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Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-
kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a
broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF
action in vivo must in part reflect expression of receptors and responsive pathways in
different tissues but it is widely assumed that it is also determined by the ligand bind-
ing and signaling mechanisms of the receptors. This review focuses on receptor-proximal
events in insulin/IGF signaling and examines their contribution to specificity of downstream
responses. Insulin and IGF receptors may differ subtly in the efficiency with which they
recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effec-
tiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-
associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins,
cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reac-
tive oxygen species) have been less widely studied. Some of these components appear to
be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown
that this reflects receptor-preferential interaction. Very few receptor-specific interactions
have been characterized, and their roles in signaling are unclear. Signaling specificity might
also be imparted by differences in intracellular trafficking or feedback regulation of recep-
tors, but few studies have directly addressed this possibility. Although published data are
not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are
specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is
only limited evidence for differential activation of signaling mechanisms that are common
to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears
to be the major determinant of whether responses to insulin and IGFs are perceived as
“metabolic” or “mitogenic.”
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INTRODUCTION
Insulin and the insulin-like growth factors together control many
aspects of metabolism and growth in a wide range of mammalian
tissues and play distinct physiological roles in vivo (Nakae et al.,
2001). Insulin is most conspicuously involved in regulating the
metabolism of glucose and lipids in muscle, fat, and liver, ensuring
the coordinated uptake and storage of the products of digestion.
However, studies in receptor knockout mouse models reveal key
additional roles of insulin in other tissues including brain, pan-
creatic β-cells, and vascular endothelium (Kitamura et al., 2003;
Kulkarni, 2005; Plum et al., 2006). Insulin-like growth factors

Abbreviations: APS, adaptor with PH and SH2 domains; CAP, Cbl-associated
protein; Cbl, Casitas B lineage lymphoma; DOK, downstream of kinase; ERK,
extracellular signal-regulated kinase; Gab, Grb2-associated binder; IGF, insulin-
like growth factor; IGFR, type 1 insulin-like growth factor receptor; IR, insulin
receptor; IRS, insulin receptor substrate; MEK, MAPK/ERK kinase; PH, pleckstrin
homology; PI3K, phosphoinositide 3-kinase; PTB, phosphotyrosine-binding; RTK,
receptor tyrosine kinase; SH2, Src-homology-2.

(IGFs) promote both cell growth and differentiation, IGF-2 being
most important at the fetal stage and IGF-1 more significant
postnatally, at least in rodents. Again, knockout mouse models
have been important in defining the role of the IGF receptor and
its ligands in vivo (Butler and LeRoith, 2001). Additionally, sig-
naling by both insulin and IGFs is implicated in the regulation of
lifespan (Narasimhan et al., 2009) and in neoplasia (Pollak, 2008).

Two canonical signaling pathways, usually referred to as
the phosphoinositide 3-kinase (PI3K)/Akt and Ras/extracellular
signal-regulated kinase (ERK) pathways, are central in mediating
actions of both the insulin receptor (IR) and type 1 insulin-like
growth factor receptor (IGFR; Adams et al., 2004; Cohen, 2006;
Taniguchi et al., 2006; Laviola et al., 2007; Figure 1). Both these
pathways act via phosphorylation to regulate multiple targets,
with diverse physiological roles. Identification of potential Akt
substrates has arguably outstripped their validation as important
physiological targets (Manning and Cantley, 2007) while an exten-
sive mTOR-regulated phosphoproteome, itself dependent in part
on activation of Akt, has only recently been revealed (Hsu et al.,
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FIGURE 1 | Canonical pathways of IR/IGFR signaling. Receptor-proximal
components of the PI3K/Akt and Ras/ERK pathways, and relevant receptor
interaction domains are shown, with protein–protein interaction domains (JM,

juxtamembrane; TK, tyrosine kinase; CT, carboxyl-terminal; PTB,
phosphotyrosine-binding; PH, pleckstrin homology, SH2, Src homology-2;
KRLB, kinase regulatory loop binding).

2011; Yu et al., 2011). ERK is also a promiscuous kinase that can
phosphorylate more than 100 different substrates (Ramos, 2008).
It is well established that the PI3K/Akt pathway mediates acute
metabolic effects of insulin, and that it also regulates gene expres-
sion at the level of both transcription and translation, affecting
growth and proliferation as well as metabolism. The Ras/ERK
pathway has little or no acute metabolic role but mediates effects
on proliferation and differentiation through regulation of gene
transcription (Avruch, 2007; Meloche and Pouyssegur, 2007).

It is widely assumed that signaling specificity underlying the
largely “metabolic” effects of insulin and “growth-promoting”
effects of IGFs is conferred by features intrinsic to the ligands
or receptors themselves (Dupont and LeRoith, 2001; Siddle et al.,
2001; Kim and Accili, 2002). However, stimulus/response speci-
ficity in vivo must in part reflect the levels of expression of
receptors and downstream targets in different tissues (Dumont
et al., 2001, 2002) and it should therefore be unsurprising that dif-
ferentiated tissues respond differently to insulin and IGFs. More-
over, it has repeatedly been shown that IR can mediate mitogenic
responses and IGFR metabolic responses, both in vitro and in vivo
(Dozio et al., 1995; Di Cola et al., 1997; Ish-Shalom et al., 1997;
Louvi et al., 1997; Morrione et al., 1997; Baudry et al., 2001) and
that, when studied in the same cell background, the activities of IR
and IGFR are very similar (Weiland et al., 1991; Lund et al., 1994;

Wilson et al., 1995; Boucher et al., 2010b). Nevertheless differences
in responses to insulin and IGFs have been reported in a variety
of cell types (Miele et al., 2000; Dupont et al., 2001; Da Silva
Xavier et al., 2004; Entingh-Pearsall and Kahn, 2004; Palsgaard
et al., 2009), and the issue of whether and by what mechanisms
the IR and IGFR exhibit intrinsic signaling specificity remains
contentious. The issue is further complicated by the existence of
heterodimeric insulin/IGF hybrid receptors alongside classical IR
and IGFR homodimers (reviewed in Belfiore et al., 2009). Hybrid
receptors bind insulin but not IGFs with high affinity (Soos et al.,
1993), and their assembly appears to reflect the mole fractions
of the individual receptors (Bailyes et al., 1997). Thus in cells
expressing both IR and IGFR the less abundant receptor is found
predominantly in hybrids rather than homodimers.

Specificity of insulin/IGF signaling might in principle be con-
ferred by the kinetics and mechanism of ligand binding, affecting
the duration and precise nature of receptor activation and the
cellular itinerary of activated receptors (reviewed in Jensen and
De Meyts, 2009). It was first shown in relation to NGF and EGF
signaling that the kinetics of activation of the ERK pathway can
determine distinct biological responses (Traverse et al., 1992, 1994;
Tombes et al., 1998). There is little published information directly
comparing the kinetics of activation of signaling pathways by IR
and IGFR, let alone relating this to the kinetics of ligand binding.
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However, studies of different IR ligands indicate that binding
kinetics can indeed differentially influence “metabolic” and “mito-
genic” potencies. The hyper-mitogenic activity of some insulin
analogs correlates with slow dissociation kinetics and persistent
receptor occupancy, increased phosphorylation of Shc and acti-
vation of the Ras/ERK pathway (Hansen et al., 1996). Conversely,
an insulin-mimetic peptide S597 that is not internalized has weak
mitogenic activity relative to its metabolic potency (Jensen et al.,
2008). It has been reported that IGF-2 is a more potent mitogen
than insulin when acting on the IR-A isoform, correlating with
more persistent ERK activation (Frasca et al., 1999; Sacco et al.,
2009). In this case it seems unlikely that relative mitogenic potency
of the two ligands is related to persistence of receptor occupancy
as IR-A binds IGF-2 with lower affinity than insulin. It has also
been reported that IR-A isoform is more “mitogenic” than the B
isoform (Belfiore et al., 2009; Giudice et al., 2011). As the isoforms
are identical in their intracellular domains, differences in activity
can only be due to the small difference in structure of the extra-
cellular domains (absence or presence of the sequence encoded by
IR exon 11, at the extreme C-terminus of the α-subunit). Insulin
dissociates slightly faster from IR-A than from IR-B, at least at
neutral pH (Yamaguchi et al., 1993), and it is therefore unlikely
that differences in the persistence of occupancy could account for
differential mitogenic signaling by the receptor isoforms. How-
ever IR-A apparently internalizes more rapidly than IR-B (Vogt
et al., 1991; Yamaguchi et al., 1991; Giudice et al., 2011) and this
could lead to more effective phosphorylation of Shc. Alternatively,
differences in biological responses mediated by IR-A and IR-B in
pancreatic β-cells have been attributed to localization of isoforms
in separate lipid raft microdomains within which distinct signal-
ing complexes may be assembled (Uhles et al., 2003; Leibiger et al.,
2010b). However, there is no evidence for differential localization
of IR isoforms expressed in HeLa cells (Giudice et al., 2011), and
the capacity of both IR-A and IR-B to form hybrids with IGFR, as
well as with each other, argues against substantial segregation of
localization in most cell types. It should be noted that IGFR lacks
the equivalent of IR exon 11.

In relation to the wider family of receptor tyrosine kinases
(RTKs), signaling specificity is most obviously imparted by struc-
tural differences in the intracellular portions of the receptors, and
differential interactions with proteins that initiate or modulate
signaling pathways (Scott and Pawson, 2009; Lemmon and Sch-
lessinger, 2010). The intracellular portions of IR and IGFR are
highly similar in structure and amino acid sequence (Ullrich et al.,
1985, 1986) and the major sites of tyrosine autophosphorylation
and the motifs that bind phosphotyrosine-binding (PTB) and
SH2 domains of substrates and adaptors are highly conserved.
Nevertheless, sequence differences, particularly in the carboxyl-
terminal (CT) region, could well lead to differential interactions
with signaling proteins that contribute to specificity of IR com-
pared to IGFR. In support of this, differential signaling by the
IR and IGFR intracellular domains fused to a common extra-
cellular domain has been reported (Lammers et al., 1989; Urso
et al., 1999; Mulligan et al., 2002). The remainder of this review
will focus particularly on receptor-proximal events initiating well-
documented canonical signaling pathways together with some of
the additional players whose role remains to be firmly established,

highlighting aspects that may contribute to specificity of insulin
and IGF action.

RECEPTORS
The mammalian IR and type 1 IGF receptor (IGFR) are closely
related members of the class II RTK family (van der Geer et al.,
1994). A third member of the family, the orphan IR-related recep-
tor (IRR), has a very restricted tissue distribution and its function
remains obscure. The distinctive feature of class II RTKs is that
the proreceptor polypeptides are post-translationally processed
by proteolytic cleavage and disulfide linkage to generate a func-
tionally dimeric structure that is fundamental to the mechanisms
of both ligand binding, involving cross-linking of α-subunits,
and tyrosine kinase (TK) activation, involving intra-molecular
trans-phosphorylation of β-subunits (De Meyts, 2008).

EXTRACELLULAR DOMAINS
The structures of the whole extracellular portion of the IR and
a fragment of the IGFR have been determined, revealing close
similarity overall but differences in detail that may contribute to
specificity of ligand binding (Lawrence et al., 2007). Attempts to
co-crystallize ligand–receptor complexes have so far proved unsuc-
cessful, but the mode of ligand binding, involving contacts in trans
with both half-receptors, has been deduced from other lines of evi-
dence (De Meyts and Whittaker, 2002; De Meyts, 2008). Despite
the dimeric structure of the receptors, only a single molecule of
ligand can make all the contacts required to bind with high affinity,
and ligand binding demonstrates negative cooperativity fitting a
harmonic oscillator model (Kiselyov et al., 2009). Interactions of
insulin with IR have been studied in greatest detail, but the mode
of binding of IGFs to IGFR appears to be very similar (Alvino
et al., 2009). One difference of detail is that interaction of IGF-1
(but not IGF-2) with IGFR involves an additional binding epitope
in the IGFR cysteine-rich domain (contacting IGF-1 C domain)
that has no counterpart in insulin–IR interaction (Sorensen et al.,
2004; Keyhanfar et al., 2007). It is not known what conformational
changes are induced by ligand binding to trigger activation of the
intracellular tyrosine kinase.

INTRACELLULAR DOMAINS
The intracellular TK domain of ∼250 amino acids is flanked by
a short juxtamembrane (JM) domain of ∼45 amino acids and
a longer CT domain of ∼100 amino acids. Structures have been
determined for the TK domains of IR and IGFR in basal and
activated states, revealing that trans autophosphorylation of three
conserved tyrosine residues within the regulatory loop of the TK
domain (IR 1158/62/63, IGFR 1131/35/36) causes substantial con-
formational change, allowing access of intracellular substrates to
the active site (Hubbard, 1997; Favelyukis et al., 2001) while also
creating binding sites for regulatory adaptors of the Grb10/14 and
APS/SH2-B families (Hu et al., 2003; Depetris et al., 2005; Hu
and Hubbard, 2006). The primary sequences of IR and IGFR TK
domains are 84% identical, and the tertiary structures are highly
homologous, providing few insights into mechanisms that might
confer signaling specificity. In particular the activation loop and
nucleotide binding cleft are highly conserved, although there are
limited sequence differences in the nearby interlobe linker which
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might allow a degree of specificity in interactions with protein
substrates as well as giving encouragement to efforts to design
selective inhibitors (Favelyukis et al., 2001). Apart from the con-
served cluster of tyrosines in the activation loop, there are several
other tyrosines within the TK domain of which four are con-
served (IR 1011, 1087, 1122, 1210) while others are unique (IR
1227, IGFR 1162 and 1221). These residues are not known to be
phosphorylated, and no specific function has been ascribed to
them.

The short JM domains of ∼50 amino acids are ∼65% identical
between IR and IGFR, and include a conserved NPEY motif that
is important for substrate recruitment. Autophosphorylation of
this motif (IR Y972, IGFR Y950) creates a binding site for the PTB
domains of insulin receptor substrates (IRSs) and Shc. The binding
specificities and mechanisms of IRS and Shc PTB domains differ
in detail and, as discussed below, the JM sequences of IR/IGFR
appear optimal for binding IRS-1 but sub-optimal for binding
Shc. Surprisingly, at least in terms of binding of short phospho-
peptides by the respective recombinant PTB domains, Shc has a
higher affinity than IRS-1 (Wolf et al., 1995; Farooq et al., 1999).
However, the pleckstrin homology (PH) domain of IRSs also plays
a key role in membrane recruitment and contributes to the effec-
tiveness of these proteins as IR/IGFR substrates (Voliovitch et al.,
1995; Yenush et al., 1996), and in vivo IRSs may be recruited more
effectively than Shc. Apart from the NPEpY β-turn motif itself,
the residues identified as most important for binding IRS-1 (Leu
at −8; Eck et al., 1996) and Shc (Asn at −3, hydrophobic at −7
and −8; Trub et al., 1995) are fully conserved between IR and
IGFR. However, there are non-conserved residues at −9, −4, and
+1 relative to the phosphotyrosine, so it is possible that IR and
IGFR may differ subtly in the efficiency with which they recruit
their substrates. Differential engagement of IRSs and Shc by IR and
IGFR could potentially affect the duration or subcellular targeting
of signals.

The JM NPEY motif is also important for IR internalization,
although its phosphorylation does not appear to be necessary for
this process. An adjacent GPLY965 motif that contributes inde-
pendently and additively with NPEY972 to insulin-stimulated
IR endocytosis (Backer et al., 1992) is not conserved in IGFR
(GVLY943). Two dileucine-like motifs that have been implicated in
anchoring, endocytosis, and intracellular targeting of IR (LL998/9
and II1018/9) are also not conserved in IGFR (MS971/2 and
VV991/2; Haft et al., 1998; Shackleton et al., 2002). Thus there
is a potential structural basis for differences in the endocytosis
and intracellular itineraries of IR and IGFR, although the molec-
ular mechanisms of IR/IGFR endocytosis and trafficking remain
poorly understood.

The IR and IGFR CT domains of ∼100 amino acids are even
more divergent in sequence and only ∼48% identical. It has
been proposed that the phosphorylatable tyrosines IR1328 and
IR1334 play a role in delineating “metabolic” versus “mitogenic”
signaling, although in some cells IR appears to function nor-
mally without this portion of the CT domain (reviewed in Tavare
and Siddle, 1993). It is notable however that IR1328 is not con-
served in IGFR (IGFR F1310), while IGFR possesses twin tyrosines
(1250/51) that are not conserved in IR (IR FH1277/8). These IGFR
twin tyrosines have not been shown to be phosphorylated upon

receptor activation, but have been implicated in IGFR function by
mutational analysis (Miura et al., 1995; Blakesley et al., 1996, 1998;
Esposito et al., 1997; Miura and Baserga, 1997; Leahy et al., 2004;
Kiely et al., 2005). Other distinctive features of the CT domains are
a 12-residue serine-rich insertion in IGFR (including the cluster
S1280/1/2/3) with no counterpart in IR and the terminal sequences
(RSNPS in IR, QSSTC in IGFR). There is thus clear potential for
differential binding of adaptor or regulatory proteins (particu-
larly those with SH2 or PDZ domains) that might contribute to
differential signaling by IR and IGFR.

SUBSTRATES OF THE RECEPTOR TYROSINE KINASES
Insulin receptor substrates and Shc proteins are recognized as the
major substrates of the IR and IGFR TKs, through their roles in the
canonical PI3K/Akt and Ras/ERK signaling pathways (Taniguchi
et al., 2006). However, several other substrates have been char-
acterized. Some of these, such as Grb2-associated binder (Gabs)
and downstream of kinases (DOKs), seem to act as tissue- or
pathway-specific alternatives to IRSs. Others, such as members
of the SH2B and Cbl families, engage distinct signaling pathways
and may also have roles in receptor regulation. Phosphoproteomic
analysis of insulin-stimulated cells has revealed further tyrosine-
phosphorylated proteins, including potential signal transducers,
but the significance of these substrates and the role of tyrosine
phosphorylation in their regulation remains to be determined
(Schmelzle et al., 2006; Kruger et al., 2008). No comparable analysis
of IGF-responsive substrates has been published.

Although there is overwhelming evidence supporting the essen-
tial role of RTK activity in almost all insulin/IGF actions, kinase-
independent signaling by both IR and IGFR has been reported
(Povsic et al., 2003; Zhang and Riedel, 2009). Most recently it has
been shown that the unliganded IR and IGFR have a permissive
effect on apoptosis that appears to be independent of PI3K/Akt
and Ras/ERK signaling, in contrast to anti-apoptotic signaling by
the ligand-activated receptors (Boucher et al., 2010a). The mech-
anism of kinase-independent signaling to apoptosis is unclear but
it is apparently shared by both IR and IGFR.

INSULIN RECEPTOR SUBSTRATES
Insulin receptor substrates are relatively specific substrates of
IR/IGFR TKs, reflecting their recruitment by dual interaction of
PTB and PH domains with the receptor JM domain and mem-
brane phospholipids and respectively (Wolf et al., 1995; White,
2002). IRS-1 and IRS-2 are widely expressed in mammalian tis-
sues while IRS-3 and IRS-4 are more restricted in distribution.
IRS-1 and IRS-2 each contain up to 20 potential tyrosine phos-
phorylation sites, although not all of these have been formally
shown to be phosphorylated following insulin/IGF stimulation.
For both these IRSs the importance of specific phosphotyrosine-
containing motifs in binding the SH2 domains of PI3K regulatory
subunits and Grb2 is well established, and motifs binding the
tyrosine-specific phosphatase SHP2 and the TK Fyn have also been
identified (White, 2002). In the case of PI3K and SHP2, binding
affinity and enzyme activation are enhanced by the simultaneous
interaction of two SH2 domains with bisphosphorylated motifs
(Hof et al., 1998; Ottinger et al., 1998). The role of SHP2 is par-
ticularly complex and poorly understood. It has been implicated
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in IRS-1 dephosphorylation (Myers et al., 1998) though this may
be site-specific as in vascular smooth muscle cells SHP2 selectively
antagonized IRS/Grb2/Sos signaling to ERK (Hayashi et al., 2004).
However there is evidence that in some circumstances SHP2 can
act as a positive effector for insulin signaling via Ras/ERK (Xiao
et al., 1994; Yamauchi et al., 1995; Fukunaga et al., 2000) and for
IGF-1 signaling via PI3K/Akt (Wu et al., 2001; Kwon et al., 2006),
and that it is required for developmental, migratory, and prolifer-
ative responses (Saxton et al., 2000; Kwon et al., 2006; Forbes et al.,
2009). The substrates and mechanisms underlying such paradox-
ical potentiation of insulin/IGF signaling by SHP2 are unknown.
Moreover SHP2 also binds to autophosphorylated IR and IGFR
(Rocchi et al., 1996) and to the scaffold protein SHPS-1 (Maile and
Clemmons, 2002), and it is unclear how its different interactions
contribute to its biological effects.

Application of proteomic techniques has further extended the
spectrum of potential IRS interaction partners, although without
reference to which sites actually become phosphorylated following
insulin/IGF stimulation of intact cells (Hanke and Mann, 2009).
The partial functional redundancy of IRS-1 and IRS-2 was con-
firmed by identification of a large number of common interactors,
although several proteins involved in signaling and metabolism
were found to interact differentially with sites in IRS-1 and IRS-
2, providing potential leads into their specific physiological roles.
The data also suggested that modules other than SH2 and PTB
domains may mediate binding to IRS phosphotyrosines.

IRS-1 and IRS-2 exhibit distinct patterns of subcellular com-
partmentalization and trafficking (Inoue et al., 1998; Clark et al.,
2000). The molecular interactions that determine subcellular
localization of IRSs before or after their tyrosine phosphorylation
are unclear, but may involve binding of the respective PH domains
to specific phosphoinositides (Razzini et al., 2000). Whatever the
mechanism, localization of IRSs clearly has the potential to influ-
ence both their tyrosine phosphorylation and engagement with
signaling proteins.

Although at a cellular level IRS-1 and IRS-2 mediate very sim-
ilar signaling pathways that are implicated in both metabolic and
growth responses, their physiological roles appear to be distinct. At
the organismal level this functional specificity presumably reflects
differences in tissue distribution as well as molecular interactions.
The phenotypes of mice with specific gene deletions indicate that
IRS-1 is more important than IRS-2 in regulating organismal
growth while IRS-2 is more important in glucose homeostasis.
However, this “metabolic” function of IRS-2 in part reflects a role
in mediating growth-promoting effects of IGF-1 in pancreatic beta
cells (White, 2002). At a cellular level, in liver and skeletal mus-
cle IRS-1 appears to be most closely linked to insulin’s regulation
of glucose homeostasis and IRS-2 to regulation of lipid metabo-
lism and/or ERK activation (Huang et al., 2005; Taniguchi et al.,
2005; Bouzakri et al., 2006; Thirone et al., 2006), although the
mechanisms underlying this specificity are not well understood.

As discussed above, the JM sequences of IR and IGFR are well
conserved but not identical, leaving open the possibility that they
might bind the PTB domains of IRSs with slightly different affin-
ity and thus phosphorylate them with slightly different efficiency.
IRS-2 additionally interacts with the TK domain of IR, though
less well with IGFR, via a kinase regulatory loop binding (KRLB)

region (Van Obberghen et al., 2001; Wu et al., 2008). Structural
studies suggest this interaction limits rather than facilitates phos-
phorylation of IRS-2 by IR and the lack of this constraint with
IGFR could contribute to differential phosphorylation by the two
receptors (Wu et al., 2008). In principle, differences in the mecha-
nism or efficiency of IRS recruitment could affect both the overall
extent and the pattern of their phosphorylation by IR compared
to IGFR. There is evidence that IRS-1 is phosphorylated more
effectively by IR than by IGFR (Urso et al., 1999) and, conversely,
that IRS-2 is phosphorylated more effectively by IGFR than by
IR, consistent with the expected influence of the KRLB domain
(Rakatzi et al., 2006). Further, it has been reported that IR-induced
phosphorylation couples IRS-1 preferentially to PI3K while IGFR-
induced phosphorylation couples preferentially to Grb2 (Amoui
et al., 2001) and such differential effects might contribute to greater
mitogenicity of IGFR compared to IR. Interestingly, induction of
VEGF mRNA in NIH3T3 fibroblasts was reported to be mediated
by a PI3K-dependent pathway for IR but a MAPK dependent path-
way for IGFR (Miele et al., 2000). A recent microarray-based study
concluded that IR and IGFR act as identical portals to the regula-
tion of gene expression in brown adipocytes, and that quantitative
differences between the effects of insulin and IGF-1 reflected the
expression levels of the respective receptors (Boucher et al., 2010b).
However, this study did not investigate the signaling pathways
mediating gene expression changes, nor did it completely rule out
the possibility that differences between IR and IGFR might exist
in regulating genes with unusual kinetics or limited magnitude of
expression changes.

Shc PROTEINS
Shc proteins are well-established alternative substrates of the IR
and IGFR. The ubiquitous ShcA is expressed as three isoforms,
p66, p52, and p46, which are products of alternative splicing and
alternative translation initiation (Luzi et al., 2000). Whereas phos-
phorylation of p52/46 leads to activation of the Ras/ERK cascade,
p66 is inhibitory to ERK activation by mechanisms that are unclear
(Okada et al., 1997; Natalicchio et al., 2011). Moreover, the addi-
tional N-terminal collagen-homology domain of p66Shc confers
unique properties leading to an isoform-specific role in the regu-
lation of reactive oxygen species (ROS) levels and aging (Trinei
et al., 2009). All three ShcA isoforms are tyrosine phosphory-
lated by multiple RTKs on two distinct sites (YY239/240 and Y317
in p52Shc). Although both sites are able to recruit the Grb2/Sos
adaptor/GEF complex there is evidence that they are functionally
distinct (Gotoh et al., 1997; Thomas and Bradshaw, 1997; Patrussi
et al., 2005). At least in fibroblasts, it appears that Y317 of p52Shc is
the more important site for activation of ERK by insulin (Sasaoka
and Kobayashi, 2000).

The sequence flanking the JM NPXY motif of IR/IGFR is sub-
optimal for binding the PTB domain of Shc because it lacks a
hydrophobic residue at −5 relative to phosphotyrosine (Trub et al.,
1995) and in consequence, Shc is more efficiently phosphory-
lated by other RTKs. Furthermore phosphorylation of Shc (but
not IRSs) is dependent on receptor internalization (Ceresa et al.,
1998; Chow et al., 1998). Nevertheless, there is potential for com-
petition between IRSs and Shc in binding via their PTB domains
to the same site on IR (or IGFR), which could influence signaling

www.frontiersin.org February 2012 | Volume 3 | Article 34 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Structural_Endocrinology/archive


Siddle Insulin and IGF receptor signaling

to “metabolic” versus “mitogenic” responses (Sasaoka et al., 2001).
It would be expected that “mitogenic” responses would be favored
in cells expressing high levels of Shc compared to IRSs, regardless
of whether stimulation is by insulin or IGFs. Moreover feedback
or cross-talk mechanisms that inhibit association of IRSs with
IR/IGFR (and thus inhibit “metabolic” signaling via the PI3K/Akt
pathway, see below) might be expected to facilitate “mitogenic”
signaling by Shc-dependent pathways.

Insulin receptor and IGFR generally induce only modest
and transient activation of the Ras/ERK pathway, compared for
instance to receptors that signal via the fibroblast growth factor
receptor substrates (FRSs) which have multiple binding sites for
Grb2 and SHP2 (Gotoh, 2008). Because both Shc and IRSs can
recruit Grb2/Sos (Skolnik et al., 1993) the question arises as to
which substrate plays the more important role in the mitogenic
actions of IR and IGFR. In some cells it appears that Ras/ERK
activation is mediated largely by Shc (Yamauchi and Pessin, 1994;
Pruett et al., 1995; Kim et al., 1998; Boney et al., 2000; Sasaoka
and Kobayashi, 2000) while in others IRS-dependent pathways
appear to predominate (Takahashi et al., 1997; Liu et al., 2000).
This divergence may reflect factors that are variable between cell
types, including expression levels of IRS and Shc, and additional
components. It is unclear whether IRS-bound and Shc-bound
Grb2/Sos complexes would be equally effective activators of Ras,
given potential differences in their subcellular localization and
in the co-recruitment of additional signaling components. Ras is
anchored in the plasma membrane by virtue of its prenylation,
and its activation by Sos depends primarily on a proximity effect,
although relief of a Sos autoinhibitory domain may also play a
role (Aronheim et al., 1994; Boykevisch et al., 2006; Gureasko
et al., 2008). Phosphorylation of IRSs but not Shc leads to recruit-
ment of PI3K and SHP2 as well as Grb2. Interactions between
PI3K and Ras reciprocally modulate both components (Shepherd
et al., 1998), while SHP2 can apparently function as an additional
adaptor facilitating Grb2/Sos recruitment (Dance et al., 2008).

Gabs AND DOKs
Grb2-associated binders lack a PTB domain but otherwise resem-
ble IRSs in having an N-terminal PH domain and a C-terminal
portion containing multiple potential sites of tyrosine phospho-
rylation (Nishida and Hirano, 2003). Unlike IRSs, Gabs have been
implicated in signaling via many different receptors, with roles in
growth and differentiation of multiple tissues and particularly in
immune cell signaling (Nishida and Hirano, 2003; Sarmay et al.,
2006). However, Gab-1 was first characterized as a substrate for IR
and EGFR TKs (Holgado-Madruga et al., 1996). The major sites of
insulin-stimulated Gab-1 phosphorylation have been identified,
among which YXXM motifs with capacity to recruit and acti-
vate class Ia PI3K are prominent (Rocchi et al., 1998; Lehr et al.,
2000). Gabs may play a role in insulin/IGF signaling in cells that
do not express high levels of IRSs. For instance, signaling via Gab-
1 has been implicated in control of Egr-1 expression by insulin
in fibroblasts (Harada et al., 2001). There is no published infor-
mation comparing the capacity of IR and IGFR to phosphorylate
Gabs.

Downstream of kinases have N-terminal PH and PTB domains
similar to IRSs but with distinct specificity of interaction. Like

Gabs, DOKs are substrates for a variety of receptor and non-
receptor TKs, and they appear to be of particular importance
in lymphocytes and myeloid cells (Mashima et al., 2009). DOKs
are rapidly phosphorylated in response to stimulation by insulin
and IGF-1, although this may be mediated in part by Src family
kinases (Noguchi et al., 1999; Wick et al., 2001; Cai et al., 2003).
DOK4 and DOK5 (also known as IRS-5 and IRS-6) are reportedly
poor substrates for the IR (Versteyhe et al., 2010). Phosphorylated
DOKs recruit a variety of SH2 domain-containing proteins but
not including PI3K. DOK1 and DOK2 are negative regulators of
the Ras/ERK pathway, probably dependent on their recruitment
of RasGAP (Mashima et al., 2009). DOK4 also associates with Ras-
GAP and with Crk, Src, and Fyn but lacks sites for PI3K, SHP2,
or Grb2 recruitment. DOK5 does not associate with any of these
proteins (Cai et al., 2003). Diverse roles have been proposed for
DOK1 (p62dok) in insulin signaling (Noguchi et al., 1999; Wick
et al., 2001; Hosooka et al., 2008), but it remains unclear whether
this or other DOKs play a significant role in insulin/IGF actions
in vivo.

APS/SH2B AND CbL
The APS/SH2-B (PSM) family of proteins are a group of IR
substrates (Kotani et al., 1998; Ahmed et al., 1999; Moodie
et al., 1999) that were originally characterized as components
of TrkA signaling pathways and regulators of JAK family TKs
(Qian and Ginty, 2001; O’Brien et al., 2002; Maures et al., 2007).
These proteins have an N-terminal proline-rich region and PH
domain and C-terminal SH2 domain and tyrosine phosphoryla-
tion site. The proteins are recruited to the autophosphorylated
IR by interaction of their SH2 domains with phosphotyrosines
in the kinase regulatory loop, and it would expected (though
this does not appear to have been formally demonstrated) that
they would be similarly recruited by activated IGFR. Where
both APS (SHB2) and SH2-B (SH2B1) are expressed it would
be expected that they would compete for binding to IR/IGFR.
Although the SH2 domains of APS and SH2B1 share ∼80%
sequence identity, SH2B1 preferentially binds JAK2 whereas APS
has higher affinity for IR, this relative specificity being attributed
to the fact that SH2B1 is predominantly monomeric while APS
is dimeric (Hu et al., 2003; Hu and Hubbard, 2006). However,
other studies suggested that SH2B1 can both homodimerize and
heterodimerize with APS and that activation of JAK2 is promoted
within (SH2B)2–(JAK2)2 heterotetramers, while kinase activation
is blocked at higher relative concentrations of SH2B (Nishi et al.,
2005).

APS acts as a scaffold, recruiting other proteins to the IR sig-
naling complex, most notably c-Cbl, a multifunctional adaptor
with ubiquitin ligase activity, that has been implicated in both sig-
nal transduction and degradation of various receptors in different
cell types (Schmidt and Dikic, 2005; Thien and Langdon, 2005).
Cbl is not a direct substrate of the IR but it binds via its SH2
domain to a phosphotyrosine motif in the C-terminal region of
APS, facilitating its own tyrosine phosphorylation (Ahmed et al.,
2000; Liu et al., 2002; Ahn et al., 2004; Hu and Hubbard, 2005).
Cbl-associated protein (CAP) localizes the complex to lipid rafts by
interaction with flotillin, while phospho-Cbl recruits the adaptor
Crk which in turn recruits the guanine nucleotide exchange factor
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C3G, leading to activation of TC10, a member of the Rho family of
small GTPases (Chang et al., 2004). Several effector mechanisms
have been proposed to link TC10 to GLUT4 translocation, includ-
ing actin remodeling (Kanzaki et al., 2002), targeting of atypical
PKC (Kanzaki et al., 2004), assembly of exocyst complexes (Inoue
et al., 2006), and generation of PtdIns3P (Falasca et al., 2007;
Lodhi et al., 2008). It has been proposed that this constitutes a
key accessory pathway, in addition to the PI3K/Akt pathway, in
mediating insulin action on glucose transport. However, other
data have called into question the importance of the CAP/Cbl
pathway in the regulation of glucose transport. For instance the
pathway does not appear to operate in skeletal muscle (JeBailey
et al., 2004) and knockdown of key components of the pathway in
adipocytes does not disrupt insulin-stimulated glucose transport
(Zhou et al., 2004). Indeed, knockout of APS or c-Cbl in mice if
anything improves peripheral insulin sensitivity (Minami et al.,
2003; Molero et al., 2004; Li et al., 2006) and protects against diet-
induced insulin resistance (Molero et al., 2006b). The effects of
c-Cbl on insulin sensitivity revealed in mouse knockout models
appear to be related to its ubiquitin ligase activity (Molero et al.,
2006a) and it has been shown in cellular overexpression systems
that APS-mediated recruitment of c-Cbl promotes ubiquitination
of IR, enhancing its internalization without inducing degradation
(Ahmed et al., 2000; Kishi et al., 2007). At the present time the
precise role of the APS/CAP/Cbl pathway in IR function remains
uncertain. Given its mode of interaction with IR, it would be antic-
ipated that APS would also be an IGFR substrate although this has
not been reported.

APS may additionally influence IR function by other mech-
anisms. Over-expression of APS has been reported to enhance
IR autophosphorylation and ERK activation (Ahmed and Pillay,
2003; Onnockx et al., 2009). On the other hand, a splice variant
of APS has been identified that lacks the SH2 domain and, by
heterodimerization with either APS or SH2B2, is able to act as a
negative regulator of insulin signaling (Li et al., 2007). Other APS
binding partners have been reported, including Enigma, a PDZ
and LIM domain-containing protein with potential involvement
in insulin-induced actin cytoskeleton remodeling and GLUT4
translocation (Barres et al., 2005, 2006), Asb6, an adipocyte-
specific ankyrin and SOCS box protein that recruits elongins
B/C and potentially facilitates degradation (Wilcox et al., 2004)
and the inositol polyphosphate 5′-phosphatase SHIP2 (Onnockx
et al., 2008). APS is a substrate for phosphorylation by Akt (Kat-
sanakis and Pillay, 2005), while expression of APS mRNA is
down-regulated by a ERK-dependent pathway (Rea et al., 2005)
suggesting that cross-talk from other insulin signaling pathways
may regulate APS function.

SH2B1/PSM binds to many RTKs including both IR and IGFR,
and to JAK associated with cytokine/leptin receptors (Riedel et al.,
2000; Maures et al., 2007). Several isoforms of SH2B1 have been
identified, differing in C-terminal sequence and possibly in bio-
logical activity (Maures et al., 2007; Zhang et al., 2008). Deletion
of SH2B1 in mice results in severe obesity and both leptin and
insulin resistance, supporting a role of SH2B1 as a positive regu-
lator of JAK-mediated leptin signaling and possibly also of insulin
signaling (Maures et al., 2007). In humans, genetic variation at the
Sh2b1 locus has been associated with obesity (Thorleifsson et al.,

2009; Willer et al., 2009; Bochukova et al., 2010; Walters et al.,
2010). Neuronal SH2B1 is primarily responsible for maintenance
of energy balance, body weight, and glucose homeostasis (Ren
et al., 2007; Morris et al., 2010a), although disruption of the SH2B1
gene in peripheral tissues impairs IR activation and signaling in
liver, muscle, and fat and causes age-dependent glucose intoler-
ance and insulin resistance (Duan et al., 2004; Morris et al., 2009).
When overexpressed in cultured cells SH2B1, like APS, potentiates
IR autophosphorylation, TK activity, and signaling (Zhang et al.,
2008; Morris et al., 2009). Binding of SH2B1 stimulates IR cat-
alytic activity in vitro and the SH2 domain is both necessary and
sufficient to promote IR activation (Morris et al., 2009), although
N-terminal regions are additionally required for the maintenance
of normal body weight and glucose metabolism (Morris et al.,
2010a). Promotion of insulin signaling by SH2B1 may also in part
reflect enhancement of IRS-1 phosphorylation by JAK2 (Li et al.,
2007). It is unclear whether phosphorylation of SH2B1 and/or
the recruitment of binding partners is necessary for its function
in vivo. There have been few studies of the impact of SH2B1 on
IGFR function, but there is no reason to suppose its actions would
be specific to IR.

Crk
Yet another category of substrates is represented by the Crk fam-
ily of adaptor proteins. Crk family adaptors are widely expressed
and mediate formation of signaling complexes via their SH2 and
SH3 domains in response to a variety of extracellular stimuli
(Feller, 2001). CrkII was reported to interact with and be phos-
phorylated by both IGFR and IR, albeit with some differences in
detail (Beitner-Johnson and LeRoith, 1995; Koval et al., 1998a;
Klammt et al., 2004), but most functional studies have focused on
a potential role in IGFR signaling. In NIH3T3 fibroblasts, over-
expression of CrkII enhanced IGF-1-induced PI3K activation,
actin filament reorganization and DNA synthesis but diminished
ERK activation and cell cycle progression (Beitner-Johnson et al.,
1996; Koval et al., 1998b; Goh et al., 2000). Crk has also been
implicated in IGF-1 signaling pathways regulating early stages of
adipocyte differentiation (Jin et al., 2000). The mechanisms under-
lying these effects are unclear, although as discussed above Crk has
been invoked as a component of the CAP/Cbl pathway, recruit-
ing the guanine nucleotide exchange factor C3G (Chang et al.,
2004). RNAi-mediated knockdown studies suggested CrkII is not
required for insulin signaling to GLUT4 (Zhou et al., 2004), but
this approach has not been applied to test involvement of Crk in
other aspects of insulin/IGF action.

NON-SUBSTRATE RECEPTOR ASSOCIATIONS: ADAPTORS
AND SCAFFOLDS
Various different classes of proteins have been identified that bind
to the IR/IGFR but do not act as substrates for tyrosine phospho-
rylation. In some cases interactions with receptors are direct and
have been characterized in considerable molecular detail while in
others the mode of interaction with receptors remains obscure.
These adaptor and scaffold proteins may modulate RTK activity
or the interaction of the receptors with substrates, or may them-
selves recruit additional proteins that can function in downstream
signaling.
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Grb7/10/14
The Grb7/10/14 adaptors were first identified as IR/IGFR binding
partners in yeast two-hybrid studies. They are similar in overall
structure to APS/SH2-B, having an N-terminal PH domain and
C-terminal SH2 domain, but represent a distinct protein fam-
ily. Grb7/10/14 exhibit overlapping but distinct patterns of tissue
distribution and functional effects (reviewed in Holt and Siddle,
2005). They interact with multiple RTKs, but Grb10/14 have par-
ticular affinity for autophosphorylated IR/IGFR, binding via their
SH2 domain to the autophosphorylation sites of the kinase regu-
latory loop and also via their BPS (between PH and SH2) domain
as a pseudosubstrate inhibitor in the kinase active site (Stein et al.,
2003; Depetris et al., 2005, 2009; Goenaga et al., 2009). When
assayed in vitro, Grbs inhibit IR TK activity with potency order
Grb14 > Grb10 > Grb7, and this inhibition is also exhibited by
isolated BPS but not SH2 domains (Bereziat et al., 2002). There
are indications that Grb14 exhibits greater potency for inhibit-
ing IR compared to IGFR (Bereziat et al., 2002). Where Grbs and
APS/SH2-B are co-expressed they would be expected to compete
for binding to the IR/IGFR kinase regulatory loop, with potential
then either to inhibit or activate TK activity depending on the
dominant binding partner. Unlike APS/SH2-B, Grb10/14 are not
substrates for the IR/IGFR TKs, although they are phosphorylated
by other tyrosine and serine kinases (Langlais et al., 2000; Holt and
Siddle, 2005; Sturk and Dumont, 2010). In particular, phospho-
rylation of Grb10 by mTORC1 potentiates its binding to IR/IGFR
(and possibly to other receptors) and thus results in feedback inhi-
bition of the PI3K and ERK pathways (Hsu et al., 2011; Yu et al.,
2011).

A large body of evidence indicates that binding of Grb10/14 by
IR/IGFR inhibits TK activity and IRS phosphorylation in intact
cells (reviewed in Holt and Siddle, 2005). However, other studies
suggest Grb10 has the potential to play a positive role in both meta-
bolic and mitogenic signaling depending perhaps on expression
levels and cellular context (Lim et al., 2004; Riedel, 2004). Binding
of Grb10/14 prolongs receptor activation even while inhibiting
phosphorylation of substrates, by site-specific protection of phos-
photyrosines in the TK regulatory loop (Nouaille et al., 2006;
Smith et al., 2007). Moreover both Grb10 and Grb14 recruit addi-
tional protein binding partners including Ras, PDK1, NEDD4,
ZIP/PKCζ, and tankyrase (Holt and Siddle, 2005), some of which
could contribute positively to signaling. Recruitment of PDK1 by
Grb10 has been reported to facilitate Akt activation (King and
Newton, 2004) but may also be required for maximum inhibi-
tion of insulin signaling (Goenaga et al., 2009). Grb14 may have
additional actions downstream of IR to influence gene expression
(Carre et al., 2008).

Gene deletion studies in mice confirm that Grb10 and Grb14
have overlapping but not identical actions, predominantly as
inhibitors of insulin signaling, probably reflecting their different
tissue distribution as well as their distinct binding partners (Holt
et al., 2009). Grb10- and Grb14-deficient mice exhibit improved
whole-body glucose homeostasis, reflecting enhanced insulin sig-
naling (Cooney et al., 2004; Smith et al., 2007). However in
both rodents and humans expression of Grb10 is imprinted in
a tissue-specific manner (Blagitko et al., 2000) and this, together
with its potential to interact with multiple RTKs, complicates

interpretation of knockout phenotypes. Expression of Grb10 in
peripheral tissues during embryogenesis is predominantly from
the maternal allele, but within the brain Grb10 is paternally
expressed. Ablation of the maternal allele results in fetal and pla-
cental overgrowth (Charalambous et al., 2003, 2010; Smith et al.,
2007) while ablation of the paternal allele results in behavioral
changes (Garfield et al., 2011). The contribution of altered reg-
ulation of IR/IGFR to these phenotypes is unclear, but the data
are compatible with a modest inhibitory influence of endogenous
Grb10 on both IR and IGFR function. Although Grb14 appears
primarily to influence IR function, it is unclear whether this sim-
ply depends on co-expression or additionally reflects specificity of
interaction

RACK1 AND INTEGRINS
Studies in several laboratories have implicated the scaffold pro-
tein RACK1 in interactions between IGFR and integrin signaling
pathways that regulate cell adhesion and motility. Promotion of
a metastatic and invasive phenotype is one of the mechanisms by
which IGFR signaling contributes to cancer progression. RACK1
(receptor for activated C-kinases) is a WD repeat family member
and homolog of G protein β-subunits (Ron et al., 1994; McCahill
et al., 2002). It was identified as an IGFR-interacting protein in
yeast two-hybrid screens (Hermanto et al., 2002; Kiely et al., 2002).
Surprisingly, although the interaction of RACK1 with receptors
is ligand-dependent, it does not require receptor TK activity or
autophosphorylation (Kiely et al., 2002; Zhang et al., 2006). The
interaction is mediated by the WD1-4 domains of RACK1 and
S1248 of IGFR (or corresponding S1275 of IR) together with
Y1250/Y1251 of IGFR (which have no counterpart in IR; Kiely
et al., 2005; Zhang et al., 2006). Thus, although RACK1 does inter-
act with IR, there is clear potential for preferential interaction with
IGFR.

The mechanism of involvement of RACK1 in regulation of focal
adhesions is not yet clear. It was reported that RACK1 interacted
with Src, SHP2, and p85 in mouse embryonic fibroblasts, and that
over-expression of RACK1 inhibited IGF-1-induced Akt phospho-
rylation and reduced its anti-apoptotic effect but enhanced cellular
proliferation (Kiely et al., 2002). The combination of adhesion
and IGF-1 signals led to formation of a complex containing IGFR,
β1 integrin, and RACK1, together with phosphorylated Shc, Src,
SHP2, and IRSs. It was proposed that the IGFR-dependent scaf-
folding function of RACK1 regulates Akt activity and promotes
turnover of focal adhesions (Kiely et al., 2005). RACK1 was con-
stitutively associated with the phosphatase PP2A in serum-starved
cells, and IGF-1-induced ligation of β1 integrin was accompanied
by dissociation of PP2A (Kiely et al., 2006). The WD7 domain of
RACK1 is essential for binding both PP2A and β1 integrin and
thus for IGF-1-mediated cell migration and proliferation (Kiely
et al., 2008). Recent data suggest that RACK1 interacts directly
with FAK, and this association is regulated by IGF-stimulated,
c-Abl-mediated tyrosine phosphorylation to facilitate adhesion
signaling (Kiely et al., 2009). It is well known that FAK is tyrosine-
phosphorylated in response to clustering of integrins, and that
IGF-1 and insulin induce dephosphorylation.

In separate studies RACK1 was reported to interact with IGFR,
PKC, and β1 integrin in response to IGF-1 and phorbol ester
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stimulation in NIH3T3 fibroblasts. Over-expression of RACK1
reduced IGF-1-induced cell growth and enhanced cell spreading,
accompanied by increased tyrosine phosphorylation of FAK but
no effect on IRS/PI3K and Shc/MAP kinase pathways (Hermanto
et al., 2002). Subsequently,RACK1-mediated STAT3 activation was
implicated in insulin and IGF-1-induced anchorage-independent
growth and protection from apoptosis (Zhang et al., 2006).

It has been reported that splice variants of β1 integrins selec-
tively modulate IGFR signaling in response to IGF stimulation,
forming different complexes with IGFR and IRS-1 (β1A) or Gab-
1 and SHP2 (β1C; Goel et al., 2004). In prostate cancer cells,
expression of β1A was required for IGFR mitogenic and trans-
forming activities, and colocalized with IGFR in focal contacts.
However in the presence of β1C IGFR did not localize to focal
contacts and remained diffuse on the cell surface (Goel et al.,
2005). To add further complexity, the composition of RACK1
scaffolding complexes and effects on IGF-1 signaling appear to be
different in transformed and untransformed cells. In a cardiomy-
ocyte cell line, IGF-1 promoted recruitment of Src and PKCα to
RACK1 independently of association with IGFR, while still influ-
encing cell survival, adhesion and migration (O’Donovan et al.,
2007).

Interactions between IGFR and adhesion signaling pathways
are not confined to β1 integrins. In CHO and smooth muscle
cells αVβ3 integrin modulates IGFR-linked signaling and IGF-
stimulated cellular growth and migration responses, in associ-
ation with integrin-associated protein and the transmembrane
glycoprotein SHPS-1. Ligand occupancy influences recruitment of
SHP2 to IGFR and thereby modulates the duration of IGFR phos-
phorylation (Clemmons and Maile, 2003). SHPS-1 is phosphory-
lated by IGFR and acts as scaffold for recruitment of αVβ3 integrin-
associated SHP2 and Shc (Clemmons and Maile, 2005; Clemmons
et al., 2007). These interactions may modulate IGFR signaling
in response to increased αVβ3 integrin ligands in hyperglycemic
stress.

β-ARRESTINS
β-Arrestins have primarily been studied in relation to signal-
ing by GPCRs, in which context they act as scaffolds interacting
with ERK, Akt, and PI3K (Lefkowitz and Shenoy, 2005; DeWire
et al., 2007) and participate in reciprocal regulation of GPCRs
and RTKs (Hupfeld and Olefsky, 2007). However, β-arrestins may
have a more direct role in IR/IGFR signaling. It has been reported
that β-arrestins promote clathrin-mediated endocytosis of ligand-
occupied IGFR, enhancing activation of ERK and DNA synthesis
(Lin et al., 1998) and, more controversially, that β-arrestin1 can
couple IGFR to activation of PI3K and ERK independently of TK
activity (Povsic et al., 2003; Girnita et al., 2007). There is also
evidence that β-arrestin2 facilitates Akt activation by scaffolding
Akt and Src to IR, and that deficiency of this signaling complex
in mice contributes to development of insulin resistance (Luan
et al., 2009). There have been occasional reports that G proteins
themselves may participate in IR/IGFR signaling, and that inter-
action of IR and IGFR with distinct G proteins may contribute to
insulin/IGF signaling specificity. It was proposed that Gaq plays
a role in IR signaling to GLUT4, acting upstream of PI3K (Ima-
mura et al., 1999) while Gi and β-arrestin1 participate in IGFR

mitogenic signaling, but not metabolic or mitogenic IR signaling
(Dalle et al., 2001).

CYTOHESINS
A role in insulin signaling has also been proposed for cytohesins,
which otherwise act as guanine nucleotide exchange factors for
ARF family GTPases (involved in cytoskeletal organization and
integrin activation and signaling). Cytohesins have a modular
domain structure, including a PH domain and Sec7 GEF domain,
with potential to act as molecular scaffolds (Kolanus, 2007). Cyto-
hesins were implicated by genetic studies in insulin signaling in
Drosophila, acting upstream of PI3K and required for regula-
tion of Akt and FOXO (Fuss et al., 2006). Cytohesin function
was also shown to be required for FOXO-dependent gene regula-
tion in mammalian liver, and inhibition resulted in hepatic insulin
resistance (Hafner et al., 2006). It was proposed that cytohesins
facilitate formation of the IR/IRS complex and thus to activa-
tion of downstream metabolic signaling cascades. Cytohesins are
binding partners for the CNK family of scaffold proteins, which
in turn have multiple protein interaction domains including PH
and PDZ domains and contribute to Ras activation by Raf. Recent
data identified the CNK1/cytohesin interaction as critical for acti-
vation of the PI3K/Akt pathway downstream of IR/IGFR, with
evidence that CNK1 acts as a positive regulator of insulin sig-
naling by facilitating insulin-induced membrane recruitment of
cytohesin, thereby modulating Arf signaling to PtdIns 4-phosphate
5-kinases (PIP5Ks) and promoting local generation of the PI3K
substrate PtdIns(4,5) P2 (Lim et al., 2010).

IR- AND IGFR-SPECIFIC INTERACTORS
For many growth factors, direct recruitment of SH2 domain-
containing proteins to autophosphorylated RTKs initiates signal-
ing pathways. In the case of insulin and IGF signaling, this role is
predominantly taken by phosphorylated IRSs and Shc, but acti-
vated IR/IGFR also directly recruit some of the same adaptors as
well as other proteins that may participate in signaling or mod-
ulate receptor function. Among these are p85 and SHP2 which
bind to the CT tail and RasGAP (GTPase activating protein)
which binds to the JM region (Staubs et al., 1994; Rocchi et al.,
1996). These interactions appear to be at phosphorylation sites
that are conserved between IR and IGFR, rather than those that are
receptor-specific. Binding of p85 directly to IR/IGFR is probably
of minor importance compared to recruitment by phosphorylated
IRSs and although it may allow tyrosine phosphorylation of p85
and p110 this is of uncertain significance (reviewed in Shepherd
et al., 1998). Proteomic approaches have recently been used to
characterize the spectrum of SH2 domains that bind to putative
tyrosine phosphorylation sites on IR and IGFR, although these
studies took no account of whether these sites are actually phos-
phorylated upon receptor activation nor of the relative affinities of
interactions at different sites. Potential IGFR interactors included
both substrates and non-substrates, most of which could bind also
to EGFR and FGFR (PI3K, Src family kinases, PLCγ, Grb7/10/14,
SH2-B, JAKs, STATs, Crk) although interaction of Cbl appeared
to be unique to IGFR (Kaushansky et al., 2008). A separate study
reported that the major difference between IGFR and IR was in
their potential to recruit SHP2 (Hanke and Mann, 2009). It has
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also been reported that 14-3-3 interacts specifically with IGFR,
via S1283, but not with IR (Furlanetto et al., 1997), and this may
contribute to anti-apoptotic signaling (Peruzzi et al., 1999) and
transformation pathways (Spence et al., 2003). A PDZ protein IIP-
1/GIPC, identified as a binding partner for the C-terminal tail of
IGFR but not IR (Ligensa et al., 2001), was suggested to couple
IGFR to Gi (Booth et al., 2002) and more recently was implicated
in ROS generation (Choi et al., 2010). Thus there are a number of
hints that receptor-specific interactors may contribute to signal-
ing specificity of IGFR compared to IR, but these have not been
studied in sufficient depth to establish that they play an important
role in vivo.

OTHER SIGNALING PATHWAYS
Several other signaling mechanisms have been implicated in
insulin/IGF action, including activation of non-RTKs, redox reg-
ulation of phosphatases, and generation of alternative phospho-
inositides. In most of these cases molecular details of the receptor
interactions that initiate signaling are unclear, making it difficult
to assess whether there is specificity for IR or IGFR.

NON-RECEPTOR TYROSINE KINASES
JAKs and their transcription factor substrates STATs are most com-
monly associated with signaling by cytokine receptors (O’Shea
et al., 2002). However, several groups have reported phosphoryla-
tion and activation of JAK1 and/or JAK2 in response to IR and/or
IGFR stimulation, albeit with inconsistencies in detail (Giorgetti-
Peraldi et al., 1995; Gual et al., 1998; Takahashi et al., 1999; Zong
et al., 2000; Carvalheira et al., 2003; Yadav et al., 2005). Recruit-
ment of JAKs may be by interaction with phosphorylated IR/IGFR
(Gual et al.,1998),with Grb2 (Giorgetti-Peraldi et al.,1995) or with
IRSs (Velloso et al., 1998). Activation of JAKs by insulin/IGF was
accompanied by phosphorylation of one or more STATs (Velloso
et al., 1998; Takahashi et al., 1999; Zong et al., 2000; Carvalheira
et al., 2003; Yadav et al., 2005), but STAT5B was also reported to
be phosphorylated as a direct substrate of IR/IGFR TKs indepen-
dently of JAKs (Chen et al., 1997; Sawka-Verhelle et al., 2000). JAKs
may also phosphorylate IRS-1, on distinct sites from the IR/IGFR
TKs (Gual et al., 1998; Li et al., 2007). Although there is potential
for JAK/STAT pathways to augment insulin/IGF signaling in some
cell types (Himpe and Kooijman, 2009) there is little evidence
that they are of widespread importance in mediating insulin/IGF
action. However, SOCS proteins, which act as feedback inhibitors
of JAK/STAT pathways, also bind to IR/IGFR and inhibit IRS phos-
phorylation and downstream signaling (Howard and Flier, 2006;
Lebrun and Van Obberghen, 2008; Himpe and Kooijman, 2009)
and this may provide a mechanism of cross-talk between cytokine
and insulin/IGF signaling pathways.

Src family kinases (Src, Fyn, and Yes) are involved in signal-
ing by and regulation of diverse RTKs (Bromann et al., 2004).
Studies in a variety of cell lines have shown that rapid activa-
tion of Src family kinases by both IGF-1 and insulin contributes
significantly to phosphorylation of Shc and downstream mito-
genic responses (Boney et al., 2000, 2001; Shumay et al., 2002;
Sekharam et al., 2003; Criswell et al., 2005; Lieskovska et al.,
2006). Activation of Src family kinases by RTKs may in some
cases involve recruitment by interaction between SH2 domains

and autophosphorylated receptors, but in others the mechanisms
appear to be more complex (Bromann et al., 2004). The mecha-
nism of activation by insulin/IGF is unclear, although it is known
that Fyn associates with phosphorylated IRS-1 (Sun et al., 1996). It
has also been suggested that SHP2 and SHPS-1 may play a role as
scaffolds in recruitment and activation of Src by IGFR (Lieskovska
et al., 2006). Src family kinases augment signaling from RTKs in
a number of ways, participating in pathways required for DNA
synthesis, motility and survival (Bromann et al., 2004).

Both insulin and IGF-1 have been reported to activate c-Abl
(Frasca et al., 2007; Srinivasan et al., 2008; Genua et al., 2009; Kiely
et al., 2009), a non-receptor cytoplasmic TK implicated in the
regulation of cell growth, survival, and morphogenesis by growth
factors and adhesion (Sirvent et al., 2008). In HepG2 and MCF-7
cells, c-Abl was found to be specifically activated by insulin but
not IGF-1, while inhibition of c-Abl modulated effects of insulin
but not IGF-1, attenuating stimulation of the Akt/GSK3 cascade
and glycogen synthesis while paradoxically enhancing its stimula-
tion of ERK activation, proliferation, and migration (Frasca et al.,
2007). It appeared that effects of c-Abl were mediated in part by
FAK (Genua et al., 2009). In breast cancer cells, c-Abl was acti-
vated by IGF-1 and was required for IGF-1-stimulated cell cycle
progression, mediated in part by phosphorylation of STAT3 (Srini-
vasan et al., 2008). The mechanism of activation of c-Abl was not
investigated in these studies, but in other cells c-Abl is activated
downstream of Src family kinases (Bromann et al., 2004). It is
unclear whether involvement of c-Abl in insulin/IGF signaling is
specific to the cell lines studied.

REDOX REGULATION: PTPs AND PTEN
The phosphatases that reverse the actions of protein and lipid
kinases obviously play important roles in IR/IGFR signaling.
PTP1B has been identified as a key phosphotyrosine phosphatase
responsible for dephosphorylating IR/IGFR and IRSs (Dube and
Tremblay, 2005) although other phosphatases may also be active
in this regard, including SHP2 (Myers et al., 1998). The lipid phos-
phatases PTEN and SHIP2 both contribute to termination of phos-
phoinositide signaling, by dephosphorylating PtdIns(3,4,5)P3 at
the 3 and 5 positions respectively (Vinciguerra and Foti, 2006). The
question then arises whether the activity of these phosphatases is
regulated in ways that could sensitize insulin/IGF signaling. Work
in several laboratories has shown that activation of IR/IGFR (and
certain other RTKs) promotes generation of reactive oxygen and
nitrogen species which, by reversible oxidation of active-site cys-
teine residues, inhibit phosphatases including PTP1B and PTEN
and thereby potentiate the effects of tyrosine phosphorylation
and PI3K activation (Droge, 2005; Goldstein et al., 2005; Rhee
et al., 2005; Ross et al., 2007; Vardatsikos et al., 2009; Hsu and
Meng, 2010). Much of the data supporting this concept comes
from manipulation of cultured cells, and even then the investiga-
tion of redox-based regulation is technically challenging (Janssen-
Heininger et al., 2008). However there is evidence from mouse
knockout models that ROS enhance insulin sensitivity in vivo (Loh
et al., 2009). The NAD(P)H oxidase homolog Nox4 has been iden-
tified as a likely source of insulin/IGF-stimulated H2O2 generation
(Mahadev et al., 2004; Meng et al., 2008) but the mechanisms
linking IR/IGFR signaling to Nox4 remain obscure. It has been
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reported that the PDZ domain protein GIPC is involved in mediat-
ing IGFR-induced ROS generation, possibly by inhibiting receptor
internalization (Choi et al., 2010). However, GIPC was originally
identified as a binding partner for the C-terminal tail of IGFR but
not IR (Ligensa et al., 2001) and it is difficult to reconcile this
specificity with involvement in ROS generation that appears to be
similarly triggered by both receptors. Many questions regarding
the mechanism and significance of ROS generation by IR/IGFR
therefore remain to be answered.

OTHER PHOSPHOINOSITIDES
Additional to the well-established role of PtdIns(3,4,5)P3 gener-
ated by Class Ia PI3Ks, other phosphoinositides generated by class
II and class III PI3Ks and PIKfyve may play roles in signaling (Shi-
sheva, 2008a; Falasca and Maffucci, 2009). It has been reported that
class II PI3Ks, whose sole product in vivo is believed to be PtdIns
3-P, are required for insulin signaling to glucose transport (Falasca
et al., 2007) and for regulation of gene expression in pancreatic
β-cells (Leibiger et al., 2010a). Activation of PI3K-C2α by insulin
apparently involves its recruitment to the plasma membrane medi-
ated by the small GTPase TC-10 (a component of the CAP/Cbl
pathway, discussed above; Falasca et al., 2007). PIKfyve, binds to
PtdIns 3-P via its fyve domain and synthesizes PtdIns(3,5)P2 and
PtdIns 5-P. PIKfyve is phosphorylated and activated by Akt but
its mechanism of involvement in GLUT4 translocation is unclear
(Berwick et al., 2004). Dysfunction of PIKfyve produces endosome
enlargement and cytoplasmic vacuolation (Shisheva, 2008b), sug-
gesting that it may have a general role in maintaining subcellular
membrane compartments rather than a specific role in insulin
signaling. To date, it appears that class II PI3K and PIKfyve have
only been examined in the context of insulin action on glucose
transport, and it is unclear whether these enzymes and their lipid
products might play wider roles in insulin/IGF actions.

RECEPTOR TRAFFICKING
As well as activating signaling pathways, autophosphorylation
of IR/IGFR triggers internalization of the ligand/receptor com-
plex, mainly via clathrin-coated pits although receptors are also
found associated with caveolae (Foti et al., 2004). One role of
this traffic is in signal termination, through dissociation and/or
degradation of ligand in the intracellular endosome/lysosome sys-
tem. The receptors are largely recycled, although persistent occu-
pancy/internalization can increase receptor degradation (down
regulation; Di Guglielmo et al., 1998). However, there is evidence
that receptor internalization also plays an active role in signaling
(Smith et al., 1997; Foti et al., 2004).

RECEPTORS IN ENDOSOMES
Several studies have shown that IR/IGFR-mediated phosphoryla-
tion of Shc, but not IRSs, is dependent on receptor internalization
(Biener et al., 1996; Ceresa et al., 1998; Chow et al., 1998; Hamer
et al., 2002). IR-A internalizes more rapidly than IR-B (Vogt et al.,
1991; Yamaguchi et al., 1991; Giudice et al., 2011) and this could
lead to more effective phosphorylation of Shc. The mechanism
underlying the different internalization rates of IR isoforms is
unclear, but might involve their differential autophosphorylation
(Kellerer et al., 1992) and/or differential exposure of NPxY or LL

motifs (Foti et al., 2004). Internalized endosomal IR remain active,
and endosomes may even be the principal site of IRS-1 phos-
phorylation and PI3K activation as well as signaling to Shc/ERK
pathways (Di Guglielmo et al., 1998). Slow-dissociating, high affin-
ity insulin analogs induce sustained activation of IR, and this
is associated with increased receptor internalization, Shc phos-
phorylation and ERK activation that may reflect signaling from
intracellular sites (Hansen et al., 1996; Rakatzi et al., 2003). It has
also been reported that internalization and recycling of IGFR is
necessary for sustained phosphorylation of Akt (Romanelli et al.,
2007). Surprisingly there have been few reports directly comparing
the internalization kinetics and intracellular itineraries of IR and
IGFR. One study with receptors over-expressed in rat-1 fibrob-
lasts concluded that IGF-1 internalizes more slowly than insulin
and dissociates more slowly from its receptor in the acidifying
endosome, but did not attempt to relate these characteristics to
intracellular signaling pathways (Zapf et al., 1994).

RECEPTORS IN NUCLEI
More controversially, studies going back several decades have sug-
gested that IR are found in cell nuclei (Goldfine et al., 1982;
Podlecki et al., 1987; Smith et al., 1997). There is also evidence
for insulin/IGF-1 induced nuclear localization of IRSs (Sun et al.,
2003; Wu et al., 2003; Chen et al., 2005). It was initially suggested
that nuclear IR might specifically mediate mitogenic responses,
although it is now known that downstream signaling components
including activated Akt and ERK can also traffic to the nucleus,
so that nuclear localization of receptors per se is not necessary
for induction of nuclear events. However, the idea persists that
functional IR/IGFR are localized within cell nuclei. Recently it
was reported that IR signaling complexes are recruited to specific
insulin-inducible gene loci (Nelson et al., 2011) and that nuclear
IGFR is phosphorylated in response to ligand, binds to chromatin
and acts directly as a transcriptional enhancer (Aleksic et al., 2010;
Sehat et al., 2010). The pathways by which activated receptors
might traffic to the nucleus, let alone associate with intranuclear
chromatin, are unclear. Sumoylation may play a role in nuclear
targeting of IGFR (Sehat et al., 2010).

UBIQUITINATION
Ubiquitination plays a key role in regulating the trafficking and
degradation of many proteins (Acconcia et al., 2009; Zwang and
Yarden, 2009), with potential to act as an inducible, reversible,
and flexible signaling device depending on whether proteins are
mono- or poly-ubiquitinated and on how ubiquitin chains are
linked together (Kirkin and Dikic, 2007; Ikeda and Dikic, 2008).
Several different mechanisms have been proposed for ubiquiti-
nation of IR/IGFR, but the sites and nature of modifications are
poorly characterized. Grb10 has been implicated in regulation of
ligand-induced ubiquitination and stability of both IR and IGFR,
mediated by E3 ubiquitin ligase Nedd4 (Vecchione et al., 2003;
Ramos et al., 2006; Huang and Szebenyi, 2010). This mechanism
may contribute along with direct inhibition of receptor TK activity
to negative regulation of IR/IGFR signaling by Grb10. Paradoxi-
cally however, insulin and IGF signaling and cell surface expression
of IR and IGFR are reduced in Nedd4-null mice, suggesting that
in vivo Nedd4 exerts a positive effect on signaling (Cao et al., 2008).
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This may in part reflect an influence of Nedd4 on Grb10 abun-
dance (Cao et al., 2008) although there is no evidence that Grb10
itself is ubiquitinated by Nedd4 (Vecchione et al., 2003).

The E3 ubiquitin ligase activity of Cbl proteins has been impli-
cated in negative regulation of many different receptors with
intrinsic or associated TK activity (Schmidt and Dikic, 2005; Thien
and Langdon, 2005), and there is evidence that Cbl, recruited
by APS, catalyzes ubiquitination of IR and IGFR with a role in
endocytosis (Ahmed et al., 2000; Kishi et al., 2007; Sehat et al.,
2008). A third E3 ubiquitin ligase, Mdm2, has been implicated in
degradation of IGFR (Girnita et al., 2003) following recruitment
dependent on β-arrestin (Girnita et al., 2005, 2007). It is possi-
ble that distinct patterns of ubiquitination mediated by different
ligases may have different consequences (Sehat et al., 2008) and
it has been proposed that under some circumstances ubiquitina-
tion plays a positive role in signaling by IGFR and IR (Sehat et al.,
2007; Suzuki et al., 2009). Downstream of the IR, recent evidence
suggests that ubiquitination of GLUT4 may act as signal for traf-
ficking from the endosomal/TGN system to a specific intracellular
storage compartment, facilitating insulin-stimulation of glucose
transport (Lamb et al., 2010).

NEGATIVE AND FEEDBACK REGULATION
Insulin signaling is susceptible to a variety of controls reflecting
feedback from the insulin signaling pathway itself and crosstalk
from other pathways. These mechanisms can in principle be
receptor or pathway-specific, so that insulin/IGF resistance can
be selective in terms of affected tissues and biological responses.

PHOSPHORYLATION
Prominent among feedback regulatory mechanisms is the phos-
phorylation of IR/IGFR and IRSs by serine/threonine kinases.
Both IR and IGFR are susceptible to multisite serine phospho-
rylation induced by insulin/IGF via unidentified kinases, or by
activation of PKCs (Pillay et al., 1991; Tavare et al., 1991; Coghlan
et al., 1994; Liu and Roth, 1994). Serine phosphorylation of IR
may contribute to development of insulin resistance, for instance
as a consequence of hyperglycemia (Kellerer and Haring, 1995).
Serine phosphorylation of IGFR may result in 14-3-3 binding,
affecting both signaling and receptor turnover (Furlanetto et al.,
1997; Spence et al., 2003). However, the sites, mechanisms, and
consequences of IR/IGFR serine/threonine phosphorylation have
never been well defined and there have been few recent studies in
this area.

In contrast, the phosphorylation of IRS-1 has been intensively
studied over the last two decades, in terms of identification of spe-
cific phosphorylation sites and responsible kinases and elucidation
of functional consequences (Boura-Halfon and Zick, 2009; Sun
and Liu, 2009). IRS-1 is a substrate for phosphorylation by sev-
eral kinases that lie downstream in the insulin signaling pathway,
including Akt/PKB, GSK3, and S6K1 as well as kinases activated by
other signals, including AMPK, PKCs, Jnk, and IKKβ. Most com-
monly, serine/threonine phosphorylation inhibits IRS-1 function
(by inhibiting overall tyrosine phosphorylation, promoting degra-
dation, or inhibiting association of adaptor proteins at specific
sites) although phosphorylation at certain sites can potentiate IRS-
1 tyrosine phosphorylation. However, given the complexity arising

from the number of phosphorylation sites and the potential for
interaction between them, understanding is far from complete.
Serine phosphorylation of IRS-2 has so far been less studied, but
is likely to be equally complex (Boura-Halfon and Zick, 2009;
Fritsche et al., 2011). It would be expected that insulin resistance
secondary to impairment of IRS function would affect mainly
the PI3K/Akt pathway and less so the Ras/ERK pathway which
can be alternatively activated via Shc. Indeed inhibition of IRS
association with receptors may even potentiate Shc/Ras signaling
by relieving competition for binding to and phosphorylation by
IR/IGFR.

Subversion of normal feedback and cross-talk IRS regulatory
mechanisms by lipid metabolites, adipokines, or inflammatory
mediators is believed to contribute to obesity-associated insulin
resistance (Boura-Halfon and Zick, 2009; Sun and Liu, 2009).
However, there is evidence that the most deleterious defects under-
lying common states of insulin resistance are independent of IRSs
(Hoehn et al., 2008; Li et al., 2010; Ng et al., 2010) and it seems clear
that additional regulatory mechanisms remain to be elucidated.
Recent evidence has revealed mTOR-dependent phosphorylation
of Grb10 as a key mechanism of negative regulation of IR/IGFR
signaling (Hsu et al., 2011; Yu et al., 2011).

O-GLcNAcylation
Reversible modification of protein serine/threonine residues can
occur by O-GlcNAcylation, potentially providing a mechanism
of cross-talk with phosphorylation (Copeland et al., 2008; Zei-
dan and Hart, 2010). A large number of cytoplasmic and nuclear
proteins including components of signaling pathways and tran-
scription factors are susceptible to O-GlcNAcylation, although
relatively few specific sites have been mapped (Copeland et al.,
2008). In some proteins O-GlcNAc modification seems to occur
at the same sites as are susceptible to phosphorylation, and it
can variously block or mimic effects of phosphorylation depend-
ing on substrate and site, thereby regulating protein stability and
subcellular localization and protein–protein interactions (Slaw-
son et al., 2010; Zeidan and Hart, 2010). Reflecting the origin of
the O-GlcNAc moiety as a product of the hexosamine biosyn-
thetic pathway, it has been proposed that O-GlcNAcylation is
a nutrient and stress-sensitive modification, although it is not
the only mechanism of hyperglycemia induced insulin resistance
(Copeland et al., 2008). Following insulin stimulation, O-GlcNAc
transferase (OGT) is recruited to PtdIns(3,4,5)P3 in the plasma
membrane via a novel phosphoinositide binding domain (Yang
et al., 2008) although it has also been reported that OGT is directly
phosphorylated and activated by IR (Whelan et al., 2008). Sev-
eral components of insulin signaling pathways, including IRβ,
IRS-1, and Akt, are transiently modified by O-GlcNAc following
insulin stimulation,which in turn modulates their serine phospho-
rylation (IRS-1 increased, Akt decreased) and attenuates insulin
signal transduction (Yang et al., 2008). IRS-1 is O-GlcNAc mod-
ified at multiple sites in close proximity to SH2 domain binding
motifs (Klein et al., 2009), and pharmacological elevation of O-
GlcNac inhibited tyrosine phosphorylation of at least one PI3K
binding motif (Whelan et al., 2010). A proper understanding of
the role of O-GlcNAcylation in insulin signaling pathways must
await a more detailed description of the sites and consequences of
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O-GlcNAc modification, and the circumstances under which this
is modulated.

OTHER MECHANISMS
Several other mechanisms have been implicated in modulation of
insulin/IGF signaling (Youngren, 2007). Some of these, such as the
recruitment of SOCS proteins to receptors and IRSs (Lebrun and
Van Obberghen, 2008) or actions of PKCs (Sampson and Cooper,
2006; Farese and Sajan, 2010) primarily reflect cross-talk from
other pathways. The efficiency of signaling via the PI3K path-
way is critically dependent on the balance of expression of PI3K
regulatory and catalytic subunits. Free p85 regulatory subunits
inhibit signaling by at least two mechanisms, first by competing
with active PI3K heterodimer for binding sites on IRSs, and sec-
ond by facilitating activation of JNK (Taniguchi et al., 2006). A
genome-wide scanning approach identified multiple negative reg-
ulators of insulin signaling including diverse phosphatases and
kinases together with some previously uncharacterized proteins
whose mechanism of action remains to be determined (Huang
et al., 2009).

Receptor-specific interactions with plasma membrane glyco-
proteins has also been linked to efficiency of insulin signaling.
CEACAM-1 (also known as C-CAM and HA4/pp120), a cell adhe-
sion molecule with ecto-ATPase activity that is highly expressed in
liver, is a specific IR substrate that has been implicated in positive
regulation of IR endocytosis and insulin clearance (Najjar, 2002;
DeAngelis et al., 2008). Plasma cell antigen-1 (PC-1; also known
as ENPP1), an ecto-nucleotide pyrophosphatase and phosphodi-
esterase, binds to the connecting domain of the IR alpha-subunit
that is located in residues 485–599 and inhibits insulin-induced
TK activity. Overexpression or overactivity of PC-1 has been pro-
posed to contribute to insulin resistance (Goldfine et al., 2008).
There is no evidence that CEACAM-1 or PC-1 interact also with
IGFR.

CONCLUSION
It is beyond question that insulin and IGFs fulfill fundamentally
different physiological roles in vivo, and this has led to a widespread
perception that these distinct actions are somehow dependent on
divergent signaling properties of the respective receptors, IR favor-
ing metabolic responses and IGFR growth-promoting actions.
However when studied in defined cellular systems in vitro, the
actions of insulin and IGFs appear very similar, although most
studies have necessarily relied on cultured cells of rather non-
descript phenotype rather than systems that preserve the complex
differentiated phenotypes that typify responses in vivo. The dif-
ferences that have been observed in vitro are largely quantitative
rather than qualitative, and related at least in part to the levels
of IR and IGFR expression. Certainly there is no convincing evi-
dence that IR can mediate effects that cannot also be mediated
by IGFR, or vice versa, and the issue of signaling specificity then
comes down to the relative efficiency with which the receptors
engage different signaling pathways that contribute to “metabolic”
or “mitogenic” outcomes. It is an artificial question to ask how
the activities of IR and IGFR compare when given equal opportu-
nity (equal receptor expression and equivalent ligand stimulation
in defined cell backgrounds), because this situation never obtains

in vivo, but this is the only basis on which similarities and dif-
ferences in intrinsic activity can be properly defined. One recent
study that adopted this approach in relation to regulation of gene
expression by insulin and IGF-1 in brown adipocytes concluded
that IR and IGFR act as identical portals in terms of signaling,
and that quantitative differences between the effects of insulin and
IGF-1 reflected the expression levels of the respective receptors
and/or ligand profiles (Boucher et al., 2010b).

This review examines the question of whether there are differ-
ences between IR and IGFR at the level of receptor-proximal intra-
cellular signaling. It is well accepted that the canonical PI3K/Akt
and Ras/ERK pathways, initiated by the tyrosine phosphorylation
of IRSs and Shc, are central in mediating actions of both insulin
and IGFs. The PI3K/Akt pathway regulates a broad spectrum of
responses, both metabolic and growth-related (as evidenced by the
association of aberrant activity of both PI3K and Akt with various
cancers), while the Ras/MAPK pathway is important in regulating
cell proliferation and differentiation but is not involved in acute
metabolic regulation. Recent reviews of insulin/IGF signaling have
focused very much on the canonical pathways (Adams et al., 2004;
Cohen, 2006; Taniguchi et al., 2006; Laviola et al., 2007). However,
as reviewed here, many other components have been implicated in
signaling, either independently of or as modulators of the canoni-
cal pathways, or as regulators of receptor activation and trafficking
(Figure 2). In many cases the contributions of these components
have been studied only under limited conditions and it remains
unclear whether their roles are specialized, and relevant only to
particular responses in particular tissues, or more general. Some,
like the APS/CAP/Cbl pathway, have been studied only in the con-
text of metabolic actions of insulin in adipocytes, while others
such as RACK1, have been studied mainly in relation to actions of
IGFs on migration and proliferation of fibroblasts. These speci-
ficities may have more to do with the functions of differentiated
cells than the signaling competences of the receptors, but the issue
is largely theoretical unless APS and IGFR, or RACK1 and IR, are
shown to be significantly co-expressed in cells in vivo. Only a very
few interactions have been reported that appear truly receptor-
specific, notably those of IIP-1/GIPC and 14-3-3 with IGFR, but
the functional significance of these interactions and their role in
mediating actions of IGFs is unknown. It is possible that other
receptor-specific interactors may emerge from proteomic studies.
Certainly there is more than sufficient divergence in the primary
sequences of IR and IGFR, particularly in the JM and CT regions,
to allow receptor-specific covalent modification by phosphoryla-
tion, O-GlcNAcylation, or ubiquitination, and such modification
might in turn mediate specific interactions that could influence
receptor activity or subcellular localization.

In principle, differential mediation of “metabolic” and “mito-
genic” responses by IR and IGFR might reflect differential phos-
phorylation of substrates in the canonical pathways or selective
engagement of accessory pathways or modulators. As reviewed
elsewhere (Jensen and De Meyts,2009), the mechanisms and kinet-
ics of ligand binding determine the kinetics of activation and
intracellular trafficking of receptors, which in turn can influence
the relative phosphorylation of IRSs and Shc in a ligand-dependent
manner. As detailed here, there is also evidence that IR interacts
more effectively than IGFR with IRS-1 while the converse may be
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FIGURE 2 | Accessory components of IR/IGFR signaling. Substrates,
scaffolds, and pathways additional to the canonical PI3K/Akt and Ras/ERK
pathways are shown, with protein–protein interaction domains (JM,

juxtamembrane; TK, tyrosine kinase; CT, carboxyl-terminal; PTB,
phosphotyrosine-binding; PH, pleckstrin homology, SH2, Src homology-2;
BPS, between PH and SH2; WD, W-D (Trp-Asp) dipeptide repeat).

true for IRS-2 and Shc, and this may be reinforced by receptor-
preferential phosphorylation of different sites on these substrates.
All of these factors might contribute to more effective “mitogenic”
signaling by IGFR compared to IR. In relation to accessory and
modulatory pathways, the proposed mechanism of interaction of
RACK1 would be expected to favor IGFR over IR, but Gabs, DOKs,
SH2Bs, and Grbs would not be expected to discriminate between
the receptors. Non-RTKs of the JAK, Src, and Abl families, which
may contribute to mitogenic responses, can apparently be acti-
vated by both IR and IGFR but not enough is known about the
activation mechanisms to indicate whether IGFR might activate
more effectively than IR. The roles and mechanisms of interaction
of scaffold proteins such as β-arrestins and cytohesins are even less
clearly defined.

The most that can be said with certainty is that the signaling
mechanisms of IR and IGFR are very much more similar than
different, and that cellular context, rather than intrinsic receptor
activity, is the major determinant of whether responses to insulin
and IGFs are perceived as “metabolic” or “mitogenic.” The ques-
tion remains whether subtle differences in signaling between IR
and IGFR also contribute to the specificity of action of insulin
and IGFs. Resolution of this issue may have to await the further

development of methods for global quantification of the phos-
phorylation, interaction, and activity of signaling networks and
for mathematical modeling of the resulting large datasets. Such
systems approaches are increasingly being applied in an attempt
to relate biological outcomes to the complex kinetics of activation
of interacting signaling pathways (Del Rosario and White, 2010;
Morris et al., 2010b; Vinayagam et al., 2011). Although this field
is still in its infancy, modeling has already illustrated how sub-
tle differences in the activity of individual signaling components
and cross-talk between signaling pathways can affect biological
responses (Cedersund et al., 2008; Aldridge et al., 2009; Brann-
mark et al., 2010; Morris et al., 2011; Rowland et al., 2011). In the
future it is to be expected that modeling will generate quantitative
predictions and testable biological hypotheses about the opera-
tion of signaling networks, that will lead to better understanding
of signaling specificity.
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