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Abstract: Within the literature concerning modern machine learning techniques applied to the medi-
cal field, there is a growing interest in the application of these technologies to the nephrological area,
especially regarding the study of renal pathologies, because they are very common and widespread
in our society, afflicting a high percentage of the population and leading to various complications, up
to death in some cases. For these reasons, the authors have considered it appropriate to collect, using
one of the major bibliographic databases available, and analyze the studies carried out until February
2022 on the use of machine learning techniques in the nephrological field, grouping them according
to the addressed pathologies: renal masses, acute kidney injury, chronic kidney disease, kidney stone,
glomerular disease, kidney transplant, and others less widespread. Of a total of 224 studies, 59 were
analyzed according to inclusion and exclusion criteria in this review, considering the method used
and the type of data available. Based on the study conducted, it is possible to see a growing trend
and interest in the use of machine learning applications in nephrology, becoming an additional tool
for physicians, which can enable them to make more accurate and faster diagnoses, although there
remains a major limitation given the difficulty in creating public databases that can be used by the
scientific community to corroborate and eventually make a positive contribution in this area.

Keywords: renal pathology; deep learning; machine learning; artificial intelligence

1. Introduction

Kidney diseases, such as renal tumors, acute kidney injury (AKI), and chronic kid-
ney disease (CKD), are important issues for nephrology and public health worldwide, as
they are associated with high mortality and morbidity rates [1,2]. These diseases, if not
identified and treated preventively, can degenerate and lead to severe renal dysfunction,
comorbidities, and, in the worst case, death [3–5]. Currently, in order to detect and prevent
the degeneration of kidney disease, continuous monitoring of specific parameters obtained
through diagnostic tests is performed [6]. Given that statistical models are used to deter-
mine the actual presence or absence of disease [7], its severity [8], or its degeneration [9], it
is natural to think that models based on artificial intelligence (AI) and machine learning
(ML) [10] could also be used to achieve this same goal, to obtain statistically better results
or more high-performing solutions.

In the last decade, machine learning (ML) techniques have been increasingly employed
in a variety of research areas. The consolidation of these methodologies, as well as the
benefits of their employment, have occasionally made them the primary mode of operation
in many sectors, such as object detection [11], speech recognition [12], emotion recogni-
tion [13], and sentiment analysis [14,15]. ML techniques have also captured the interest
of the medical community, and multiple positive results have been achieved; some exam-
ples of healthcare applications are real-time prioritization and triage [16–19], personalized
medications and care [20–22], and patient data analytics [23,24].

In nephrology, ML techniques are used for several purposes:
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- segmentation and identification of the anatomy of interest within the diagnostic
images (e.g., kidney masses such as tumors, cysts, etc.);

- classification of a kidney mass type, or of the stage in which a specific tumor is found;
- prediction of the evolution of kidney functionality, which can highlight the presence

of pathologies.

Among others, ML techniques can be used in the analysis of suspicious renal masses.
In such cases, it is nowadays necessary to surgically remove the tumor to identify if it is of a
malignant or benign nature, but, due to its position, surgical removal is impossible without
risking permanently compromising the patient’s urological function. For this reason, by
working directly with diagnostic data and images, machine learning techniques can be
crucial alternative solutions for segmenting and identifying masses.

Furthermore, some techniques can be used to help physicians to distinguish between
particular cases of some pathologies that are very difficult to distinguish. In these cases,
features obtained from diagnostic exams are used to classify the single cases; in this way,
the physicians can reach a more precise diagnosis.

In addition to these applications, there are also techniques realized to prescribe specific
therapies, or to detect a pathology in advance, in order to prevent it or any of the possible
degenerative side effects (e.g., chronic kidney disease, acute kidney injury). In these
applications are included also tasks with the aim to predict the compatibility and the
outcome of a surgical operation, such as a kidney transplant.

Recently, the number of works related to this area has dramatically increased, rising
from a few dozen papers before 2018, to a few hundred presently (based on papers indexed
on the Scopus® database from Elsevier). For this reason, it is crucial to carry out an
updated survey summarizing the most promising opportunities offered by ML in this area.
Accordingly, the present work aims to propose an updated and schematic survey of the
most effective existing techniques and to draft possible future research lines based on ML.

First, the most promising articles are selected from the overall literature and classified
based on their different applications. Then, in Section 4, there is a description and a
comparison of all the used datasets relative to the works selected. Then, in Section 5, the
implemented methods and the possible future developments are analyzed. Finally, in
Section 6, conclusions are drafted.

The contribution that the authors intend to make with this work is to give a macro-
scopic view of the existing works concerning nephrology. In particular, the aim is to
understand the state of the art of the methods that employ ML techniques to deal with
some of the most common kidney diseases, reporting the various resulting metrics for each
method. In addition, dimensional analysis of the various types of existing datasets that
have been used so far is carried out and a generic comparison is made from the point of
view of the type of data.

2. Article Selection

A study of the literature related to publications spanning from 1992 to February
2022 was carried out using Elsevier’s abstract and citation database, Scopus®, by entering
keywords, “Artificial Intelligence”, “Machine Learning”, “Kidney”, to identify the most
common and effective artificial intelligence (AI) and ML techniques that directly involve
the kidney. In particular, the entered query was as follows:

TITLE-ABS (artificial OR intelligence OR machine OR learning OR kidney)
AND

KEY (artificial AND intelligence AND machine AND learning AND kidney)
(1)

The research thus performed allowed the identification of papers that use AI and ML
in kidney analysis contexts. Figure 1 shows a significant increase in recent years (after 2017)
in the interest and production of papers by the scientific community—in general, there was
an overall number of 224 papers dealing with the selected topic.
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Figure 1. Trend of documents per year.

To focus on the most relevant works, the literature analysis was carried out according
to the following inclusion and exclusion criteria.

Inclusion criteria: (1) articles dealing with ML and AI techniques applied to the kidney
were considered; (2) original articles concerning one or more of the following aspects were
taken into consideration—segmentation, classification, and prediction of diseases directly
related to the kidney; (3) reviews related to these topics were studied to perform a final
check of the selected articles.

Exclusion criteria: (1) editorials, commentaries, and abstracts were not included in this
study; (2) studies related to animals or carried out only at a laboratory level were excluded;
(3) research studies that were not applied in clinical practice were not considered.

According to the aforementioned procedure, fifty-nine studies were found to be eligible
to be part of this survey.

3. Machine Learning Approaches for Nephrology

In the following, the studies are grouped based on the nature of the kidney disease.
In detail, the analyzed pathologies are “kidney masses”, “acute kidney injury”, “chronic
kidney disease”, “kidney stone”, “glomerular disease”, “kidney transplant”, and “other
kidney pathologies”. From the analysis of the selected articles, three main research tasks
are identified across the application areas:

(1) segmentation and identification, which intends to analyze diagnostic images with the
purpose of highlighting or detecting one or more specific elements;

(2) classification, which aims to perform a diagnosis or to determine the degree of severity
of disease;

(3) prediction, which aims to prevent or forecast some future event, e.g., predict either
the degeneration of a disease or the outcome of a specific therapy.

In the next subsections are reported, for each disease, a brief description of the symp-
toms to provide the reader with a simple explanation of the clinical scenario, and the
various ML techniques used in the state of the art, grouped according to the research tasks
described above, highlighting the type of database used. Figure 2 shows a graph schemat-
ically outlining the several analyzed pathologies (red color). From each pathology, one
or two branches may be amplified according to the type of data available in the available
studies (green color), and finally from these as many branches as the ML methods used on
that type of data for that specific renal pathology (blue color). The following sections are
based on the schematization depicted in the graph.
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Figure 2. Scheme of pathologies with ML techniques applied according to the type of dataset available.
Kidney disease addressed in red; type of available data in green; ML technique used in blue.

3.1. Kidney Masses

Kidney masses are abnormal growths within the kidney. They are mainly subdivided
into two main categories: solid and cystic. Generally, the presence of a kidney mass
is determined by relying on imaging techniques such as computed tomography (CT),
magnetic resonance imaging (MRI), or ultrasound (US).

In general, cystic kidney masses are, in most cases, benign [25], while solid kidney
masses are generally malignant; therefore, the kidney is generally partially or totally
removed to perform the histological exam. However, approximately 16% of surgically
removed solid kidney masses are benign [26] and surgical removal would not have been
necessary. Unfortunately, the distinction of the nature of the solid renal mass, using
diagnostic imaging, is very complex, even for specialized physicians, given the significant
similarities in the appearance of some types of malignant and benign renal masses, in
terms of texture, size, volume, and position. To face this challenge, modern ML techniques
have been employed to process image data, proving to help physicians in making a more
precise and accurate diagnosis. To classify and distinguish between malignant and benign
masses, [27] some use a Bayesian classifier [28], a learning algorithm based on the statistical
relationship between radiomics features (relational functional gradient boosting), and [29]
an algorithm based on CT texture analysis. Many works focus on the analysis of renal
cell carcinoma (RCC), which is the cause of 80% of kidney cancer deaths [25], either to
distinguish different types of RCCs or to differentiate them from benign tumors. In [30–34],
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the main goal is to diagnose the most common malignant tumor, the clear cell RCC, using
radiomic features and ML-based classifiers (e.g., random forest, CatBoost). Using radiomic
features extracted from multiphoton microscopy images of kidney tissue sections, [35] try
to distinguish RCC chromophobes and oncocytomas, while [36] try to classify the stage of
a particular type of malignant tumor, the papillary RCC, using microarray datasets [37]
and clinical information of the patients. Some more recent research, such as that of [38–40],
focuses not only on tumor classification, but also on automatic tumor identification through
diagnostic images, by using three-dimensional image processing with ML techniques such
as 3D U-Net, and 3D V-Net; with these solutions, they are able to automatically segment the
tumor inside the CT. Table 1 shows these works, explaining the main objective of each one,
the adopted ML techniques, the database exploited, the best result achieved, and finally
the year of publication; the reported metrics should be read from the perspective that the
higher the reported value, the better the obtained performance.

Table 1. Renal mass research.

Paper Objective Method Database Results Year

[27] Malignant renal cyst
prediction Bayesian classifier [27] AUC 0.96 2009

[28] Identify malignant renal
masses

Statistical relational
learning—RFGB:

relational functional
gradient boosting

[28] Accuracy 82% 2018

[29]
Differentiate between
malignant and benign

masses

CT texture analysis with
random forest [29] Accuracy 90.5%

AUC 0.915 2020

[30] Diagnose ccRCC WEKA with and without
SMOTE [41]

AUC contour-focused
0.865–0.984

AUC margin shrinkage
0.745–0.887

2019

[31] Diagnose ccRCC Pyradiomics and random
forest [41]

Accuracy 84.6%
Sensitivity 90.4%
Specificity 78.8%

Precision 81%

2020

[32] Diagnose ccRCC Radiomics and CatBoost [32,41]

MR accuracy 73% internal
74% external

CT accuracy 79% internal
69% external

2020

[33] Diagnose ccRCC MaZda and WEKA toolkit [33] Accuracy 85.1% 2018

[34] Diagnose ccRCC
Proteomics-based
random forest and

imaging-based VGG16
[41]

Proteomics accuracy 98%
image accuracy 83%

validation, 95% testing set
2019

[35]

Differentiate between
kidney chromophobe

renal cell carcinoma and
oncocytoma

Linear SVM [35] Accuracy 80% 2016

[36] Classify papillary renal
cell carcinoma stages

Feature extraction and
random forest [42,43] Accuracy 88.5% 2018

[38] Kidney and tumor
segmentation 3D U-Net [44] Mean Kidney Tumor Dice

0.9168 2019

[39] Kidney and tumor
segmentation Cascade 3D U-Net [44] Mean Kidney Tumor Dice

0.9064 2019

[40] Kidney and tumor
segmentation Multi-resolution 3D V-Net [44] Mean Kidney Tumor Dice

0.8815 2019

3.2. Acute Kidney Injury

During an episode of acute kidney injury (AKI), the kidneys show difficulty in main-
taining the proper fluid balance in the body, due to an accumulation of waste products.
Given the speed with which it strikes and the damage that it causes, being able to detect it
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early can be of great significance. In this type of critical situation, AI is demonstrated to
be one of the best solutions to correctly identify a patient with AKI. In studies by [45–47],
the goal is to predict AKI based on early symptoms to prevent a possible degeneration
of the disease, analyzing electronic health records (HER) and other clinical data, such as
laboratory tests, vital signs, and patient demographics. AI techniques, thanks also to the
speed of response, can be decisive, as in the case of [48], in which the authors try to detect
AKI in burn patients using a k-Nearest Neighbor classifier on numerical features obtained
from plasma creatinine testing [49].

Some research, such as [50,51], focuses on predicting an episode of AKI in patients
undergoing examinations that require contrast agents, specifically coronary angiography.
It has been observed that the use of such agents can lead to AKI episodes; in these studies,
the authors aim to predict the AKI episode with AI approaches by using clinical variables
collected before the examination and by the results of the coronary angiography that they
undergo [52].

Recent studies focus on predicting AKI episodes’ insurgence within different periods
from its manifestation. The most common prediction time intervals vary from 48 h to a
maximum of 90 days, as in [53]; in this work, the authors evaluate their solution based
on the analysis of time-series data over these time intervals. It is possible to find another
example in [54], in which the authors, through numerical features extracted from multiple
blood tests per single patient, attempt to predict AKI within 30 days from its manifestation.
Finally, in [55], the authors, using daily collected patients’ clinical data, propose a particular
type of deep learning algorithm, based on time series, which is able to predict AKI within
48 h from its occurrence, as well as classify the stage of the AKI disease if it is already
present. In Table 2, analogously to Table 1, are reported all the related objectives, methods,
used databases, and results.

Table 2. AKI research.

Paper Objective Method Database Results Year

[45] Predict AKI in
adult and children

Boruta [56] (selection algorithm) +
random forest [57,58] AUC 0.796 2018

[46] Predict AKI in
adult and children Gradient boosted machine [59] AUC 0.85 2021

[47] Predict AKI Gradient boosted machine [47] AUC 0.76 2021
[48] Predict AKI in burn patients K-NN [48] Accuracy 97% 2019

[50] Predict AKI Lasso + logistic regression [60] AUC 0.79
AUC 0.82 [p < 0.001] 2019

[51] Predict AKI RF + XGboost [51] AUC 0.843 2020

[53] Predict AKI Streams [53]
Accuracy 56% in 48 h
Accuracy 84% in 30 d
Accuracy 90% in 90 d

2019

[54] Prediction of AKI
from blood test Feature selection + random forest [54] AUC 0.881 in 30 d 2021

[55] Predict AKI Gradient boosting tree-based machines [61]
AUC 76% in 48 h
AUC 81% stage 2
AUC 87% stage 3

2020

3.3. Chronic Kidney Disease

Chronic kidney disease (CKD) is a condition characterized by the gradual loss of
kidney function over time. CDK damages the kidneys by decreasing their ability to filter
waste from the blood. In severe conditions, waste can reach high levels and lead to the
development of other complications, which, in the most extreme cases, will require periodic
medical treatment, such as dialysis, or even a kidney transplant [62]. CDK is a disease
that can be diagnosed by physicians through the study and analysis of a variety of indices
(e.g., eGFR [63]); thus, it is suitable for the application of ML methods. An example of
using AI for this purpose can be seen in the study by [26], where the stage of pathology is
classified using radiomic features obtained from ultrasound images of the kidney.
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The general interest and applications to diagnose CKD underwent an abrupt increase
with the creation and public release in 2015 of a database containing characteristic features
(i.e., age, blood pressure, specific gravity, albumin, sugar, red blood cells, pus cell, pus cell
clumps, bacteria, blood glucose random, blood urea, serum creatinine, sodium, potassium,
hemoglobin, packed cell volume, white blood cell count, red blood cell count, hypertension,
diabetes mellitus, coronary artery disease, appetite, pedal edema, and anemia) related to
400 patients during the early symptoms of the disease [64]. Different methods based on the
analysis and classification of patient features are adopted by [26,65–73].

In addition to the diagnosis of CKD, there are some related studies in the literature,
such as [74], in which the authors try to predict a possible plan for the patients’ diet, given
the fact that following a proper and suitable diet plan can help to slow down the progress
of CKD [75]. In [76], since maintaining appropriate hemoglobin levels during treatment for
CKD is critical, the authors try to predict the hemoglobin level in the blood during anemia
treatment in predialysis CKD patients, to intervene more quickly.

This information, the used databases, and the obtained accuracy results are shown in
Table 3, analogously to the others.

Table 3. CKD research.

Paper Objective Method Database Results Year

[26]
Diagnose CKD

based on
patient stage

Support vector machine—SVM [26]
Accuracy 82% on 2 stages

Accuracy 67.21% on 3 stages
Accuracy 51% on 5 stages

2014

[65] CKD diagnosis Random forest [64] Accuracy 99.3% 2016
[66] CKD diagnosis Decision tree C4.5 [64] Accuracy 63% 2016
[67] CKD diagnosis SVM [64] Accuracy 98.3% 2016
[68] CKD diagnosis k-NN with CFS and AdaBoost [64] Accuracy 98.1% 2017
[69] CKD diagnosis Random forest [64] Accuracy 100% 2017

[70] CKD diagnosis RPART [64]
AUC 0.995

Sensitivity 0.9897
Specificity 1

2018

[71] CKD diagnosis PSODP + DL-RNN [64] Accuracy 99.5% 2018
[72] CKD diagnosis PNN [77] [64] Accuracy 96.7% 2019
[73] CKD diagnosis RFE and Random Forest [64] F1 score 100% 2021

[74] Predict diet plan for
CKD patients

Multiclass
Decision forest [64] Accuracy 99.17% 2017

[76] Predict hemoglobin levels
in CKD patients Extraction rule—Re-RX + J48graft [64] Accuracy 95.18% 2019

3.4. Kidney Stone

Nephrolithiasis, or kidney stones, is a condition characterized by the presence of
deposits in the kidney, caused by an alteration in the balance between the solubility and
precipitation of salts in the urinary tract and kidneys [78]. One crucial point is given by the
fact that surgery is required in 20% of patients with this condition [79]. In this context, AI is
applied to identify the correct type of treatment to be followed based on parameters such
as sediment composition, location, and size [80]. Some research focuses on the detection
of kidney stones, such as [81,82], which use radiomic features extracted from manually
segmented CT, with the goal of the early detection of stone deposits before they reach a
size greater than 2 cm, allowing the use of non-invasive treatments. Other research, such
as [83–85], focuses on predicting the outcome of shock wave treatment without the use of
diagnostic imaging techniques, by analyzing the preoperative parameters of patients (such
as age, sex, presence of related diseases, and stone characteristics including stone laterality,
location, and maximum length). Similar to the other tables, Table 4 reports this information,
the databases used, and the accuracy of the obtained results.
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Table 4. Kidney stone research.

Paper Objective Method Database Results Year

[81] Renal stone detection Segmentation + ANN [81] Accuracy 86% 2019

[82] Renal stones vs. phleboliths Radiomics +
AdaBoost classifier [82] Accuracy 85.1% 2019

[83]
Kidney stone removal,

prediction of postoperative
variables

ANN [83] Accuracy 81–98.2% 2017

[84] Predict stone-free status
after the first treatment

Feature extraction +
sequential forward selection +

multiple classifier scheme
[84] Accuracy 60% 2019

[85] Stone-free prediction Light gradient boosting method [85] Accuracy 87.9% 2020

3.5. Glomerular Diseases

Glomerular diseases are diseases that affect the glomeruli, whose function is to filter
blood and, at the same time, to retain proteins and blood that the body needs. Many
diseases, such as diabetes, affect kidney function by attacking the glomeruli [86]. In this
regard [87–89], use methods based on the analysis of patients’ clinical data to predict type II
diabetes. Some studies focus on specific conditions and causes of glomerular diseases, such
as Immunoglobulin A Nephropathy (IgAN), which is the most common biopsy-proven
primary glomerulonephritis in the world [90]; it damages not only the kidneys, but also
the immune system response [91]. In [92–94], the authors implement applications able to
predict IgAN using a renal immunofluorescent image obtained by fluorescence microscopes
relative to a renal biopsy. Other works, such as [95–97], focus on detecting type II diabetes
directly from diagnostic images, using radiomic features. Finally, [98] try to predict the
weight of children with glomerular disease to avoid possibly dangerous weight loss, using
diagnostic numerical features obtained from blood monitoring and analysis.

All the useful information is reported in Table 5, analogously to the previous tables.

Table 5. Glomerular disease research.

Paper Objective Method Database Results Year

[87] Predict diabetic kidney disease SVM radial [87] Accuracy 94% 2013
[88] Predict diabetic kidney disease Unbalanced random forest [88] Accuracy 83.8% 2018
[89] Predict diabetic kidney disease Knime + WEKA [89] Accuracy 83.5% 2019

[92] Resolution image-based
renal pathology Convolutional neural network [92] Accuracy > 80% 2021

[93] Predict ESKD in patients with IgAN ANN [93]

AUC 0.82 with
5-year follow-up
AUC 0.89 with

10-year follow-up

2021

[94]
Predict deterioration of

kidney function
in IgAN patients

SVM [94] Accuracy 79.8% 2021

[95] Diagnose glomerular disease Disjunctive least
generalization—DLG algorithm [95] Accuracy 81.26–96.5% 1992

[96]
Detect pathogenic and

non-pathogenic
glomerulus and tubulus

RatSnake—ML automatic
segmentation [96] Accuracy 94.7% 2014

[97] Diagnose glomerular disease Decision tree with
J48 algorithm [97] Accuracy 89.47% 2021

[98] Predict weight of
children in renal dialysis ANN [98] Mean difference 0.497 2018

3.6. Kidney Transplant

Even if kidney transplantation is not a pathology but rather a specific surgical treat-
ment, some authors considered creating a dedicated section since there are several studies
regarding this topic, and it is one of the most common treatments for patients with severe
kidney pathologies.

In detail, kidney transplantation is a surgical procedure that involves taking a healthy
kidney from a living or cadaveric donor and implanting it into the recipient patient. For the
transplant to be successful, many factors must be considered, including the compatibility
of the donor with the human leukocyte antigen (HLA) proteins of the recipient. Although,
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nowadays, there is a method that reduces the risk of rejection, in the case of mismatched
HLA [99,100], approximately 40% of donated kidneys are rejected [101]. The ML techniques
applied by [102–106] focus on predicting the probability of success and survival in these
types of interventions using numerical features (e.g., age, sex, time in dialysis, donor
type, donor age, HLA mismatches, delayed graft function, acute rejection episode, and
chronic allograft nephropathy). Table 6 reports all the necessary information, analogously
to the others.

Table 6. Kidney transplant research.

Paper Objective Method Database Results Year

[102] Predict
transplant failure probability Decision tree [102] Specificity 73.8%

Sensitivity 88.2% 2010

[103] Predict post-
transplant survivability Bayesian belief network [103] Accuracy 52% after 1 year

Accuracy 56% after 3 years 2012

[104]
Classify risk levels for
kidney graft survival

after transplant

ElasticNet + Bayesian belief
network [107] Accuracy 68.4% 2018

[105] Predict early transplant rejection Decision tree and random forest [105] Accuracy 85% 2019

[106]

Predict kidney transplantation
compatibility

Predict renal function worsening
1 year after transplant

Elderly KTbot [106]
Precision 90%

Sensitivity 71%
F1 score 0.79

2020

3.7. Other Renal Diseases

In this group are reported other renal diseases that do not fit within the classification
provided so far. These studies focus on uncommon objectives, such as [108], which aims
to predict the level of hemoglobin in patients with renal dysfunction, using numerical
characteristics obtained from clinical data related to dialysis [109]; in [110], an application
is developed that intends to define the need to perform or not a renal biopsy by analyzing
physicians’ annotations through a natural language processing ML algorithm; [111] try
to predict the survival of hemodialysis patients using numerical characteristics (age, sex,
diabetes mellitus, chronic glomerulonephritis or nephrosclerosis, body mass index, albumin,
sodium, potassium, calcium, phosphorus, creatinine, total cholesterol, etc.). In [112], the
authors extract radiomics features from three-dimensional ultrasound images to identify
renal and liver tissue in patients with hydronephrosis. Finally, [113] use numerical features
extracted from patients’ EHRs with the corresponding acquisition time, to predict the risk
of stratification of renal function deterioration.

Table 7 is presented analogously to the previous ones.

Table 7. Other renal diseases research.

Paper Objective Method Database Results Year

[108] Predict hemoglobin in patients
with kidney disfunction

Data merging + clustering + ensemble of
classifiers [108] Mean absolute error 0.662—Italy,

mean absolute error 0.673—Spain 2014

[110] Recommend renal biopsy Tokenization + NLP machine learning
classifier [110] Accuracy 83.5%

Precision 80.6% 2019

[111] Prediction of 1-year survival
in hemodialysis patients Ensemble artificial intelligence model [111] Accuracy 94.8% 2020

[112] Detect kidney and liver tissue
for hydronephrosis patient

Homodyne-K feature extraction + random
forest [112] Accuracy 94% 2015

[113]
Predict risk stratification

of renal function deterioration based on eGFR
threshold

Multitask temporal-based classifier [113]

Specificity 0.828 with 10%
threshold

Specificity 0.786 with 20%
threshold

2015

4. Databases Used in Reviewed Research

In this section, two tables contain information about the databases used in the research
considered. This information includes the name of the database, when available, or other-
wise a distinctive name related to the type of data and the organization in which they were
collected; the number of elements that make up the dataset; a brief description of the type
of data present; the year in which the database was made public, when available, otherwise
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the year in which it was used for the first time in a paper; and, finally, whether the database
is open access.

Specifically, in Table 8 are reported all databases that have as the data type diagnostic
images; this can be CT, MRI, US, or images obtained through analysis in the laboratory
with instruments such as a digital microscope. This second type of technique is mainly
used for the detection of masses or malformations within the kidneys. It is possible to note
that these types of databases have very different volumes; in the case of 3D US images,
there are, for example, databases of nine patients; for CT and MRI, there are databases with
a minimum of 50 cases up to a few hundred, and finally, with regard to other imaging
techniques, there are databases from a minimum of 24 up to a maximum of 1321 cases. This
discordance at the numerical level is given mainly by the effectiveness and invasiveness of
the different examinations and therefore by the frequency of their use in clinical practice.
US is a less effective imaging technique in this field, compared to CT and MRI, and,
therefore, the studies concerning the application of this technique are very small and dated.
As for the examinations performed on biopsies, the number of samples is much larger
because it is an examination that is compulsorily performed in every case to define with
absolute certainty the type of mass removed. Among the reported databases, only two are
publicly accessible: the CPTAC Clear Cell Renal Cell Carcinoma Discovery Study [41,114],
released in 2018 by the U.S. National Cancer Institute, and kits2019 [44], released in 2019 by
grand-challenge.org, hosted by MICCAI.

Table 8. Diagnostic image databases.

Database Number of
Patients Description Year (First

Use/Published)
Open

Access

[27] 93 Patients’ MDCT. Patients with complicated cysts: cyst with at least one focus of septa, a solid
nodule, and any calcification or wall thickening on MDCT 2009 No

[28] 150

Patients’ CT.
100 malignant tumors: 70 clear cell renal cell carcinoma (ccRCC), 20 papillary renal cell carcinoma

(pRCC), and 10 chromophobe renal cell carcinoma (chRCC);
50 benign tumors: 20 lipid-poor angiomyolipoma (lpAML), 30 renal oncocytoma

2018 No

[29] 79 84 renal masses: 63 malignant (25 clear cell RCC, 23 papillary cell RCC, 15 chromophobe RCC), 21
benign (10 oncocytomas, 11 fat-poor angiomyolipomas) 2020 No

[32] 440 440 MRI and CT of patients with ccRCC 2020 No
[33] 54 Patients’ CT. All patients have ccRCC. 2019 No
[41] 216 216 proteomics data and 783 slide images (524 tumoral) 2018 Yes
[44] 300 CT of patients with one or more kidney tumors. Segmentation of kidneys and tumors. 2019 Yes

[26] 188
The database is composed of 40, 16, 38, 60, 28, and 6 entries for healthy, stage 1, 2, 3, 4, 5, respectively.
These images are obtained from 35 observers taken at different times. The kidney ultrasonic images

are segmented and annotated into three regions of interest (ROIs)
2014 No

[81] 200 200 kidney stones harvested from nondestructive stone extraction at three different sites. Stone size
was measured using a digital caliper 2020 No

[82] 412 LDCT of 235 kidney stones and 224 phleboliths 2019 No
[83] 254 Preoperative abdominopelvic ultrasound and intravenous urography or CT scan of PCNL patients. 2017 No

[112] 9 This dataset contains the 3D US abdominal images from 9 pediatric patients with hydronephrosis 2015 No

[96] 1321 Biopsy images of pathogenic (338) and nonpathogenic (396) glomerulus and some of pathogenic
(338) and nonpathogenic (248) tubulus 2014 No

[97] 584 Renal biopsy reports, each of 4 or 5 slides with different stains, for each case: clinical and laboratory
data, diagnostic hypothesis, histological biopsy study, histological report of glomerular disease 2021 No

[92] 422 Renal immunofluorescent images obtained by fluorescence microscopes relative to a renal biopsy of
162 patients with IgAN and 260 without 2021 No

[35] 24 24 unstained deparaffinized formalin-fixed kidney tissue sections of chRCC and oncocytoma, 12 of
each type 2016 No

In Table 9 are reported all the databases exclusive of numerical type, relating to
information obtained from diagnostic tests, such as blood tests, genetic tests of kidney
tissues, or data from patient history. For these databases, the volume varies; for more
complex tests, such as genetic tests, there is a variation ranging from a few tens up to a few
hundred cases; for medical histories, this ranges from a few hundred up to 269,999 cases; for
simpler diagnostic tests, from a few tens up to several thousand cases. Of these databases,
only three are publicly available; for some, access is limited to a specific country (in the
table, these are reported as “only in the USA”). Among the public databases, two contain
RNA sequences of renal tumors, which are used to identify the pathological stage of the
tumor. Finally, the third public database contains data on blood tests, patient history, and
information about CDK-related diseases.
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Table 9. Numerical databases.

Database Number of
Patients Description Year (First

Use/Published)
Open

Access

[42] 260 Tumor RNASeq and pathological stage (I, II, III, and IV): Stage I—172, Stage II—22, Stage III—51,
and Stage IV—15. 2010 Yes

[43] 34 This dataset was obtained using Affymetrix HGU133 Plus 2.0 array platform and includes 19 and 15
samples in early (excellent survival) and late (poor survival) stages of PRCC. 2005 Yes

[57] 269,999
6.1% of patients in the dataset had a clinical deterioration event: 424 cardiac arrests, 13,188 intensive

care unit (ICU) transfers, and 2840 deaths on the wards. For each patient, there are a total of 29
features.

2014 No

[59] 108,441 Australian and New Zealand Society of Cardiac and Thoracic Surgeons Database registry recorded
110,342 cardiac surgery events in 108,441 unique patients. 2018 No

[47] 780
Medical data collected by natural language process module from EMRs including demographic

data, daily documentation, laboratory and imaging results, anesthesia records, medications,
interventions, and diagnosis. TRIPOD guidelines were followed.

2021 No

[48] 50 Serial creatinine testing of patients with ≥20% total body surface area (TBSA) burns at risk for AKI.
AKI was defined using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. 2019 No

[61] 153,821 153,821 patients from 6 different sites. Each patient had a mean of 67 (SD = 46) clinical facts per day. 2020 No (only
in USA)

[51] 671

Information related to demographic characteristics, clinical condition, preoperative biochemistry
data, preoperative medication, and intraoperative time-series hemodynamic features (systolic blood
pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), and heart rate

(HR)) from electronic medical records and records on intraoperative variables.

2020 No

[54] 51,869 618,719 blood test occurrences for 51,869 distinct patients. 2021 No

[64] 400 The CKD dataset was collected from 400 patients from the University of California, Irvine Machine
Learning Repository. 2015 Yes

[84] 254 This dataset includes information on preoperative, intraoperative, and postoperative parameters
from 254 patients who underwent kidney surgery. 2019 No

[93] 1015
The variables contained per IgAN patient are age, sex, hypertension, serum creatinine, daily

proteinuria, kidney biopsy, therapy—RASBs or corticosteroids. The primary outcome is ESRD,
dialysis, or transplantation.

2020 No

[94] 80 Features of 80 IgAN patients: secondary IgA deposition, eGFR, MEST-C scores. 2021 No
[95] 284 38 features for each patient and biopsy diagnosis. 1992 No

[102] 194 Features for each patient: age, sex, time in dialysis, donor type, donor age, HLA mismatches,
delayed graft function, acute rejection episode, and chronic allograft nephropathy. 2010 No

[103] 7348 A total of 793 pre- and post-transplant variables per patient. 2004 No (only
in USA)

[58] 6564 First 12 h of 6564 HER from critically ill children admitted to a pediatric ICU without evidence of
AKI; 4% of the patients developed AKI by 72 h. 2016 No

[53] 2642 The dataset contains the data relative to 1781 patients pre-implementation and 861 patients
post-implementation of a digital intervention system, with the relative alert severity. 2019 No

[85] 358
This dataset includes 42 features including the two target variables, stone-free and one-session
success, for all 358 cases. The number of cases with stone-free and one-session success was 253

(70.7%) and 154 (43.0%).
2020 No

[60] 1250 Several serum markers per patient undergoing angiography as clinical standard care. 2015 No (only
in USA)

[105] 80 80 patients who received HLA-incompatible renal allografts;
14 features measured before transplantation. 2019 No

[106] 118 Medical records of 18 elderly and 100 younger patients. 2020 No

[87] 1386
Anthropometric measurements and blood pressure (BP), drug use and past medical history, physical

assessment for retinopathy, sensory neuropathy, and peripheral arterial disease. eGFR calculated
using the Chinese-modified Modification of Diet in Renal Disease equation.

2013 No

[88] 1000 1000 T2DM patients’ data collected by the IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
of the Hospital of Pavia. 2018 No

[89] ~32,000 Diabetes of type 2 patients with a 24-month analysis window. 2019 No

[110] 3149 This dataset contains a total of 3149 admission notes from the nephrology department. For the
ground truth, there are recommendations given by physicians in first-day progress notes. 2019 No

[113] 6435 Electronic health records of patients with hypertension, diabetes, or both. 2015 No

[107] ~31,000 United Network for Organ Sharing, a private, non-profit (UNOS) dataset including information on
all kidney waiting-list registrations and transplants that had been recorded in the U.S. 2014 No (only

in USA)
[108] 13,011 125 features from dialysis clinical practice of 13,011 patients. 2014 No
[98] 14 ESRD patients on chronic hemodialysis or hemodiafiltration weighing 20 kg or more. 2018 No

[111] 79,860 Various features for each patient are presented with the relative risk score based on mass, serum
albumin level, cholesterol level, and creatinine. 2020 No

5. Discussion

After having reported in the previous sections the existing methods in the literature
to address renal pathologies with machine learning methods and analyzed the available
databases, we summarize in this section what has been found for each pathology; in
particular, the limitations of the studies carried out so far and possible future developments
will be indicated.

Regarding renal masses, the goal of the analyzed works is to find a method to non-
invasively discriminate benign and malignant masses [29], and artificial intelligence has
the potential to become a very important tool for assisted diagnosis. This is motivated by
the results of identified research, in which are obtained accuracies ranging from 79% [32] to
a peak of approximately 90% [29] (these results are from private single-center databases).
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Currently, the gold standard for the detection of a renal mass is based on the analysis, by an
experienced physician, of CT images before and after dosing with a contrast medium [115].
AI can perform the discrimination function because it can analyze diagnostic images, such
as CT, at a very high or equal level of detail as an expert [116]. This is because it can
also take into account multidimensional characteristic features, such as texture. However,
using CT, the various parameters used for the acquisition and the timing with which it
is done assume an important role [29]. In fact, from the articles analyzed, it emerges
that, according to the CT acquisition phase taken into consideration, the results obtained
change; specifically, the most used phase is the corticomedullary phase [30]. Furthermore,
as regards the use of CT for the extraction of characteristic features, the literature considers
the three-dimensional use of CT to be better and more representative [117], but in the
research identified [27–36], to reduce the workload of manual segmentation and facilitate
the repeatability of this operation, a limited number of slices or only the two-dimensional
slice containing the largest portion of the mass considered is used. In addition to how CT is
used, it is also important to control the method by which features are extracted; in some
research [28,29,31–36], radiomic features are used, after manual segmentation by at least
one experienced physician, to classify tumors. One of the major limitations introduced,
in doing so, is the bias of the operator who performs the segmentation [118]. For this
reason, more recent studies [38–40] have focused on overcoming manual segmentation
by creating deep learning algorithms capable of automatically segmenting kidneys and
tumors present in CT; the results obtained from these studies are positive, as they achieve a
mean kidney tumor size–mean per CT of the testing set of (Kidney Sørensen-Dice + Tumor
Sørensen-Dice)/2 [44], with a maximum of 0.9168. In particular, one solution proposed in
the literature to deal with operator-introduced bias is for a team of clinicians to collaborate
on the kits2019 database in a way that reduces the risk of bias as much as possible.

Regarding AKI, this pathology is very widespread, with consequences that, if not
treated in time, can even lead to death. Currently, there is no specific intervention that
can prevent AKI; there are only general measures that can be taken to delay more critical
procedures such as surgery [55]. For this reason, most of the recently developed research
focuses on predicting the prognosis of this disease [45–48,50,51,53–55], being able to predict
AKI with good accuracy even 30 days in advance [54]. The solutions implemented depend
not only on the task but also on the actual number of data available for each patient [119].
Maintaining a large number of data for each patient has an economic cost and features used
in one center may not be available in other centers [45]. ML techniques can outperform
clinical tools used to estimate AKI risk, as we see in [46], with an AUC of 0.85. The
performance of solutions exploiting ML for the prediction of AKI is positive: AUC 0.76 [47],
in liver transplant patients; 97% accuracy [48] and AUC 0.76 [55], for burn patients; AUC
[0.79–0.843] [50,51], for patients undergoing coronary angiography. However, despite the
various existing applications, there is a lack of a ML-based prediction systems that can be
recognized as state of the art for AKI prediction [47].

Regarding CKD, this is a very common type of disease, which, if detected in time, can
be managed through periodic therapies. Thanks to the University of California, Irvine (UCI),
which made public the database known as UCI CKD [64] (containing 24 characteristics, de-
rived from patient history and diagnostic tests, plus information regarding the presence or
absence of CKD), many studies have been developed to diagnose CKD. Since this database
was made public, various studies have used it to test multiple different types of solutions,
obtaining increasingly impressive results for accuracy (63–100%) [65–69,71,72,74,76], AUC
(0.995) [70], and F1 score (100%) [73]. Being the only public database available for this
pathology, the research has been mainly focused on the analysis of numerical features;
this is also due to the fact that patients suffering from CKD, or otherwise at risk, cannot
undergo all the existing diagnostic imaging techniques. In this case, techniques that require
the use of radiation, such as CT, are strongly discouraged, because they can easily worsen
the patients’ condition. Therefore, imaging techniques such as US, used in [26] with 82%
accuracy in predicting the stage of CKD, and MRI are preferred. The latter has been shown
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to have the ability to allow assessment of both renal function and structure [120]. Major
future developments may shift in this direction and focus on the development of methods
that take advantage of MRI to be able to determine CKD.

If radiation imaging techniques cannot be used to determine CKD, the same is not true
for detecting and analyzing kidney stones. In particular, for kidney stones, it is possible to
use not only CT but also low-dose CT (LDCT), which exposes the patient to approximately
five times less radiation than regular CT [121]. The independence of the dosage used to
acquire CT is demonstrated in several studies: in [81], ML techniques are applied to process
LDCT and CT and identify the composition of a kidney stone, achieving 86% accuracy
for both assays used; in [82], LDCT is analyzed to differentiate between kidney stones
and phleboliths in patients with acute flank pain, with 85.1% accuracy. The applicability
of these methods ensures that low-dose radiation CT acquisitions can be used for the
detection of a kidney stone, reducing any risks associated with the radiation exposure of
normal CT. In addition to the detection and analysis of kidney stones, researchers are also
studying the prediction of success in removing a kidney stone. Successful selection of the
most appropriate method can lead to a higher rate of kidney stone clearance, lower risk of
associated morbidities, higher probability of survival, faster recovery, and lower overall cost
of care [122]. Depending on the procedure chosen [84,85], and for the prediction of stone
removal, there is 60% accuracy [84] for predicting success after the first treatment, and 87.9%
for predicting success when a shock wave is used for kidney stone clearance [85]. Accuracies
ranging from 81% to 98.2% have been obtained for predicting a patient’s condition and
possible complications following renal stone removal [83].

Since glomerular disease is a condition that worsens over time, the machine learning
techniques implemented are primarily focused on predicting the prognosis of the condition
and identifying the consequences caused by the presence of the disease [87–89,92–98]. The
most common glomerular disease prevalent in the world is Immunoglobulin A Nephropa-
thy (IgAN) [123]. IgAN is caused by renal dysfunction and can be diagnosed by diagnostic
imaging of the kidney, particularly immunofluorescence imaging. Some researchers have
focused on diagnosing IgAN from diagnostic images with different resolutions, with an ac-
curacy of at least 80% [92] and an accuracy of 80.27% [95], using only clinical and laboratory
analysis data. Around 30–40% of IgAN patients carry the risk of the disease degenerating
into ESRD (end-stage renal disease) [93]; for this reason, some research tries to predict this
degeneration to allow the efforts of physicians to focus mainly on patients who are more at
risk, as, for example, in [93], where it predicts the degeneration of the disease in the next
5 years, with AUC of 0.82, and after 10 years with AUC of 0.89, and as in [94], with 79.8%
accuracy. Another particular type of glomerular disease is caused by diabetes. Since dia-
betes is very common, it is very important to prevent its degeneration into diabetes kidney
disease, and in [87–89], the authors focus precisely on this aspect by creating algorithms
that can predict the prognosis, with an accuracy of 83.5–94%.

Regarding the literature inherent to renal transplantation, it is possible to identify three
possible applications of AI [123]: (i) diagnosis, using AI to diagnose the level of transplant
risk by detecting parameters associated with renal transplant rejections, and identifying ab-
normal patterns within them, as in [104], with 68.4% accuracy, and in [106]; (ii) prescription,
using AI to prescribe postoperative therapies [124] to prevent complications or rejection,
or to prescribe diets that may improve quality of life after renal transplantation [125];
(iii) prediction, using AI to predict mortality, and possible rejection, as in [102], with 73.8%
specificity and 88.2% sensitivity; in [103], with 56% accuracy over a 3-year timeframe from
possible rejection, and in [105], with 85% accuracy. It is important to note that for this
specific task, the main limitation for the application of AI is given by the fact that the type
of database is very patient-specific [103–106], as the values are highly dependent on both
the recipient and the donor(s) available, resulting in a limitation that makes it difficult to
generalize the solutions devised [126].

Before concluding, we believe that it is also necessary to analyze the ML algorithms
used in nephrology, to address a possible reader interested in a specific type of algorithm
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rather than another, depending on the type of application that they would like to achieve.
First of all, it is possible to notice that all the ML algorithms used are based on the use of
supervised learning techniques. This is mainly due to the fact that the realized tasks are
formulated and viewed in the form of classification problems. In particular, with regard to
the research identified in this work, in Table 10, all the methods used have been grouped
by algorithm type.

Table 10. Searches grouped by type of ML algorithm applied.

Method—ML Algorithm (Based) Authors Year

Bayesian classifier
[27] 2009
[103] 2012
[104] 2018

Logistic regression [50] 2019
[106] 2020

Decision tree
[66] 2016
[97] 2021
[102] 2010

Random forest

[112] 2015
[65] 2016
[69] 2017
[45] 2018
[36] 2018
[34] 2019
[105] 2019
[29] 2020
[31] 2020
[73] 2021
[54] 2021
[88] 2018

SVM

[87] 2013
[26] 2014
[35] 2016
[67] 2016
[94] 2021

ANN

[81] 2019
[83] 2017
[98] 2018
[93] 2021

Ensemble of classifiers

[84] 2019
[111] 2020
[108] 2014
[68] 2017
[48] 2019
[82] 2019
[76] 2019
[33] 2018
[89] 2019
[30] 2019
[28] 2018
[46] 2021
[47] 2021
[55] 2020
[85] 2020
[51] 2020
[32] 2020

DNN

[96] 2014
[113] 2015
[110] 2019
[53] 2020
[95] 1992
[70] 2018
[71] 2018
[72] 2019
[34] 2019
[92] 2021
[38] 2019
[39] 2019
[40] 2019

From the table, it can be observed that the simplest and most common classification
algorithms, such as random forest and support vector machine, and ensemble algorithms,
such as gradient boosting machine, are the most used in these types of studies. However,
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more complex ML algorithms, such as artificial neural network, and deep neural networks,
such as convolutional neural network, autoencoder, and more sophisticated approaches
based not only on feature or image analysis, but also on natural language processing
and the temporal evolution of features (temporal-based approaches, e.g., recursive neural
network) are not missing. This could be due to the lack of very large public databases that
would allow better use of the more complex ML techniques [127].

It is also possible to note that the methods applied by the authors differ mainly with
respect to the type of the used data and the techniques of analysis and data processing.
In particular, in cases where the database is composed exclusively of numerical features,
derived from patients’ medical records, classifiers such as support vector machine, random
forest, and artificial neural network are the most frequently applied. Whenever diagnostic
images are present, instead, the type of ML technique varies according to the preprocessing
applied to the data. In the case of minimal or null preprocessing, techniques such as
convolutional neural network are used, in which the model directly analyzes the image
and finds the most relevant features in order to classify it. Instead, when algorithms are
used for the extraction of radiomic features from specific anatomical regions, algorithms
generally applied to numerical features are used; in particular, ensemble algorithms are
exploited, which typically, in these cases, guarantee a better result in terms of metrics.

Finally, for the evaluation of algorithms’ performance, the authors feel that it could be
misleading to compare methods applied to the same objective based on the values obtained
from the evaluated metrics computed with different data. However, it is possible offer some
considerations about the various metrics used, in order to understand in which cases some
metrics are used instead of others. Since the most commonly used metrics are accuracy and
AUC, we consider it appropriate to briefly discuss what the differences are: accuracy is a
metric that represents the ratio of the number of correctly predicted samples to the total
number of samples present; AUC, on the other hand, represents the area under the receiver
operating characteristic (ROC) curve that shows, for different probability thresholds, the
relationship between the false positive rate (ratio of the number of false positives to the
total number of negative cases) and the true positive rate (ratio of the number of true
positives to the total number of positive cases). Looking at the two definitions, it may be
deduced that the accuracy is a more intuitive metric and therefore more frequently used,
but its simplicity has drawbacks, since it cannot be used in all cases—for example, in the
case of unbalanced datasets, where it is preferable to use metrics such as the F1 score or
AUC, or in case it is desired to take into account the probability associated with the various
classes predicted, in which case only AUC takes this aspect into account. With the above in
mind, the use of AUC is strongly recommended as it encapsulates increasingly confident
information than accuracy alone.

Despite the limits of this work, given the continuous evolution of research in this
area, based on what has been analyzed so far, it is possible to conclude that, given the
many existing applications of ML in nephrology, AI has great potential and versatility in
this field. An example of a possible application for kidney image analysis can be based
on the combination of the multiple methodologies that currently exist, such as the use of
deep learning to detect kidneys and tumors [38–40], followed by the use of other machine
learning techniques to classify the nature and/or severity of tumors, or the presence of any
kidney disease and/or other possible masses. However, this does not mean that limitations
are not still present. Most of the studies identified end before moving to a clinical trial,
remaining only single-center retrospective studies, reducing their external validity [128,129].
Consequently, the main and most urgent gap that should be addressed as soon as possible
is that of the public availability of data; this will not only allow studies to be compared
with each other but will ensure that there are improvements in nephrology itself [2]. To
this end, the guidelines for conducting clinical trials in nephrology, reported at the Kidney
Disease—Improving Global Outcomes (KDIGO) conference, could be followed [126].
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6. Conclusions

In this work, fifty-nine, from a total of 224, studies concerning the application of
ML techniques for the segmentation, prediction, and classification of renal diseases were
analyzed. First, the studies were divided, analyzed, and presented based on the addressed
pathology and the main goal of the research. Then, the existent datasets were analyzed in
terms of data typology, size, and public availability; the main concept derived from this
analysis is the importance of a large dataset and public availability to allow research to go
as far as possible for a specific objective. Finally, the various pathologies were discussed in
terms of what does not exist and what can be done to achieve further developments in this
specific sector. In conclusion, from the analysis of the literature, it can also be noted how the
introduction of modern ML techniques in the nephrological field allows the achievement
goals not obtainable with traditional techniques, such as speeding up and automating CT
segmentation processes, the possibility to perform non-invasive and reliable diagnosis, and
to create predictive models—for example, to evaluate surgical or transplant outcomes and
create predictive models to monitor patient’s parameters in order to act promptly.

Among all the works analyzed, it can be seen that the practical purposes of the
use of AI in urology range from the diagnosis of a disease, to the analysis of diagnostic
images, to the prediction of prognosis, etc., and generally aim to aid doctors in making
more accurate decisions, without attempting, in any way, to replace them [130–133]. The
physician’s attendance remains essential both from a human point of view, in establishing
a deep doctor–patient bond of trust that can improve the success of any therapies and
treatments [134], and from an ethical and accountable point of view for diagnoses [135].
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