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ABSTRACT: For decades, the complicated energy surfaces found in macromolecular
protein:ligand structures, which require large amounts of computational time and resources
for energy state sampling, have been an inherent obstacle to fast, routine free energy
estimation in industrial drug discovery efforts. Beginning in 2013, the Merz research group
addressed this cost with the introduction of a novel sampling methodology termed “Movable
Type” (MT). Using numerical integration methods, the MT method reduces the
computational expense for energy state sampling by independently calculating each atomic
partition function from an initial molecular conformation in order to estimate the molecular
free energy using ensembles of the atomic partition functions. In this work, we report a
software package, the DivCon Discovery Suite with the MovableType module from
QuantumBio Inc., that performs this MT free energy estimation protocol in a fast, fully
encapsulated manner. We discuss the computational procedures and improvements to the
original work, and we detail the corresponding settings for this software package. Finally, we
introduce two validation benchmarks to evaluate the overall robustness of the method
against a broad range of protein:ligand structural cases. With these publicly available benchmarks, we show that the method can use a
variety of input types and parameters and exhibits comparable predictability whether the method is presented with “expensive” X-ray
structures or “inexpensively docked” theoretical models. We also explore some next steps for the method. The MovableType
software is available at http://www.quantumbioinc.com/

■ INTRODUCTION

The cost of research and development in drug discovery has
continued to increase annually,1,2 and much of this cost is due
to the massive amount of screening for bioactive compounds
required, in which only 1−2% of the screened lead compounds
enter the preclinical stage.1 Receptor:ligand binding free
energy simulation has become a vital research area in
structure-based drug design, and accurate simulation of
receptor:ligand free energy changes upon binding requires a
thorough sampling of the metastable energy states on the
dissociation pathway. Effective in silico predictions of the free
energy changes with respect to biomolecular binding processes
provide significant support to drug target identification and
drug candidate screening and greatly reduce the cost of the
corresponding “wet chemistry” research.
For several decades, on account of their speed and lower

cost versus both molecular dynamics (MD) simulations and
“wet chemistry” approaches, virtual screening and docking/
scoring methods have been applied to drug discovery. These
methods have become integral to the drug discovery effort, as
they are critical to understanding intermolecular interactions in
the structure-based drug discovery effort.3−10 However, they
are often criticized for their lack of accuracy in predicting
binding modes and binding affinities, especially for the

noncomparability of the scores to the experimental pKd values
or free energies.11−16 Furthermore, predictions of small-
molecule docking often outperform those for larger mole-
cules.17 Much of the challenge of docking/scoring is centered
on the inability of these methods to sample enough of the
relevant conformational space of the receptor:ligand com-
plex.18−21 Furthermore, the methods are often unable to
correctly capture and sample structural water,22−24 tautomeric
states,25,26 and conformational strain.27 These problems,
coupled with scoring function errors28,29 and inaccurate
protein:ligand complex structures,30,31 contribute to significant
problems with the use of these methods in industrial drug
discovery efforts. In order to decrease computational expense,
protein flexibility is ignored32−34 and binding energy is
approximated using “rigid receptor” or “induced-fit receptor”
models, which use protein target minimization or refinement
during the docking/scoring process.34 On the other hand,
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molecular simulation methods like FEP+,35 AMBER TI
(thermodynamic integration),36,37 molecular mechanics/Pois-
son−Boltzmann surface area (MM/PBSA) and molecular
mechanics/generalized Born surface area (MM/GBSA),38−42

linear interaction energy (LIE),43 and replica exchange with
solute tempering (REST),44,45 which are generally computa-
tionally expensive for large-scale virtual screening campaigns,
are becoming more accessible and easier to use with the
general availability of graphics processing unit (GPU)
technologies. These methods can effectively simulate recep-
tor−ligand binding/dissociation trajectories and are in theory
better able to predict free-energy-based binding affinities. Free
energy perturbation or alchemical methods have shown
promise,8,18,46−48 while absolute free energy determination is
still a problem and these methods often exhibit significant
errors.18,49−54 Free energy algorithms that effectively balance
speed and accuracy are in high demand according to the
growing need for accurate computational methods in the fast-
paced drug discovery and biotechnology industries.
Beginning in 2013, Merz and co-workers developed55 and

patented56 the Movable Type (MT) free energy method to
address this speed versus accuracy issue through the use of fast
numerical integration methods to estimate the atomic energy-
state ensembles in the vicinity of one or more user-provided or
automatically generated structural state(s). These atom-level
ensembles are grouped into molecular energy ensemble
calculations in order to estimate the free energy of binding
in a statistical-mechanically rigorous fashion. Over the years,
the MT method has been expanded and refined to account for
greater protein structure flexibility,57,58 ligand flexibility,59 a
new atom:atom pair potential,60 and the KMTISM molecular
solvation model.61 Recently, in collaboration first with the
Merz research group at Michigan State University and then
with the Zheng research group at Wuhan University of
Technology and building off our previous efforts in computa-
tional chemistry5,9,10,62 and X-ray crystallography,63−65 we
reimplemented the MT method in an package for deployment
in industrial/commercial pharmaceutical research and drug
discovery. This implementation has expanded on the original
approach through greater speed and stability, improved
usability, integration with third-party software packages and
graphical user interfaces for execution of standard virtual
screening protocols, and support for additional “built-in” and
“user-supplied” atom:atom pair potentials in order to support
more chemical environments. In present work, we report this
MT free energy estimation implementation using this new
software package through the treatment of two validation
benchmarks: (1) the industry-standard Comparative Assess-
ment of Scoring Functions (CASF-2016) set, which contains
57 protein targets and 285 ligands, was utilized to validate the
robustness of the MT protocol across a broad range of protein
classes, and (2) a set of 10 protein targets with a total of 248
ligands was selected from the PDBBind database in order to
further explore MT performance in virtual screening tasks
targeting large-ligand structural diversity for individual
receptors. This work primarily focused on validation of rigid-
and semirigid-receptor/flexible-ligand MT, which is likely
better suited to structures that show smaller structural
movements upon binding. However, in the last paragraphs of
the paper, we discuss next steps with the method as we expand
on its capabilities for greater receptor flexibility, including
support for MD snapshots/trajectories, loop and rotamer
sampling, and so on.

■ METHODS
Traditionally, configurational energy state sampling for a
macromolecule (e.g., a protein or protein:ligand complex) is
extremely computationally expensive because of the all-atom
flexibility that must be employed. Coupling all-atom
atom:atom pairwise interaction calculations with sampling
results in a huge computational cost. It is not unusual for MD
simulation methodswhich are used for this purposeto
require hundreds or even thousands of CPU hours to
complete, often relying on the use of specialized hardware
like Anton66 or repurposed GPU cards67−69 to make the
simulations more tractable for routine application. To address
this molecular energy state sampling expense, the MT method
employs the assumption that given a reasonable molecular
sampling volume for an NVT ensemble, the molecular partition
function can be approximated as the product of the atomic
partition functions. The MT method therefore postulates that
within a volume of motion, each atom possesses an
independent potential energy distribution. The purpose of
this approximation is to treat each of the sampled molecular
energy states as an independent numerical integration for each
atomic partition function in order to estimate the molecular
free energy.

Numerical Integration of the Atomic Energy Ensem-
bles. Using one or more end-state conformations of a
receptor:ligand complex, for all of the atoms in the structure,
the method samples an identical amount of motion by
generating atom:atom pairwise Boltzmann factors using
discrete pairwise distance values within a given range.
Therefore, the energy of an atom (e.g., atom α) is divided
into pairwise interactions between atom α and each of the
other atoms in the complex (e.g., atom i). In this model, the
ensemble of α:i atom:atom pairwise energy states within that
range is captured using the Boltzmann factor vector Vαi
depicted in eq 1:
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in which ταi
0 corresponds to the initial coordinates of atom pair

α:i in the input structure (or structures) and Δτ represents a
single unit or component of variation with a sampling range
(±nΔτ) of n discrete states. Vαi is a set of Boltzmann factors of
atom pair α:i, and for each pairwise contact including atom α,
these sets can be modeled as Vαj, Vαk, Vαl, and so on.
The pairwise Boltzmann factors corresponding to the

sampled atom:atom pairs in the structure are combined,
leading to a local partition function for each atom α that
contains a large number of energy states. It would be extremely
time-consuming to generate all of the available states with
respect to a single atom α. Furthermore, this expense would be
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compounded when all of the atoms in the molecule are
likewise treated in order to calculate the overall molecular free
energy. Instead, by the use of the following method, the
Boltzmann factors for different atom:atom pairwise contacts
are treated independently, and we calculate the local partition
function for each atom without creating the entire set of
configurations. Equation 2 depicts the sum of the energy states
of atom pair α:i,

ε =

= [ + + + + ]
α α

β τ τ β τ β τ τ− − Δ − − + Δα α α

Vsum( )

e ... e ... e

i i

E n E E n( ) ( ) ( )i i i
0 0 0

(2)

and per the distributive property, multiplication of εαi and εαj
yields the sum of all energy states for atom α combining α:i
and α:j contacts (eq 3):
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When each atom:atom pairwise contact energy is treated
independently, eq 3 represents all of the conformational energy
states of atom α for a molecular system with atoms α, i, and j.
Calculation of the left-hand side of eq 3 through the
multiplication of εαi and εαj saves the trouble (and time) of
sampling all of the (2n + 1)2 configurational states for the
triatomic system. Following this procedure in a molecular
system with N atoms, multiplication of sums for N − 1
pairwise contacts pertaining to atom α is performed, yielding a
free energy ensemble of atom α for an N-atom molecular
system including atom α (eq 4):

∏ε ε=α α

−

i

N

i

1

(4)

where εα is the local partition function within the range of
motion between atom α and each of the atoms in the
molecular system. Then, given the range of motion for each
atom, the local partition functions for all of the atoms in the
system are multiplied to generate the molecular energy-state
ensemble (eq 5):

∏ε ε ε ε= × × × =α β
ξ

ξ... n

N

M
(5)

Using eqs 1−5, the MT calculation collects a molecular
energy-state ensemble centered on an initial molecular
conformation, combining term-by-term entries of all the
atomic pairwise configurational vectors as in eq 1.
Up to this point, we have applied a numerical protocol for

fast estimation of the molecular local energy-state ensemble.
However, such an approximation brings in a key source of
error to the molecular free energy estimation: because an N-
particle system under the 3N − 6 degrees of freedom does not
support the random “mixing and matching” of particle pairwise
distances of all the N(N − 1)/2 particle pairwise contacts in
the system, unphysical energy states would be introduced into
the M molecular partition function calculation (e.g., εα × εβ).
This situation is illustrated in Figure 1, which depicts an N-
atom molecular system and a group of randomly selected atom
pairwise distances that may not support a valid three-
dimensional (3-D) molecular structure. In this situation, the
number of degrees of freedom of the atomic pairwise distance
ensemble Rij is dependent on the number of degrees of
freedom of the atomic coordinate ensemble Xi. In the following
paragraphs, we use italic uppercase letters to represent a group
of variables in which a variable vector (e.g., Rij) captures a
certain set of atomic pairwise distances including all pairwise
contacts in the molecular system. In this discussion, we use
bold-italic uppercase letters to represent a group of variable
vectors in which a vector ensemble (e.g., Rij) captures the
ensemble of atomic pairwise distance sets in the molecular
system.
Introducing the calculation protocol using eqs 1−5 on the

one hand significantly increases the speed for calculating the
molecular energy ensemble M. On the other hand, use of
these equations introduces unphysical energy states into the
molecular energy ensemble by including invalid Rij sets.
Therefore, the collection of Boltzmann factors, Vαi, contains

Figure 1. The number of atomic pairwise distance degrees of freedom of Rij is dependent on the number of atomic coordinate degrees of freedom
of Xi. Assuming a four-atom molecular system, a group of randomly assigned atomic pairwise distances Rij may not be able to construct a valid 3-D
structure. As shown in this figure, there is no location for atom A to satisfy rα, rβ, and rγ at the same time given the set Rij.
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the ±nΔτ sampling range shown in eq 1, and the total number
of energy states (including both physical and unphysical states)
sampled in M is

τ= ΔnSS (2 )CN (6)

where CN is the total number of atomic pairwise contacts. We
know that in molecular systems, the number of unphysical
energy states increases as the sampling range (±nΔτ) grows. In
order to address this error in the M calculation, we studied
the number of degrees of freedom of Rij and compared it with
the number of sampled energy states (SS) in the numerical M
calculation procedure. In this way, we selected a reasonable Vαi
to balance the calculation accuracy and the sampling range of
the molecular energy states.
Derivation of the Number of Rij Degrees of Freedom,

Vind. We applied the following procedure, summarized in
Figure 2, for modeling Vind, the number of Rij degrees of
freedom in an N-atom molecular system. Consider an
“alchemical” molecular model with N atoms divided into two
regions: (1) the explicit region, where each atom contacts all of
the others, and (2) the background region, in which atoms
come into contact only with the atoms in the explicit region
and do not contact other background atoms. We place all of
the atoms into the background region first and then move
them one by one into the explicit region so that we can explain
the modeling of the atom pairwise contact degrees of freedom
in a step-by-step manner.
Step 1. When the first atom, α, is placed into the explicit

region and the other N − 1 atoms are left in the background
region, we have N − 1 atom pairwise contacts all centered at
atom α. In this case, Vind can be modeled as Vc

N−1, where Vc is
the distance distribution range of every α:i (explicit-atom:-
background-atom) atomic pairwise contact. According to the

aforementioned MT sampling procedure, Vc is equal to the
±nΔτ MT sampling range in eq 1.
Step 2. When the second atom, β, is placed within the

explicit region, Vind from step 1 is multiplied by (4π)N−2,
meaning that on top of every molecular conformation
generated in the first step (a set of Rα−i with certain
combinations of α:i distances), the number of degrees of
freedom increases by rotation of atom β in a sphere centered at
atom α when including the distance vector ensemble Rβ−j.
Here Rβ−j represents all possible combinations of the β:j
contact distances, where j indicates any of the N − 2 atoms in
the background region at this stage. Hence, we have Vind =
Vc

N−1(4π)N−2 at this stage of the derivation.
Step 3. Similarly, when a third atom, γ, is moved into the

explicit region, the number of degrees of freedom increases by
a factor of (2π)N−3. Therefore, given a fixed set of Rα−i and
Rβ−j, both selected from the Vc

N−1(4π)N−2 degrees of freedom,
2π degrees of freedom are added for each γ:k contact by letting
atom γ rotate around the axis defined by the vector from atom
α to atom β, where k indicates any of the N − 3 atoms in the
background region at this stage. This leads to Vind =
Vc

N−1(4π)N−2(2π)N−3.
Step 4. When a fourth atom, δ, is moved into the explicit

region and the new atom pairwise contacts regarding atom δ
are taken into account, no extra degrees of freedom are added
to Vind. This is the case because on top of every set of Rα−i,
Rβ−j, and Rγ−k, when any δ:l pairwise contacts are taken into
account (where l indicates any of the N − 4 atoms left in the
background region at this stage), no movement degrees of
freedom for either atom δ or atom l are allowed given a set of
δ:α, δ:β, and δ:γ distances and a set of l:α, l:β, and l:γ distances
selected from the degrees of freedom modeled in steps 1−3.
From this point forward, no more degrees of freedom are
added to Vind when new atoms are moved from the

Figure 2. Illustration of the procedure for deriving Vind, the number of degrees of freedom of the atomic pairwise contacts given the total number of
atoms, N, and the common distribution range for all the atomic pairwise distances, Vc. For the example shown, a closed system with five atoms
(with the blue circle as the volume boundary), the gray spheres represent the atoms in the background region with no pairwise contacts among
them, and the red spheres represent the atoms in the explicit region for which the atomic pairwise contacts are taken into account. The blue dotted
arrows represent new atomic pairwise contacts added to the system when one atom is moved from the background region to the explicit region.
The black solid lines in each subfigure represent a set of atom pairwise contacts with certain combinations of pairwise distances selected from the
degrees of freedom before a new atom is moved from the background region into the explicit region.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00618
J. Chem. Inf. Model. 2020, 60, 5437−5456

5440

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00618?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00618?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00618?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00618?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00618?ref=pdf


background region to the explicit region. Therefore, no extra
degrees of freedom of the atomic movement are allowed
beyond the those included in Vind from steps 1−3. Assuming
equivalence among atoms with regard to the order of moving
any three atoms into the explicit region, we complete the
model by multiplying by the number of combinations of N
atoms taken three at a time, as shown in eq 7:

π π= − − −i
k
jjj

y
{
zzzV

N
V

3
(4 ) (2 )N N N

ind c
1 2 3

(7)

In an N-atom molecular system, the total number of atoms, N,
and the total number of atomic pairwise contacts, CN, are
mutually transformable using the following equations:

= −N N
CN

( 1)
2 (8)

and

= + + ×
N

1 1 8 CN
2 (9)

In the following procedure, we express N in terms of CN
using eq 9 and replace 2nΔτ with Vc to make SS in eq 6 and
Vind in eq 7 comparable, yielding eqs 10 and 11:

= VSS c
CN

(10)

π π
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(4 ) (2 )
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c
1 1 8 CN /2 1

1 1 8 CN /2 2 1 1 8 CN /2 3 (11)

Using eqs 10 and 11, we can compare the distribution of SS,
i.e., the total sampled number of atomic pairwise contact
energy states (including both physical and unphysical states),
and the distribution of Vind, i.e., the number of atomic pairwise
contact degrees of freedom. Through this approach, we can
determine a reasonable Vc to cover a fair range of molecular
energy states in M and limit the number of unphysical states
included in the M calculation. Since both SS and Vind grow
exponentially as Vc increases, we use the logarithmic forms of
their distributions in order to better compare them in Figure 3.
Given a CN in the molecular system, ln(SS) grows faster than
ln(Vind) and soon surpasses it at the crossover point, Vc

x, as the
atom:atom pairwise sampling range increases. For Vc < Vc

x,
ln(SS) is smaller than ln(Vind), showing that the number of
sampled states from the MT procedure is smaller than the

number of actual molecular energy states within the atom:atom
pairwise sampling range. On the other hand, as the atom:atom
pairwise sampling range increases beyond Vc

x, ln(SS) contains
more states than ln(Vind), and this is the point at which the
MT procedure becomes contaminated by the unphysical states
generated from the numerical integration. As depicted in
Figure 3, the crossover point, Vc

x, gradually approaches 1 Å
from 2.05 Å as CN increases from 100 to 106. Therefore, in
this study, we set the default MT atomic pairwise sampling
range to 1 Å for all calculations to avoid significant
contamination of the free energy calculation by the
introduction of unphysical states into the MT procedure.
With a fixed Vc for the atom:atom pairwise sampling range, SS
for the number of MT sampled energy states, and Vind for the
number of actual energy states, we applied a Monte Carlo
integration to approximate the molecular local partition
function:

≈ V
SSM

0
ind

M
(12)

In summary, with the MT protocol, we utilize a sampling
range (±nΔτ) for every atom:atom pair in a molecule or
complex, and then we calculate an ensemble of atomic energy
states using eqs 1−4. The local partition function is then
approximated first by combining these atomic energy
ensembles using eq 5 and then by using the Monte Carlo
integration procedure as shown in eq 12. Through this
method, a local energy ensemble corresponding to a single
initial “end-state” 3-D molecular conformation can be quickly
calculated and converted into a local partition function.
In order to improve the method further, we know that free

energy estimation relies on thorough molecular conformation
sampling. Therefore, multiple end-state conformations can be
provided to the MT method, where each end-state
conformation can be viewed a representative or hypothetical
landscape minimum, as discussed in the review by Mobley and
Dill.21 This ensemble of poses is then combined to better
capture larger-scale or “global” molecular movements. By
feeding the MT protocol with multiple end-state conforma-
tions (i.e., Nend‑states), the MT local partition function protocol
can further enlarge the sampling space and better approximate
the molecular partition function:

∑= = + + +
α

α
‐

...
N

N
M M M

1
M
2

M

end states


(13)

Figure 3. Distributions of ln(SS) and ln(Vind) as functions of the atomic pairwise sampling range Vc given different CN values of the molecular
system. The crossover point Vc

x approaches 1 Å as CN increases.
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When applying the MT procedure to a protein:ligand complex
system to estimate the binding free energy, we calculate
partition functions for the bound-state protein:ligand complex
and all of the unbound-state motifs. Each local partition
function for the bound-state protein:ligand complex is
calculated using the MT procedure (eqs 1−12) against the
significant protein:ligand binding modes provided by executing
the docking module from the software package or from the
users’ sources. By the use of eq 13, the protein:ligand complex
partition function, PL , is calculated as

∑= = + + +
α

α ...
N

N
PL PL PL

1
PL
2

PL

PL poses
PL poses

(14)

In the present work, we added support for unbound- and
bound-state structural motifs, including an apo protein
conformation, multiple free-state ligand conformations, and
multiple holo-protein:ligand conformations. Since a full-scale
protein simulation requires significant computational cost,
where noted we used induced-fit docking to collect multiple
holo-protein:ligand conformations. Therefore, in addition to
the calculation of PL with eq 14, the protein local
intramolecular partition function, P , was calculated for a
number of apo protein conformers, NP conformers, using eq 15:

∑= = + + +
α

α ...
N

N
P P P

1
P
2

P

P conformers
P conformers

(15)

where NP conformers = 1 corresponds to the X-ray model (sans
ligand). With this technology available, in subsequent work we
will explore the use of multiple X-ray, NMR, or theoretical
models for both the apo protein and the holo-protein:ligand
conformations. Finally, the free-state or unbound ligand
conformations are generated using the small-molecule
conformational search module, MTCS, which is discussed in
detail in a previous work.59 MTCS constructs and characterizes
NL conformers ligand conformations, and the local partition
functions for those ligand conformations are calculated and
grouped using eq 16:

∑= = + + +
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α ...
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N
L L L

1
L
2

L

L conformers
L conformers

(16)

With PL , P , and L available, the binding free energy change
is then estimated using the ratio of partition functions in the
bound and free states as per eq 17:

Δ ≈ −
i
k
jjjjj

y
{
zzzzzG RT logbinding

PL

P L



  (17)

The above-noted multiple-end-state protocol represented by
eq 17 is denoted as MTScoreE, in which the “E” denotes an
ensemble of one or more end-state holo-protein:ligand
conformations, apo protein conformations, and unbound
ligand conformations. In addition to this more complete
workflow, a simplified MT protocol was also implemented that
uses a single end-state protein:ligand complex in a “minimum
energy” conformation. Since this approach, which we name
MTScoreES, where “ES” denotes the calculation against a single
end-state protein:ligand 3-D complex, is based on a single
accurate conformation and does not require docking or other
simulation processes to generate, it is faster than MTScoreE and
could therefore be better positioned for higher-throughput
virtual screening tasks. Because MTScoreES utilizes only the
intermolecular atom:atom pairwise potential calculation
between the protein and the ligand, the binding free energy
is then approximated as

Δ ≈ −G RT log( )binding InterPL
0

(18)

where InterPL
0 is the protein:ligand complex pose’s local

partition function considering only the intermolecular atomic
pairwise interactions.

Ligand Binding Mode Preparation and Scoring. In the
DivCon Discovery Suite v.DEV.671-b4608, we provide two
empirical energy functions: the GARF statistical potential70

and the AMBERff14 functional potential63,71 optimized for the
MT method. The holo-protein:ligand complex binding modes
can be either generated using the “built-in” MTDock
protein:ligand docking module55 or provided from other
sources such as molecular simulations or alternative

Figure 4. Overall flowchart of the MT method and its [optional] interactions with other software and methods. Generally, input is provided in the
form of a prepared PDB and/or mol2 file for the target and ligand (a molecular selection language is provided in cases where these species are
supplied in a single file). SDF files are used throughout to communicate docked poses or conformers as needed. Note: “nexus points” (shown in
green) are provided for each MT step into which a user may optionally supply an externally prepared SDF file. These SDF files are only used when
a third-party package such as MOE or GLIDE is used for docking and/or conformer generation. When MTDock is chosen as the docking function,
all of the conformers and poses are communicated internally within the MT software and its associated data structures.
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protein:ligand docking protocols. In order to compare the MT
protocol performances with different settings, we applied both
the GARF potential function and the AMBERff14 force field
for the partition function calculation, and we used both MTDock
and the industry-standard Molecular Operating Environment
(MOE) v.2019.0102 from Chemical Computing Group, Inc. to
generate contrasting protein:ligand complex poses. For MTDock
and optionally for the MOE interface (in the “three-step
workflow” discussed below), ligand conformers were generated
using MTCS.

59 The MTCS method was used in all cases to
calculate the unbound L partition function. Figure 4 depicts a
flowchart to aid in understanding how the various MT parts
work together (and with third-party methods) to complete and
generate the MT scores.
MTDock Configuration. Beginning with the aforemen-

tioned MTCS conformers, each of the top five lowest-energy
conformers was placed multiple times within the crystallo-
graphic X-ray structure using the heatmap-based MTDock
method reported by Zheng et al.55 Each ligand binding
mode was optimized within the active site using the torsion
optimization method discussed by Fuhrmann et al.,72 and the
top 25 scored poses according to MTScoreES were kept for
inclusion in the MTScoreE calculation. All of the MT
calculations were performed with DivCon Discovery Suite
v.DEV.671-b4608 using default settings with a pocket size of
8.0 Å around the ligand (union between all poses) and a
nonbonded interaction cutoff of 11.0 Å. Both the MT-GARF
(-h garf) and MT-AMBER (-h amberff14) pair potentials were
considered for this study.
MOE Docking Configuration. The calculation of

MTScoreE (the ensemble MTScore) can be performed using
either internally docked poses from MTDock or externally
provided ligand poses (e.g., in the case of rigid-receptor
docking) or protein:ligand poses (e.g., in the case of induced-
fit-receptor docking) generated by third-party software tools.
In order to demonstrate the generalizability of the method, we
focused on rigid-receptor and induced-fit-receptor docking as
implemented in MOE v2019.0102 using the qbDockPair.svl
Scientific Vector Language (SVL) script found in the DivCon
Discovery Suite package. The AMBER10 potential coupled
with atomic charges and ligand parameters calculated using
extended Hückel theory (Amber10:EHT) as implemented in
MOE was used for all of the MOE-based calculations.
Beginning with each PDB protein:ligand complex, protons
were added, and their positions were optimized using
Protonate3D.73 The default Protonate3D settings of 7, 300
K, and 0.1 mol/L for pH, temperature, and ion concentration
(salt), respectively, were chosen, and all of the atoms were
allowed to flip, so some His, Asn, and Gln residues may have
“flipped” during the protonation process (see the Supporting
Information for all of the prepared structures used in this
paper). When this basic preparation was completed for each
structure, docking was executed using both the rigid-receptor
docking and induced-fit docking refinement protocols.
For the MOE-based workflow, input conformers were

generated two different ways: (1) in the conventional “three-
step” protocol, MTCS-generated conformers were provided as
input to the MOE docking function (i.e., MTCS → MOE →
MTScoreE), and (2) in the new “two-step” protocol, MOE’s
built-in conformer generator was used (i.e., MOE→MTScoreE).
The three-step protocol uses MTCS in order to generate ligand
conformers that exist on the ligand free energy surface with the
chosen pair potential (e.g., MT-GARF or MT-AMBER) and to

calculate the unbound L partition function. The five most
energetically favorable conformers were chosen and passed to
the MOE docker, which docks each conformer semirigidly
(some in-dock optimization is performed, but bond rotations
and rotamer flips are kept to a minimum). In selecting between
these two conformer generation methods (two-step vs three-
step), the benefit of the three-step method is that ligand poses
are guaranteed to exist on the energy surface. The drawback is
that the docker is limited to the conformers generated by
MTCS even if they do not properly fit the active site. The two-
step protocol skips the initial MTCS step for conformer
generation, and the docker’s built-in method (or another
method of the user’s choosing) is used both to generate the
conformers of interest and to dock those conformers in the
active site. This mode may be more accommodating to
alternative binding mode selection in cases where the bound
ligand pose deviates significantly from the MTCS conformers.
However, as we will show in the Results and Discussion, there
are times when its prediction profile is inferior.
When conformers were generatedeither internally within

MOE or externally using MTCSinitial docking placement
was performed using the Triangle Matcher approach, and the
London dG score and the generalized Born volume integral/
weighted surface area (GBVI/WSA) dG score function74 were
used as the initial score and the final filter, respectively. The
250 poses provided by Triangle Matcher were optimized with
the chosen refinement method (i.e., rigid-receptor/minimized-
ligand or induced-fit-receptor/minimized-ligand) using AM-
BER10:EHT as implemented in MOE, and 25 poses were
finally passed to MTScoreE as landscape minima for scoring. All
of the MT calculations were performed using DivCon
Discovery Suite v.DEV.671-b4608 using default settings with
a pocket size of 8.0 Å around the ligand (union between all
poses) and a nonbonded interaction cutoff of 11.0 Å. Both the
MT-GARF (-h garf) and MT-AMBER (-h amberff14) pair
potentials were considered.

Leave-One-Out Analysis. Leave-one-out cross-validation
(LOO) is the statistical cross-validation method that leaves
one data point (an observation) out of the data set and
calculates the fit on the rest of the data in order to generate a
prediction for the observed point. This process is repeated n
times, where n is equal to the number of ligands in each target
set, leading to n predictions. Each time the omitted value, yi0, is
predicted, the predicted residual, εi = yi − yi0, is computed.
Likewise, the mean unsigned error (MUE) is computed from
the predicted residuals according to eq 19:

=
∑ | − |y y

n
MUE i

n
i i0

(19)

The reported mean Pearson R value is calculated according to
eq 20 and is a result of this process since by definition with n
correlations we are able to calculate n values of R:

=
∑

R
R

n
i
n

i

(20)

Finally, the error bars in the figures and reported in the tables
are constructed as vertical or horizontal lines defined for each
point in the range [R − MAD(R), R + MAD(R)] (for R plots)
or [MUE − MAD(MUE), MUE + MAD(MUE)] (for MUE
plots). Instead of using the standard deviation (SD) to
represent the spread of the data, we employ the median
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absolute deviation (MAD),75 which is a robust measure of the
spread of data around the median:

= {| − |}X XMAD median median( )i (21)

where Xi represents a data point and X is the array of data. The
diagonal on the graph is defined as a line that passes through
the points (0, 0) and (1, 1). The distance from the diagonal
(DfD) for the point P(x, y) is defined as

=
−y x

DfD
2 (22)

If DfD > 0, then the point is above the diagonal. Conversely, if
DfD < 0, the point is below the diagonal. The squared sum of
DfD (SSDfD), given by

∑=SSDfD DfD2
(23)

is computed separately for points above and below the
diagonal and is a quantitative measure of such a deviation for
the set.

■ RESULTS AND DISCUSSION
We utilized two validation sets to challenge the MT method
for its robustness against a broad range of protein:ligand
complexes and to test its consistency against different

configurational state sampling protocols at various stages of
the MT free energy estimation workflow. The first set
consisted of the Comparative Assessment of Scoring Functions
(CASF) protein:ligand scoring benchmark containing 57
protein targets with 285 ligands, which was first introduced
with large diversity for both ligand and protein structures.76

The second set consisted of 10 protein targets with 248
corresponding ligands selected from the PDBBind77 v2019
database to study the performance of the MT protocol for
screening of different ligand structures against particular
receptors.

Comparative Assessment of Scoring Functions: The
CASF-2016 Benchmark. The CASF benchmark consists of
57 target classes with five X-ray crystallographic structures for
each target, yielding 285 target:ligand pairs. While there are
some recognized deficiencies with some CASF-selected X-ray
models, as a whole the set provides a reasonable cross section
of the types of chemistry often observed in pharmaceutical
research, and it has become an “industry standard” benchmark.
Some curation was performed prior to commencement of the
project. Specifically, since macrocycles are not supported by
the method at this time, target cases that include macrocyclic
ligands were removed. Likewise, cases that include large
ligands (with more than 25 rotatable bonds) were removed

Figure 5. Comparison of Pearson R values and LOO MUEs between the GARF and AMBERff14 energy functions using MTScoreE (ensemble
scoring with MOE rigid-receptor/minimized-ligand docked poses) and MTScoreES (end-state scoring with X-ray poses) depicting general agreement
between the two methods. (A) Pearson R values for the AMBERff14 and GARF energy functions through the MTScoreES calculation. (B) MUE
values for both potential functions through the MTScoreES calculation. (C) Pearson R values for the AMBERff14 and GARF energy functions using
the MTScoreE protocol. (D) MUE values for the AMBERff14 and GARF energy functions using the MTScoreE protocol. Table 1 provides a detailed
numerical rundown of all cases.
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from the set. This curation yielded 51 complete protein target
class subsets (5 × 51 = 255 structures), and an additional 20
structures were rescued from the remaining six sets to give a
total of 275 out of 285 PDB structures. Figure 5 is provided as
a baseline comparison of MT-GARF and MT-AMBER
showing that the two pair potentials are equally predictive in
these cases.
Comparison of MTScoreES (End-State Score) and

MTScoreE (Ensemble Score). Traditionally, when the drug
discovery process is considered, a critical goal is the
determination of the experimental binding affinity of one or
more lead compounds. With structure-based drug discovery,
we wish to do so ideally prior to synthesizing the compound in
the laboratory. This relationship between structure and
function necessarily creates a “chicken versus egg” conundrum
since the only way to experimentally determine binding is to
synthesize potential compounds that may never bind. Likewise,
predictive methods generally require reasonable compound
binding modes in order to predict binding free energies, and
these predicted binding free energies can vary significantly
depending on the accuracy of the binding mode. X-ray
crystallography is often used once a compound has been
synthesized in order to provide an understanding of how a
compound binds within the active site so that we may use that
knowledge to inform the search for new lead compounds.
However, X-ray crystallography is not an inexpensive process,

and in a perfect world one would like to obtain an accurate
understanding of binding affinity with less expense. Since
MTScoreE incorporates multiple binding modes, in the first
validation we used the “two-step” (MOE → MTScoreE) rigid-
receptor docking protocol. Upon completion of the MOE-
based docking process, these new bound-ligand poses were
scored with MOE’s built-in GBVI/WSA dG score in order to
choose the top 25 bound-ligand poses to pass to MTScoreE
(which were provided in SDF format).
Because all of the compounds in CASF have published X-ray

models, we are able to compare the ensemble score generated
using the chosen docking method to the end-state score
calculated using the X-ray pose. Figure 6 depicts the MTScoreE
versus MTScoreES results from the CASF benchmark for both
AMBERff14 and GARF (note: for clarity, Table 1 provides a
detailed rundown of all of the Pearson R and LOO MUE
results from the CASF benchmark as a function of atom:atom
pair potential, scoring routine, and pose generation method
used). With a Pearson RMTScoreE versus RMTScoreES correlation
with R2 > 0.95, we clearly observe that end-state scoring
(MTScoreES) using crystal models as the input generally
converges with ensemble scoring (MTScoreE) using the MOE
docker with either potential function. These results suggest
that given accurate structures, MT generally exhibits
convergence between MTScoreE (with thorough computational
sampling against the molecular configuration space) and

Figure 6. Comparison of Pearson R values and MUEs between MTScoreE (ensemble scoring with MOE rigid-receptor/minimized-ligand docked
poses) and MTScoreES (end-state scoring with X-ray poses), in which we see convergence between the approaches. (A) Pearson R values and (B)
MUE values for the AMBERff14 energy function through the MTScoreES and MTScoreE calculations. (C) Pearson R values and (D) MUE values for
the GARF energy function through the MTScoreES and MTScoreE calculations. Table 1 provides a detailed numerical rundown of all cases.
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Table 1. Detailed Comparison of the Predictive Capabilities of MTScoreES (End-State Score) and MTScoreE (Ensemble Score)
and the Relative Predictive Capabilities of the Two Pair Potentials with Different Pose Generation Protocols

aAll of the MUE values are given in kcal/mol and were obtained from the LOO analysis.
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MTScoreES (with experimentally determined crystal poses).
Furthermore, given the possibility that X-ray models (like any
model) may be incorrect or may give an incomplete picture of
the binding mode(s) available to the ligand, it is possible that
MTScoreE is able to make up for deficiencies in the structure
through the wider range of configurational sampling afforded
by the ensemble score. An example of such a case is depicted in
Figure 7. For JAK2 kinase (PDB ID 4HGE) from the CASF
benchmark, the additional landscape minima (docked poses)
provided by the MOE-based rigid-receptor/optimized-ligand
docking routine led to the improved predicted versus
experimental Pearson R value observed in Figure 6C and
detailed Table 1 for JAK2 for MTScoreE (Pearson RMTScoreES =
0.88 ± 0.01 vs RMTScoreE = 0.95 ± 0.00). This observation fits
with our expectation for free energy methods since we know
that binding is a product of many poses and not just the one
represented by a single crystal model.21

Comparison of the “Three-Step” and “Two-Step”
MTScoreE Protocols. Next, we considered the impact of using
MT-generated ligand conformers compared with using the
conformers generated by the docking software (in this case
MOE). As discussed in Methods, MTCS generates an ensemble
of ligand conformers to be used to determine the unbound-
ligand partition function L .59 This step is performed
regardless of how the ensemble score is calculated; however,
one may choose to pass the top five (or more) MTCS
unbound-ligand conformers to the docking function and use
these conformers instead of those generated by the chosen
docking function. For our analysis, we selected five conformers
from MTCS in order to balance sampling thoroughness with
efficiency. Since each conformer is used as an initial
configuration for five binding modes (5 conformers × 5
poses = 25 binding modes), the computational time grows in
O(n) fashion as the number of conformers increases.
Introducing additional conformers would cover more config-
urational space during binding mode sampling, but other than

the significant states, additional sampled protein:ligand
complex configurations contribute little to the final partition
function. Table 2 shows that the impact of this choice is

generally small, and one can expect a limited return on one’s
investment for larger numbers of conformers. Likewise, as
shown in Figure 8, when one considers the “best” conformer
count for each target class versus the default count (5), the
impact is relatively small with a few outlier cases.
The benefit of this approach is that the unbound-ligand

conformations and the bound-ligand poses will not diverge
appreciably from one another and will be within the same
radius of convergence (since the docking process includes only
placement and a localized structural minimization of the ligand
within the field of the pocket). However, one could imagine
some potential drawbacks of using these conformers, as there
could be times when MTCS may choose conformers that will
not “fit” the active site or there could be incompatibilities
between the conformer generation algorithm and the
chemistry of the ligand (i.e., every method has strengths and
weaknesses, and often one may want to “mix and match”
different conformer generators). Therefore, some dockers
could be better able to generate conformers for the ligand
chemistry in question. When the three-step (MTCS →MOE→
MTScoreE) workflow was executed on the CASF benchmark as
depicted in Figure 9, these two approaches were also highly

Figure 7. Example illustration of the top three scored poses (shown in green) and the X-ray pose (shown in default gray) within the active site of
JAK2 kinase (PDB ID 4HGE) from the CASF set. The additional end-state (landscape minima) sampling provided by MOE-based rigid-receptor
docking leads to an improved MTScoreE result vs the MTScoreES score of the original X-ray pose alone.

Table 2. Impact of the Number of Chosen Conformers on
the Overall Predictability of the Method

no. of conformers overall Pearson R

5 0.64
10 0.64
15 0.64
20 0.63
25 0.63
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correlated, giving Pearson R2‑step versus R3‑step correlations with
R2 > 0.95 for both potentials. However, there are several
outliers that make the three-step workflow worth considering
in one’s protocol (especially if the two-step workflow is not
predictive enough for one’s purposes). In particular, CDK2,
elongin, and especially COMT (in GARF) and ITK (in
AMBERff14) all yield better predictions (as measured by
higher Pearson R values) with the three-step protocol.
Impact of Induced-Fit-Receptor Docking on the

Prediction Characteristics. For the GARF potential, intra-
molecular protein:protein interaction terms (eq 15) were
added to the software in order to increase the accuracy of the
MT approach and support a wider range of target structures
and mechanisms. In order to explore the impact of these terms,
we used induced-fit-receptor-docked ensembles as generated
using the MOE platform. As depicted in Figure 10, while the

deviations below the diagonal have a larger sum of squares
than those above (suggesting that induced-fit-receptor docking
is slightly less predictive than rigid-receptor docking in
general), most of the shifts above or below the diagonal are
quite small. However, there are several cases below the
diagonal where induced-fit-receptor docking is more predic-
tive. In these cases, as reported in Table 1, MTA/SAH went
from 0.55 ± 0.10 in the rigid-receptor protocol to 0.71 ± 0.01
in the induced-fit-receptor approach, ITK went from 0.55 ±
0.10 to 0.69 ± 0.06, and Factor Xa went from 0.54 ± 0.07 to
0.67 ± 0.08, suggesting that while the method generally shows
a similar predictive profile, there are cases where the method is
more predictive. Many reasons could cause an improvement in
R when a different docking strategy is used. One possible
reason is the tight binding sites in these test cases brought
difficulties for the rigid-receptor docking protocol in generating

Figure 8. When exploring the impact of the MTCS conformer count in the “three-step” protocol, we consider the “best” conformer count vs the
default conformer count (5) for each target class. The color of each target class corresponds to the minimum number of conformers needed to
generate this best or most predictive set of scores. The classes in blue correspond to the default conformer count (5), while the red, cyan, magenta,
and green classes correspond to calculations with 10, 15, 20, and 25 conformers, respectively.

Figure 9. Comparison of the two-step (MOE → MTScoreE) and three-step (MTCS → MOE → MTScoreE) protocols, showing that generally these
methods are highly correlated, with Pearson R2step vs R3step correlations with R2 = 0.98 and 0.97 for (A) AMBERff14 and (B) GARF, respectively.
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the global-minimum bound states. When looking at the crystal
complex structures, we found that all of the ligands for the
MTA/SAH subset were closely surrounded by the binding site
residues as in their binding modes. Furthermore, two test cases
in the ITK subset (PDB IDs 4RFM and 4M0Z) were in a
similar situation, and the ligands were tightly “wrapped up” by
the surrounding receptor residues in the complex crystal
structures. Finally, in the Factor Xa subset, ligands were placed
deep into cavities at the receptor’s binding site, where rigid
docking strategies inevitably have difficulties fitting the ligand
into the tight binding sites while avoiding steric clashes. These
results are generally congruent with the literature, which has
shown that induced-fit-receptor docking and induced-fit-
receptor docking coupled with MD often yield improved
predictions (versus rigid-receptor docking) for Factor Xa78,79

and ITK.80−82

Impact of Pose Count on the Results. Preparation of
landscape minima is a critical aspect of the MT workflow.
When poses provided by an external docking function (in this
case MOE) are used, the success of the ensemble score is as
much a function of the MT method as it is a function of the
docker in question. Therefore, in order to explore the settings
necessary to maximize performance, we ran several “set
ranges”, including 1−2, 1−5, 1−10, 1−15, 1−20, and the
default 1−25, where the poses are ordered from best GBVI/
WSA dG score to worst (i.e., range 1−2 would include the top
two poses according to MOE, range 1−5 would include the
top five poses, and so on). These results are detailed in Table
3. Generally, for the CASF benchmark (with five ligands per
target class) coupled with the MOE docking function, the
MTScoreE method proved to be extremely robust, and often two
well-scored poses (according to GBVI/WSA) were as good as
25 poses. This observation is very encouraging since it would
suggest that most of the success of the method is driven by the
local partition function. However, there are cases in which the
addition of poses yields improved results. For example, BRD4
moved from a reasonably predictive R2 of 0.64 ± 0.05 when
the top two poses were scored to R2 = 0.94 ± 0.01 when the
top 15 poses were included in the score. However, cases like
CrtM, which went from R2 = 0.62 ± 0.01 when five poses were
scored to R2 = 0.45 ± 0.14 when all 25 poses were scored, and
MTA/SAH, which went from R2 = 0.51 ± 0.08 when five poses
were scored to R2 = 0.34 ± 0.10 when all 25 poses were
included, show that signal can be lost in the event that too

many questionable poses are provided. This observation
suggests that when the MT method is being challenged with
a new project or target class, some retrospective experimenta-
tion with “knowns” may yield dividends when shifting to
prospective campaigns.

Computational Time Requirements of the DivCon MT
Implementation. When the MT method was first published,
it was notable not only for its predictive capabilities but also for
its economical use of CPU time versus methods that rely on
MD or alchemical “webs” of MD calculations for sampling.
Those earlier MT implementations were based on a mixture of
MATLAB, Python, and bash scripts, and even at that time
these calculations were considered to be fast. With the new
DivCon Discovery Suite (C++) implementation of MT, we
can quantify the average ± MAD processor time on an older
Intel Xeon E5440 2.83 GHz CPU running CentOS 7 for the
275 ligands in the CASF set, and we can break this time down
into each step in the process: 1.0 ± 0.0 min/ligand for MTCS
( L calculation and ligand conformer generation), 12.4 ± 2.2
min/ligand for MOE (rigid-receptor docking with ligand pose
optimization), and 9.6 ± 1.1 min/ligand for MTScore ( PL and

P calculation using a 25-pose ensemble). Since the calculation
time for MT is measured in minutes on a standard CPU from
2008 and dynamics-based algorithms often require hours or
even days to complete on specialized hardware (e.g., GPUs),
the MT method would appear to be both economical and
predictive.

The Homologous Protein Family (HPF) Benchmark.
While the CASF benchmark was used to validate the MT
method on a diverse set of targets, the Homologous Protein
Family (HPF) benchmark introduced a series of homologous
protein structures to demonstrate the performance of the MT
method against a diverse set of ligands. As noted in Methods,
both GARF and AMBERff14 atom:atom pair potentials were
used, and two different docking programs (MOE and MTDock)
were considered. As listed in Table S1 in the Supporting
Information, 10 homologous proteins with 248 corresponding
ligands were selected from the PDBBind v2019 data set: 3-
dehydroquinate dehydratase (DHQD) with 22 ligands, 3-
phosphoinositide-dependent protein kinase-1 (PDPK1) with
26 ligands, 14-3-3 protein (14-3-3η) with 12 ligands,
acetylcholine receptor (AChR) with 38 ligands, α-L-fucosidase
(FUCA-1) with 12 ligands, β-glucosidase (GBA3) with 22

Figure 10. Comparison of (A) Pearson R and (B) MUE values for rigid-receptor docking and induced-fit-receptor docking. The Pearson
Rrigid‑receptor vs Rinduced‑fit correlation has R2 = 0.98, clearly indicating that the two methods are highly correlated, and one can generally rely on the
lower-cost rigid-receptor method. Furthermore, most of the LOO MUEs are better than 1 kcal/mol for both methods.
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ligands, biotin carboxylase (BC) with 13 ligands, protein kinase
A (PKA) with 47 ligands, trypsin (Tryp) with 20 ligands, and
dual-specificity phosphatase (DSP) with 36 ligands. In
choosing the protein:ligand structures available in the
PDBBind v2019 set, ligands having a molecular masses of
<700 Da and macrocyclic structures, against which the current

version of the MTCS program cannot perform conformational

search, were skipped. As with the CASF benchmark, we used

the protein:ligand conformations from the crystal structures as

the end-state input structures for the MTScoreES calculations,

and for MTScoreE the MOE-based two-step (MOE→MTScoreE)

Table 3. Impact of the Number of Poses Provided by MOE on the Predictive Capability of the MTScoreE (Ensemble Scoring)
Method

aAll of the MUE values are given in kcal/mol and were obtained from the LOO analysis.
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protocol and the MTDock protocol (MTCS → MTDock →
MTScoreE) were compared and contrasted.
Using the MTScoreES protocol on the X-ray protein:ligand

pose for each structure, both the AMBERff14 force field and
the GARF energy function generated good correlations with
the experimental binding affinities: the Pearson R coefficients
for both functions were higher than 0.5 for all of the protein
sets except for PDPK1, which exhibited Pearson R values of
0.30 ± 0.01 and 0.34 ± 0.01 for AMBERff14 and GARF,
respectively. Conversely the DSP set, with 36 ligands, exhibits
very high and robust Pearson R values of 0.85 ± 0.00 and 0.84
± 0.00, respectively, for the two potentials considered. When
we consider the LOO MUEs, all of the sets exhibit errors that
are less than 1.0 kcal/mol using either potential. By comparing
the Pearson R and MUE values in Table 4 for all 10 protein
test sets, we found that the two potentials were in good
agreement when the binding affinities were evaluated against
the crystal structure binding modes using the MTScoreES

protocol.
With the MOE docking program, as shown in Figure 11 and

Table 4, the AMBERff14 force field and the GARF energy
function showed similar prediction accuracies. For both
functions, the MTScoreE protocol generated better or com-
parable Pearson R coefficients and MUE values compared with
the MTScoreES protocol against all protein sets, suggesting
thatas with the CASF setgiven “good” poses the methods
converge well and the MT method itself is quite robust. On the

other hand, with the MTDock module in the DivCon Discovery
Suite, the AMBERff14 force field and GARF energy function
showed different prediction accuracies against the 10 protein
families. With AMBERff14 force field, the MTScoreE protocol
had better or comparable Pearson R coefficients compared to
the MTScoreES protocol against most of the protein sets, except
for AChR and GBA3. With the GARF energy function, the
MTScoreE protocol showed good ranking performance in all the
protein sets, and it especially improved the Pearson R
coefficients for the PDPK1 and GBA3 test sets. In a
comparison of the MUEs, the AMBERff14 force field
outperformed the GARF energy function with the 14-3-3η,
DHQD, DSP, and Tryp sets, while the GARF energy function
generated significantly lower MUEs with the GBA3, BC, and
AChE sets.
As depicted in Figure 11, in a comparison of the MOE rigid-

receptor docking protocol with the MTDock rigid-receptor
protocol, the two potentials showed generally good agreement
with one another for the MOE-docked poses. However, as
shown in Figure 12, the Pearson R was significantly improved
for the PDPK1, GBA3, and BC sets when the three-step
MTDock protocol with GARF was used, compared with the
two-step MTScoreE with the MOE docker. This would suggest
that the binding affinity prediction benefits from the
introduction of conformational entropies that are captured in
the three-step MTCS-driven method but not in the two-step
method. On the other hand, when the three-step MTScoreE

Table 4. Values of Pearson R and MUE between the Experimental and Predicted Binding ΔG Values for MTScoreES and
MTScoreE Calculations Performed with the DivCon Discovery Suite with the MovableType (MT) Module with Configurational
Energies Evaluated Using the AMBERff14 and GARF Energy Functions

MT-AMBERff14

MTScoreES MTScoreE

1 X-ray pose 25 MOE poses/PDB 25 MTDock poses/PDB

mean R MUEa mean R MUEa mean R MUEa

14-3-3η 0.78 ±0.01 0.19 ±0.05 0.69 ±0.01 0.23 ±0.05 0.77 ±0.01 0.19 ±0.05
DHQD 0.82 ±0.00 0.40 ±0.09 0.83 ±0.00 0.39 ±0.07 0.83 ±0.00 0.36 ±0.08
PDPK1 0.30 ±0.01 0.44 ±0.09 0.36 ±0.01 0.43 ±0.09 0.38 ±0.01 0.42 ±0.07
AChE 0.79 ±0.00 0.51 ±0.16 0.75 ±0.00 0.54 ±0.18 0.66 ±0.00 0.61 ±0.17
FUCA-1 0.75 ±0.01 0.56 ±0.15 0.77 ±0.01 0.53 ±0.15 0.74 ±0.01 0.58 ±0.14
GBA3 0.56 ±0.01 0.34 ±0.07 0.52 ±0.01 0.35 ±0.08 0.31 ±0.01 0.39 ±0.07
BC 0.61 ±0.01 0.51 ±0.09 0.59 ±0.01 0.52 ±0.11 0.63 ±0.01 0.57 ±0.12
PKA 0.66 ±0.00 0.32 ±0.07 0.65 ±0.00 0.32 ±0.08 0.64 ±0.00 0.32 ±0.08
Tryp 0.71 ±0.00 0.41 ±0.08 0.68 ±0.00 0.44 ±0.11 0.76 ±0.00 0.44 ±0.10
DSP 0.85 ±0.00 0.40 ±0.11 0.85 ±0.00 0.40 ±0.06 0.79 ±0.00 0.44 ±0.10

MT-GARF

MTScoreES MTScoreE

1 X-ray pose/PDB 25 MOE poses/PDB 25 MTDock poses/PDB

mean R MUEa mean R MUEa mean R MUEa

14-3-3η 0.78 ±0.01 0.20 ±0.05 0.69 ±0.01 0.23 ±0.05 0.62 ±0.01 0.27 ±0.04
DHQD 0.83 ±0.00 0.38 ±0.07 0.83 ±0.00 0.37 ±0.07 0.79 ±0.00 0.42 ±0.08
PDPK1 0.34 ±0.01 0.43 ±0.09 0.37 ±0.01 0.42 ±0.08 0.61 ±0.01 0.40 ±0.09
AChE 0.81 ±0.00 0.48 ±0.10 0.77 ±0.00 0.51 ±0.13 0.81 ±0.00 0.46 ±0.12
FUCA-1 0.76 ±0.01 0.55 ±0.14 0.78 ±0.01 0.51 ±0.15 0.72 ±0.01 0.64 ±0.06
GBA3 0.55 ±0.01 0.34 ±0.08 0.52 ±0.01 0.35 ±0.08 0.77 ±0.00 0.24 ±0.09
BC 0.60 ±0.01 0.52 ±0.13 0.58 ±0.01 0.52 ±0.13 0.75 ±0.01 0.40 ±0.11
PKA 0.65 ±0.00 0.32 ±0.08 0.65 ±0.00 0.32 ±0.08 0.64 ±0.00 0.32 ±0.06
Tryp 0.72 ±0.00 0.40 ±0.09 0.68 ±0.00 0.45 ±0.10 0.65 ±0.01 0.48 ±0.09
DSP 0.84 ±0.00 0.42 ±0.08 0.83 ±0.00 0.43 ±0.06 0.67 ±0.00 0.53 ±0.14

aAll of the MUE values are given in kcal/mol and were obtained from the LOO analysis.
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protocol was used with GARF against the 14-3-3η and DSP
sets and with Amberff14 against GBA3, the Pearson R was
lower compared with the MOE MTScoreE results, suggesting
that in these cases the MTCS conformers were inferior to the
conformers provided by MOE. Furthermore, the diverging
atom:atom pair potential-dependent results we observed with
MTDock are attributable to the different MTCS conformers
generated with the two potentials: while MOE generates the
same conformers and the same binding modes regardless of
chosen MT potential, MTCS uses the chosen potential to

define the target bond lengths, angles, and torsions.59

Therefore, the consistent agreement we see between GARF

and AMBERff14 in both the HPF and CASF benchmarks

when they are challenged with pair-potential-independent MOE

poses suggests that the MT method itself is quite robust. That

said, as depicted in Figure 12, GARF does appear to exhibit

some preference for GARF-generated MTCS poses.

Figure 11. Comparison of Pearson R correlations and MUEs between the GARF and AMBERff14 energy functions obtained using different MT
calculation settings and protocols. (A, B) MTScoreES calculations for the two energy functions: (A) Pearson R values; (B) MUE values. (C, D)
Calculations with MOE using the MTScoreE protocol for the two potentials: (C) Pearson R values; (D) MUE values. (E, F) Calculations with
MTDock using the MTScoreE protocol for the two energy functions: (E) Pearson R values; (F) MUE values.
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■ CONCLUSIONS

Large-scale routine application of computational receptor−
ligand simulation and binding free energy prediction in
industrial drug discovery remains a daunting task. Obtaining
the proper balance of computational cost and efficiency in
molecular energy state sampling is a central problem for this
issue. In this paper, we have reported a new approach bringing
the “Movable Type” free energy method from a theoretical
concept to a functional software package. The current version
of the MT software package provides two main free energy
workflows: MTScoreES for fast and simple calculations, which
applies only the local partition function sampling regime to a
single initial molecular conformation (e.g., the crystal structure
as in this work or a structure chosen through other methods by
the practitioner in the field), and MTScoreE, which is a complete
computational protocol including both unbound- and bound-
state configurational sampling. Two energy functions, the
AMBERff14 force field and the GARF statistical potential
function, are also provided as different options for the energy
evaluation of the sampled conformations (and though this is
beyond the scope of this paper, users may also substitute
alternative functions as well through the use of standard
parmtop/coord files). The MTScoreE method can be executed in
both a “two-step” and a “three-step” workflow, and it can
generate its own landscape minima using the built-in MTDock
approach or be supplied with binding modes generated

through other means (e.g., MOE, GLIDE, etc.). Furthermore,
as demonstrated in the present work, the method is also able to
characterize not only ligand-side movement/sampling but also
protein-side sampling. Future work will build on this support
to include multiple apo protein and holo-protein:ligand
conformers such as those available from X-ray, cryogenic
electron microscopy, and NMR experimental models along
with theoretical models and trajectories.
In this paper, these protocol combinations were validated in

order to demonstrate the overall robustness of the method.
The prediction profile of MT is shown to be remarkably
robust, and given good theoretical landscape minima (e.g.,
reasonably docked poses), clearly the ensemble method is able
to do as well as or sometimes better than poses generated
through much more expensive means (e.g., X-ray crystallog-
raphy). Together, these results show that the DivCon
Discovery Suite with the MT module is a good option for
fast free-energy-based receptor−ligand virtual screening
applied to rational drug design studies.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00618.

PDB models included in the Homologous Protein
Family set (PDF)

Figure 12. Comparison of Pearson R correlations and MUEs between the GARF and AMBERff14 energy functions using different docking
programs in the MTScoreE protocol. (A) Pearson R values for AMBER for MTDock compared to MOE dock. (B) MUE values for AMBER for
MTDock compared to MOE dock. (C) Pearson R values for GARF for MTDock compared to MOE dock. (D) MUE values for GARF for MTDock
compared to MOE dock.
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