6,15,16]. Although neurosurgical procedures are effective for ICP control, morbidity
remains high, which might be explained by the persistence of low ICC (despite ICP under
acceptable standards). The primary objective of the present study was to evaluate ICPW
changes after surgery procedures and correlate them with ICC.

2. Methods

This is a single center, prospective and observational case series trial in the neurological
intensive care unit of Hospital das Clínicas, São Paulo University, Brazil. This clinical trial
(CT) study protocol was approved by the local Ethics Committee, on 23 May 2017 (REB
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register 66721217.0.0000.0068), and registered under number NCT03144219 (available
from 15 July 2017 at clinicaltrials.gov). All methods were performed in accordance with
the relevant guidelines and regulations, and informed consent was obtained from all
legally authorized representatives (LAR)/next of kin instead of the patients because of
illness severity.

2.1. Study Design

All patients included in the study suffered an acute brain injury with the need for
ventilatory support and invasive ICP monitoring in accordance with guidelines adopted
by our institution. Data collection consisted of a 10-min session of simultaneous recording
of spontaneous fluctuations of invasive arterial blood pressure, ICP, heart rate and oxygen.
At minute 7, an ultrasound-guided manual internal jugular vein compression (IJVC) was
performed for 60 s (Figure 2).
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Figure 2. A manual internal jugular vein (blue) compression was performed for 60 s to elevate ICP
with the aid of ultrasound to avoid compressing common carotid artery (red).

2.2. Participants

Inclusion criteria consisted of any neurocritical patients who underwent ICP invasive
monitoring up to the fifth day of catheter insertion. We excluded those presenting with
fixed mydriatic or middle-sized pupils for more than 2 h after ventilatory and hemody-
namic stabilization.

2.3. Clinical and Intracranial Variables

Demography, clinical, imaging presentation and severity scores were recorded.
The clinical variables collected were age in years (continuous variable), diagnostics, ad-
mission Glasgow score, simplified acute physiologic score (SAPS3), Marshall tomographic
score in the case of traumatic brain injury (TBI), modified Fisher tomographic score in
the case of subarachnoid hemorrhage (SAH), arterial blood pressure, axillar temperature,
heart and respiratory rates, oxygen saturation and sedatives administrated. ICP was moni-
tored with the Neurovent monitoring system (Raumedic®, Munchberg, Germany), which
consists of a pressure probe for ventricular use. This system can be attached to any monitor
using a small zero-point specific simulator for the patient monitor type.

clinicaltrials.gov
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2.4. Data Acquisition and Analysis

The automated analytics system verified all data collected, i.e., ICP pulse wave mor-
phology parameters such as the P2/P1 ratio (P2 amplitude divided for P1 amplitude),
the time-to-peak (TTP—time interval from the beginning of each pulse until P2) interval
and pulses amplitudes (mean amplitudes of each pulse) [17]. For this study, all calculations
were performed using the mean pulse of the ICP, excluding possible artifacts. The mean
pulse was obtained by calculating the amplitudes of the P1 and P2 peaks and subtracting
to the base value of the ICP pulse. The automated system was Phyton based, with Numpy
and Scipy libraries [18]. This system calculated the time interval where P2 should be
depicted on the waveform and TTP according to the cardiac cycle (Figure 3).
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compression (plateau between arrows) intervals.

2.5. Sample Size

The sample size was not calculated a priori, but the achieved sample size had 80%
power to detect interactions between the three skull groups (intact, craniotomy/fracture
and craniectomy) and the two moments (before and during jugular vein compression) with
an effect size (η2) of at least 0.06 (moderate), assuming alpha error probability 0.05 and
correlation among repeated measures 0.5.

2.6. Statistical Analysis

For descriptive purposes, categorical variables were presented through relative and
absolute frequencies and compared using the chi-squared or Fisher exact test, as appro-
priate. Continuous variable distributions were deemed normal as assessed by skewness,
kurtosis and graphical methods. There were no missing data for the intracranial monitor-
ing parameters.

Repeated measures ANOVA analyses were employed to compare the intracranial moni-
toring parameters’ behavior between the groups along the experiment. The effect size was
standardized by the eta squared (η2). As a sensitivity analysis, a multivariable linear regres-
sion was modeled to verify the effect of the skull defect in the intracranial parameter variation
(during compression—baseline) after adjustment for age and the baseline parameter.

All tests were 2-sided and final p values under 0.05 were considered statistically
significant. All analyses were conducted with SPSS software (IBM Corp. SPSS Statistics
para Windows, version 24.0. Armonk, NY, USA).

3. Results
Sample Features

A total of 98 eligible, consecutive patients admitted between August 2017 and May
2020 were included. A total of 41 patients were excluded from this analysis—7 were not
adults, 25 recordings disclosed not proper quality for analysis and for 10 patients data were
lost. A total of 38,456 intracranial pressure pulses were analyzed, derived from the 10-min
sessions of our final sample of 57 patients (Figure 4).
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intracranial pressure pulse waveform, IJV: internal jugular vein.

Table 1 depicts the sample characteristics according to skull defect groups. Age, sex,
hemoglobin and general clinical severity (SAPS3) were similar between groups. Regarding
the pathology, stroke was more frequent among those with craniectomy (adjusted residual
3.4, p = 0.028). DC was left side for eight (53%) patients, right side for six (40%) and bilateral
in one (6%) case.

Table 1. Sample characteristics according to skull defect (n = 57).

Variable
Skull

p-Value
Intact (21) Craniotomy or Fracture (21) Craniectomy (15)

Age 38.3 ± 15.2 36.1 ± 11.1 36.5 ± 13.8 0.551

Male sex 15 (71.4) 10 (47.6) 12 (80.0) 0.098

Pathology 0.028

Traumatic brain injury 17 (81.0) 14 (66.7) 9 (60.0)

Subarachnoid hemorrhage 4 (19.0) 5 (23.8) 1 (6.7)

Stroke 0 (0.0) 1 (4.8) 5 (33.3)

Tumor 0 (0.0) 1 (4.8) 0 (0.0)

Hemoglobin 10.3 ± 1.6 10.0 ± 1.5 10.3 ± 1.8 0.854

<10 mg/dL 8 (38.1) 9 (42.9) 6 (40.0) 0.951

<9 mg/dL 5 (23.8) 4 (19.0) 4 (26.7) 0.857

<8 mg/dL 2 (9.5) 1 (4.8) 0 (0.0) 0.447

SAPS3 53.5 ± 12.1 62.2 ± 12.6 63.2 ± 14.3 0.082

Admission GCS 8.4 ± 4.3 7 ± 3.3 6.7 ± 3.2 0.093

BMI 22.5 ± 4.2 22.9 ± 3.7 21.7 ± 2.5 0.143

30 days mortality 5 (23) 6 (28) 5 (33) 0.075

Categorical variables are presented as n (%). Continuous variables are presented as mean ± standard deviation. GCS: Glasgow coma score,
BMI: body mass index.
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Table 2 presents the intracranial monitoring parameters according to skull defect
and adjusted for age. All groups had an ICP increase during IJVC, but no interaction
was disclosed between group and period (baseline/compression) (p = 0.565) (Figure 5).
The P2/P1 ratio also increased during IJVC for the intact and craniotomy/fracture groups,
but did not change for the craniectomy group (p value for interaction 0.010 and partial η2

0.161, a large effect size). Time-to-peak and amplitude did not change significantly during
IJVC nor presented interaction between group and period (baseline/compression). These
results are the same after adjustment for hemoglobin and SAPS3.

Table 2. Intracranial monitoring parameters according to skull defect (n = 57).

Parameter Skull Baseline Jugular Vein
Compression

Difference
(95% CI) p-Value Partial η2

Intracranial
pressure (mmHg)

Intact 15.11 ± 8.10 19.45 ± 7.65 4.54
(3.22–5.87)

0.565 0.021
Craniotomy or Fracture 15.33 ± 6.53 19.62 ± 7.44 3.90

(2.90–4.91)

Craniectomy 20.81 ± 10.22 23.93 ± 9.46 2.44
(1.64–3.24)

P2/P1 ratio

Intact 1.01 ± 0.24 1.11 ± 0.22 0.09
(0.04–0.15)

0.010 0.161
Craniotomy or Fracture 1.14 ± 0.30 1.21 ± 0.28 0.07

(0.02–0.11)

Craniectomy 1.21 ± 0.32 1.18 ± 0.26 −0.03
(−0.8–0.03)

Time-to-peak (ms)

Intact 0.20 ± 0.08 0.21 ± 0.08 0.01
(−0.01–0.03)

0.693 0.014
Craniotomy or Fracture 0.23 ± 0.09 0.25 ± 0.08 0.02

(−0.01–0.05)

Craniectomy 0.22 ± 0.10 0.23 ± 0.10 0.01
(−0.01–0.03)

Amplitude (mV)

Intact 10.87 ± 7.80 11.35 ± 7.79 0.48
(−0.06–1.03)

0.739 0.011
Craniotomy or Fracture 5.58 ± 3.32 6.06 ± 3.92 0.48

(0.07–0.90)

Craniectomy 4.31 ± 3.09 4.56 ± 3.32 0.25
(−0.17–0.67)

Data presented as mean ± standard deviation. The p values refer to the interaction between skull defect and time. Adjusted for age. CI:
Confidence interval.

Since baseline ICP and the P2/P1 ratio tended to be higher in the craniectomy group,
sensitivity analyses were conducted to verify the independent association between this
skull defect and the P2/P1 ratio behavior during IJVC. Figure 6 presents a stratified
analysis of the P2/P1 ratio behavior during IJVC according to baseline P2/P1 status
(normal or altered). Those with an altered baseline P2/P1 ratio and intact skull (n = 6 (28%))
or craniotomy/fracture (n = 10 (47%)) presented an increase in the P2/P1 ratio during
IJVC (mean difference 0.05, 95% IC 0.01–0.09, p = 0.033), but not those with craniectomy
(n = 9 (60%); mean difference −0.07, 95% IC −0.15–0.02, p = 0.103; p value for interaction
0.026). Thus, the results presented in Table 2 and Figure 6 cannot be attributed to a ceiling
effect. Similarly, those with a normal baseline P2/P1 ratio and intact skull (n = 15) or
craniotomy/fracture (n = 11) presented an increase in the P2/P1 ratio during IJVC (mean
difference 0.10, 95% IC 0.05–0.16, p = 0.001), but not those with craniectomy (n = 6; mean
difference 0.03, 95% IC −0.02–0.08, p = 0.134), although the interaction did not reach
statistical significance (p = 0.425).
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Figure 6. P2/P1 according to skull defect and baseline P2/P1 status.

Aiming to perform another sensitivity analysis, a multivariable linear regression
was modeled to verify the effect of the skull defect in the P2/P1 ratio variation (during
compression—baseline) after adjustment for age and the baseline parameter (Table 3).
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Compared to the intact or craniotomy/fracture groups, craniectomy was independently
associated with less P2/P1 ratio variation (−0.09, 95% IC −0.15–−0.02, p = 0.009), regardless
of the baseline status.

Table 3. Multivariable linear regression for P2/P1 variation (after compression—baseline).

Variable Coefficient (95% CI) SE Standardized Coefficient t Value p Value

Craniectomy (compared to
intact or craniotomy/fracture) −0.09 (−0.15–−0.02) 0.03 −0.33 −2.72 0.009

Altered baseline P2/P1 ratio −0.07 (−0.13–−0.01) 0.03 −0.30 −2.49 0.016

Age −0.001 (−0.002–0.001) 0.001 −0.20 −1.74 0.088

CI: Confidence interval; SE: Standard error.

No adverse events were reported during this study’s intervention and monitoring.

4. Discussion

The main novelty of the present study was to explore ICPW features in a population of
neurosurgical patients when skull integrity has been lost. The main finding was the obser-
vation of an opposite behavior regarding the P2/P1 ratio among subjects with acute closed
skull brain damage and even after craniotomy, in comparison with the craniectomized
patients. Although not statistically significant, DC patients disclosed higher baseline mean
ICP levels and P2/P1 ratio, with a significant decrease in the latter when ICP elevation
was induced. Thus, the study demonstrated that the P2/P1 ratio may bring additional
information for neuromonitoring [3,19] and the effect of DC that not just ameliorated ICP
but also increased the intracranial compliance, protecting for further elevations in ICP. This
agrees with previous studies using different methodologies [20–22].

Patients submitted to DC have a more severe neurological condition, and that is
the reason why the ICP was higher and the P2/P1 ratio remained higher after DC in
comparison to other groups. Interestingly, despite the higher ICP values, our study demon-
strated greater ICC in this group as observed with the P2/P1 ratio after an induced rise in
ICP [23,24]. This phenomenon has never been demonstrated before and should be further
explored as an indicator of successful DC.

DC is an effective procedure to alleviate extremely high ICP, although the evidence of
efficacy amongst different neurological pathologies is variable [25,26]. For most diseases,
an ICP threshold of 19 mmHg has been associated with good outcome; nevertheless, lower
ICP values may improve survival [27]. Notwithstanding, a decrease in mortality has not
been proven, especially because of difficulties of elaborating studies with this subject [15].

The improvement in cerebral perfusion after DC is associated with favorable out-
comes [20,21] and with the prevention of metabolic crisis [28,29]. This association was
evaluated by Jin et al. in 60 DC patients, suggesting thresholds for predicting good prog-
nosis in DC according to ICP values (ICP <19 mmHg in the first 24 h) and transcranial
Doppler (TCD) derived parameters (mean blood flow velocity >56.33 cm/s, end-diastolic
blood flow velocity >40.28 cm/s, and resistance index <0.57) [30]. Moreover, Lubillo et al.
assessed 42 DC patients and observed that “changes in brain oximetry before and after
DC, measured with probes in non-injured brain have independent prognostic value for
the 6-month outcome in TBI patients” [31].

Previous studies have focused either on the extraction of indexes or ICP areas under
curve calculations to obtain measures of ICC [10]. Unfortunately, the applicability of
ICP waveform-derived information to date is mostly restricted because of the need for
specialized hardware and software, making these observations and findings less present
in daily practice. Timofeev et al. [32], using dedicated software (ICM+, University of
Cambridge, Cambridge, UK), studied ICP waveform amplitude in correlation with mean
ICP values, the RAP index, and the correlation between arterial blood pressure and ICP,
the PRx. Likewise, Asgari et al. [33], with another dedicated software program (MOCAIP,
University of California at Los Angeles, Los Angeles, CA, USA), performed automated ICP
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peak analysis during cerebrovascular changes. However, the opportunity of a non-invasive
bedside observation of ICC has been recently developed (B4C, São Carlos, Brazil) and was
validated in children with hydrocephalus [34] and severe COVID-19 cases [35,36]. This
system provides the ICPW in real time, with automated P2/P1 ratio calculation. Further
investigations may validate the use of this technology as a screening tool for patients with
progressive ICC deterioration who should undergo decompressive craniectomy.

Regarding critical care, new studies are highlighting the importance of the neuro-
logical surveillance of inadvertent events that may worsen patients’ prognosis [37,38],
whilst multimodality in neurocritical care for the acquisition of brain metabolism, electrical
activity, oxygenation, cerebral perfusion and ICP probably cover all patients’ needs, with
real hindrances relying on the limitations and reliability of each technique itself. Alto-
gether, with reference to ICP, this advice has shown the importance of considering not only
the mean values of ICP in mmHg, but also the characteristics of the ICPW, which combines
markers of both cerebral hemodynamics and cerebrospinal pressure–volume compen-
sation that encodes information about the biophysical characteristics of the intracranial
space [39–41].

Limitations

Although IJV compression is a maneuver able to be performed at the bedside, and
thus reproducible in clinical sets, this is not an ICP controlled measure, with considerable
variation being observed among patients. The results observed in the present study were
with reference mostly to slight variations in ICP because stimulating higher elevations
would be considered unethical. Thus, it is not possible to predict ICPW behavior with
reference to substantial elevations in ICP. ICP values before DC were not reported, although
as patients were included in their first days after ICP catheter implantation, significant
SAPS3 heterogeneity between groups would preclude comparison, which did not happen.
This was a cross-sectional observation; thus, clinical outcome measures were not suitable
to calculate in accordance with our results.

5. Conclusions

Intracranial pressure pulse waveform is a reliable marker of intracranial compliance
and may play a role besides intracranial pressure mean values for the neurocritical patient.
After decompressive craniectomy, further elevations in ICP did not lead to additional
deterioration in intracranial compliance.
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