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Ranking nodes in growing 
networks: When PageRank fails
Manuel Sebastian Mariani1, Matúš Medo1 & Yi-Cheng Zhang1,2

PageRank is arguably the most popular ranking algorithm which is being applied in real systems 
ranging from information to biological and infrastructure networks. Despite its outstanding 
popularity and broad use in different areas of science, the relation between the algorithm’s efficacy 
and properties of the network on which it acts has not yet been fully understood. We study here 
PageRank’s performance on a network model supported by real data, and show that realistic 
temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of 
model parameters. Results on real data are in qualitative agreement with our model-based findings. 
This failure of PageRank reveals that the static approach to information filtering is inappropriate for 
a broad class of growing systems, and suggest that time-dependent algorithms that are based on the 
temporal linking patterns of these systems are needed to better rank the nodes.

With the amount of available information constantly growing due to the widespread usage of computers 
and the Internet, network-driven information filtering tools such as ranking algorithms1,2 and recom-
mender systems3 attract attention of researchers from various fields. PageRank, one of the most popular 
ranking algorithms, has been originally devised to rank web sites in search engine results4. The algorithm 
acts on unipartite directed networks and builds on the circular idea “A node is important if it is pointed by 
other important nodes”. The essential role that PageRank plays in the Google search algorithm has stim-
ulated extensive research of its properties5 and relations to previous ranking techniques6. PageRank has 
been applied far beyond its original scope: in ranking of scholarly papers7, authors8,9 and journals10, rank-
ing of images in search11, ranking of urban roads according to traffic flow12, measuring the importance 
of biochemical reactions in the metabolic network13, for example. The algorithm’s remarkable stability 
properties5,14 make it a suitable candidate to rank nodes in noisy networks such as the World Wide Web 
(WWW) and the protein interaction networks, where the information is often not completely reliable. 
Variants of PageRank include Eigentrust which computes trust values in distributed peer-to-peer sys-
tems15, LeaderRank which computes influence of users in social networks16, and CiteRank which uses a 
model of citation network traffic to compute the importance of scientific papers17, among others; variants 
of PageRank have been also applied to bipartite networks18–20 and multilayer networks21.

The widespread usage of PageRank motivates us to ask: when is the algorithm effective in ranking 
nodes according to their quality? Are there circumstances under which the algorithm is doomed to 
fail? Answering these questions is of primary importance to foster our understanding of the ranking 
algorithm, which is a problem of practical significance given the influence of ranking-based tools such 
as search engines and recommendation systems on many aspects of our society, from marketing to pol-
itics22–25. While previous research has already studied the rankings produced by PageRank for different 
topological properties of the input networks14, the evaluation of the algorithm on networks that evolve 
in time remains a largely unexplored field. The main aim of this work is to fill this gap and demonstrate 
the shortcomings of the algorithm when applied to growing networks exhibiting temporal effects. To this 
end, we use a growing directed network model with preferential attachment and relevance26 which gen-
eralizes the classical preferential attachment introduced in27. This model (hereafter the Relevance Model, 
RM) has been shown by maximum likelihood analysis to be the preferential attachment model that best 
explains the linking patterns in real information systems28 and has been used to model real information 
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systems, such as the WWW29, citation networks30, online networks28, and even technological networks, 
such as the network of Internet autonomous systems31.

In the RM, three essential elements rule the competition among nodes for incoming links: preferential 
attachment, fitness and temporal decay. Preferential attachment is a well-established mechanism that 
has been observed in a wide range of real systems (see32,33 for a review). Fitness is a quality parameter 
assigned to each node that quantifies the node’s inherent competence in attracting new incoming links34; 
all other things being equal, in a competitive environment high-fitness nodes are suitable for success in 
the system and are likely to become eventually popular, whereas low fitness nodes tend to remain little 
known29. Node fitness is modulated with a time-decaying function which gives rise to the so-called node 
relevance26: a node of high-fitness thus initially has high relevance and potentially attracts many links 
but this relevance eventually vanishes and the node ceases to attract new links. Fitness and relevance 
discount all system-dependent intangible and subjective factors that determine node’s quality, quantify 
how much a node is attractive to a given system and can be estimated on real data by different tech-
niques26,28–30. In our model, each node is further endowed with an activity parameter which represents 
the rate at which the node creates new outgoing links; activity too is modulated with time. We use the 
model to produce artificial data and compare the ranking of nodes by their indegree (i.e., the number 
of incoming links) and PageRank score with the node ranking by their fitness values. We find that when 
model parameters for the temporal decay of relevance and activity substantially differ from each other, 
the redistribution of PageRank scores is biased towards old or recent nodes, respectively (depending on 
which decay is faster). In addition, when PageRank is temporally biased in either way, indegree mark-
edly outperforms it in ranking nodes by their fitness. These results are confirmed on a modified model, 
so-called Extended Fitness Model, where high-fitness nodes preferentially attach to other high-fitness 
nodes, whereas low-fitness nodes preferentially attach to popular nodes. While in this model PageRank 
can significantly outperform indegree in reproducing the ranking of nodes by their fitness for some 
model parameters, extensive parameter regions where the algorithm fails and performs worse than inde-
gree are still present.

We finally apply PageRank on two real datasets, the social network of Digg.com users and the network 
of citations between American Physical Society (APS) scientific articles, and compare the rankings of 
nodes by their indegree and PageRank score with the node ranking by their total relevance which is a 
real-data estimate for fitness. We find that while PageRank score is highly correlated with indegree in 
social network data and the two metrics have similar performance, PageRank is markedly outperformed 
by indegree in citation data. These findings strongly discourage the use of PageRank in systems where 
strong temporal patterns exist, like citation networks.

Results
Relevance Model (RM).  In the RM, when a node j creates a new link at time t, the probability Π ( )ti

in  
that it chooses node i as the target is assumed to be

η τΠ ( ) ∼ ( ( ) + ) ( − ) ( )t k t f t1 1i
in

i
in

i R i

where ( )k ti
in  is the current indegree of node i, ηi is its fitness and f R is a function of the node’s age (τ i 

is the time at which node i enters the system). The product η τ( − ) = ( )f t R t:i R i i  represents the rele-
vance of node i at time t26, 28. We assume that ( )f tR  decays monotonously and thus mimics real situations 
where nodes lose relevance over time. Previous studies of the RM26,30 have focused on scientific citation 
networks which are tree-like because nodes create outgoing links only in the moment when they enter 
the system – the links are thus always directed back in time. We consider a general situation where nodes 
continue being active, create outgoing links continually, and the resulting network thus contains loops 
which are common in many real systems, such as the WWW, for example. We use the activity potential 
approach introduced in35 and assign to each node i an activity parameter Ai. At each simulation step, a 
new node is created and connected to an existing node. In addition, =m 10 existing nodes are sequen-
tially chosen and create one link each (see the Methods section for all simulation details). The m nodes 
that are active at time t are chosen with the probability

τΠ ( ) ∼ ( − ) ( )t A f t 2i
out

i A i

where ( )f tA  is a monotonously decaying function of time. A broad distribution of the activity parameter 
A allows us to reproduce broad outdegree distributions typically found in real networks33 without resort-
ing to preferential linking mechanisms for outgoing links.

Decay of empirical relevance and activity in real data.  We now analyze real data to validate the 
hypothesis of relevance and activity decay. We refrain from maximum likelihood analysis28 because of its 
computational complexity. Instead, we follow a simpler procedure: following26, we define the empirical 
relevance ( )r ti  of node i at time t as
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received by node i in a suitable time window , + ∆t t t[ ] and the total number ( , ∆ )L t t  of links created 
within the same time window, whereas ( ) = ( )/∑ ( )n t k t k ti
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j j
in  is the expected value of ( )n ti  accord-

ing to preferential attachment alone. Empirical relevance ( )r ti  larger or smaller than one means that node 
i at time t outperforms or underperforms, respectively, with respect to its preferential attachment weight 

( )n ti
PA  in the competition for incoming links.

The hypothesis of time-dependent and heterogeneous relevance has already been validated in the APS 
scientific citation network26. Here we further analyze the APS dataset, described in the Methods section, 
finding (Fig. S2) that the decay of relevance is well reproduced by a power law function (see the 
Supplementary Note S2 for detailed results). Moreover, we validate the hypothesis of relevance and activ-
ity time decay in a very different system, the Digg.com social network of users, where a directed link 
between two users means that one user follows the other (see the Methods section for the description of 
the dataset). We find (Fig. S1) that relevance decays also in this dataset. Based on35, we define the empir-
ical activity ( )a ti  of node i at time t as the ratio between the number of outgoing links created by node 
i in a suitable time window , + ∆t t t[ ] and the total number of links created within the same time 
window. We find (Fig. S1) that also activity decays with time, and activity decay is slower than relevance 
decay (see Supplementary Note S1 for details).

Results of numerical simulation with the RM.  For the sake of generality, we consider both expo-
nential and power-law decay functions θ( ) = (− / )f t texpR R , θ( ) = (− / )f t texpA A  and ( ) = α−f t tR

R, 
( ) = α−f t tA

A, respectively. Our main goal now is to study the dependence of PageRank performance on 
model parameters θ θ,R A and α α,R A, respectively. We refer to the Methods section for the mathematical 
definition of PageRank and details about the choice of fitness and activity distributions in simulations.

A good ranking algorithm is expected to produce an unbiased ranking where both recent and old 
nodes have the same chance to appear at the top. In growing networks with temporal effects, PageRank 
can fail to achieve this. To explain the origin of this failure, we consider two extreme situations: relevance 
decay which is very fast and slow, respectively, with respect to activity decay. When relevance decay is 
slow (or absent, as in the original fitness model34), recent nodes receive few links because their weight in 
preferential attachment is much smaller than the weight of all nodes that have already accumulated many 
links (this manifests itself in the network’s strong dependence on the initial configuration36). PageRank as 
well as indegree are therefore strongly biased towards old nodes. When relevance decay is fast, preferen-
tial attachment is compensated by a quick decay of relevance and therefore recent nodes can reach high 
indegree. However, there is now an essential asymmetry in the system which relates to outgoing links: 
while recent nodes mostly point to other recent nodes because of relevance decay, old nodes point to 
nodes of every age because they remain active during the whole system’s lifetime (see Fig. 1 for an illus-
tration). PageRank is consequently biased towards recent nodes: while a random surfer at an old node 
is likely to jump to a recent node, the converse is not true; recent nodes effectively act as an attractor.

Figure 2 shows a transition between the two extreme cases for artificial data produced by the RM with 
exponential relevance decay and exponentially distributed fitness. When the decay of relevance is slow 
(θ = 10000R ), there are only old nodes at the top 1% positions of the rankings by PageRank score and 
indegree. When the decay of relevance is fast (θ = 10R ), recent nodes occupy the majority of the top 1% 
positions in the ranking by PageRank score. By contrast, the ranking by indegree is essentially unbiased 

Figure 1.  Illustration of a network produced with the RM for fast aging of relevance and constant 
activity. In each step, a new node is introduced and connected to an existing node (arcs above the row of 
nodes). In addition, a randomly chosen node becomes active and connects to an existing node (arcs below). 
The target node is chosen by Eq. (1) in both cases (see Supplementary Note S5 for model parameters). The 
orange and red part of the each link mark the initial and target node, respectively. Note that while old nodes 
point to nodes of every age thanks to constant activity, recent nodes never point to the old nodes due to the 
decay of relevance. This asymmetry results in PageRank scores biased towards recent nodes.
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in this limit as the average entrance time τ of the top-1% nodes is close to / =N 2 5000 which corre-
sponds to the absence of time bias.

We discuss now the implication of PageRank’s time bias on the algorithm’s ability to rank nodes by 
fitness. In the following, we denote by η( , )r p  the Pearson’s correlation between the PageRank scores p 
and the fitness values η, and we denote by η( , )r kin  the Pearson’s correlation between node indegree and 
fitness. Figure  3 shows the performance ratio η η( , )/ ( , )r p r kin  in the θ θ( , )R A  plane. Since 

η η( , )/ ( , )<r p r k 1in  everywhere, we find that PageRank yields no improvement with respect to indegree 
in ranking nodes by fitness. This is because while the PageRank algorithm assumes that important nodes 
point to other important nodes, this feature is absent in the RM where all nodes are driven by the same 
mechanism, Eq. (1), when choosing their connections. As a result, PageRank does best in comparison 
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Figure 2.  PageRank time bias. We show here the average entrance time τ of the top 1% nodes of the node 
ranking by indegree and PageRank, respectively, as a function of the relevance decay parameter θR. Networks 
of =N 10000 nodes are grown with the RM with slow decay of activity (θ = NA ). Two limits of PageRank 
bias are visible: (1) When the decay of relevance is fast θ θ( )R A , a large number of top nodes are recent as 
a consequence of the network structure demonstrated in Fig. 1; (2) When the decay of relevance is slow 
(θ ∼ NR ), top nodes are old because the old nodes can be pointed by nodes of every age. While the latter 
bias is common to PageRank and indegree, the former bias is specific to PageRank because of its network 
nature.

Figure 3.  A comparison of performance of PageRank and indegree in the RM data (N = 10,000. 
ρ(η) = exp(−η). The heatmap shows the ratio η η( , )/ ( , )r p r kin . The black dotted line represents the 
contour along which PageRank is not temporally biased (see Fig. S6, left). The upward bending of this 
contour is a finite-size effect.
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with indegree along the θ θ−R A diagonal where PageRank is not temporally biased and η η( , )/ ( , )r p r kin  
becomes close to, albeit always strictly lower than, one. When moving away from this diagonal, PageRank 
score has temporal bias towards recent or old nodes (Fig. S6), its correlation with indegree (Fig. S7) and 
fitness (Fig. S8) decrease, and it reproduces fitness substantially worse than indegree (red areas in Fig. 3). 
Qualitatively similar behavior is found for the RM with uniformly distributed fitness (Fig. S9), power-law 
decay of relevance and activity (Fig. S10), accelerated growth rate ( ( ) ∝m t t instead of ( ) =m t 10,  
Fig. S12). The same is true when the ranking quality is measured by the precision metric η( ⋅ , )P100 , 
(defined as the number of fitness top-100 nodes placed in the top 100 of the ranking produced by an 
algorithm), instead of the linear correlation coefficient (Fig. S11). This shows that our findings are robust 
and do not require a specific model setting.

An extended model based on fitness.  To demonstrate that PageRank’s under-performance with 
respect to indegree is a general feature, we now proceed to a different model for artificial data which is 
more compatible with PageRank’s basic idea that a node is important if it is pointed by other important 
nodes. In this model (hereafter Extended Fitness Model, EFM), high- and low-fitness nodes differ not 
only in their ability to attract new incoming links, but also in their sensitivity to the fitness of the other 
nodes when choosing their outgoing connections. High-fitness nodes are highly attractive to new incom-
ing links as well as highly sensitive to fitness of the others when choosing their outgoing connections. 
Low-fitness nodes are basically insensitive to fitness and choose their target nodes mostly by current 
popularity amended by aging. High-fitness nodes are then more likely to be pointed by other high-fitness 
nodes than low-fitness nodes (see Fig. S5) which agrees with the basic premise of PageRank: important 
nodes are pointed by other important nodes. We therefore expect PageRank to outperform indegree in 
ranking the nodes by fitness. The model assumes that the probability Πi j

in
;  that a link created by node j at 

time t ends in node i has the form

Π η τ( ) ∼ ( ( ) + ) ( − ) ( )
η η−

t k t f t1 4i j
in

i
in

i R i;
1 j j

where node fitness η is now constrained to the range [0, 1] to prevent a negative exponent η−1  in the 
first term. We stress that the probability Πin depends not only on the fitness ηi of the target node, but 
also on the fitness η j of the node j that creates the outgoing link, which is a new element with respect to 
the RM. A similar model has been used to model user-item networks in37. We assume that a small num-
ber H of nodes have high fitness η( ∈ , )−[10 1]5  and the remaining −N H  nodes have low fitness 
(η ∈ , )−[0 10 5 , see the Methods section for details).

Figure 4 shows the results obtained with the EFM. The correlation coefficient ( , )r p kin  (Fig. S7, right) 
and the average age of top 1% nodes (Fig. S6, right) have qualitatively the same behavior as for the RM 
which indicates that the behaviour of these quantities as a function of model’s temporal parameters is 
universal and independent of the exact growth rule. The model is favorable to PageRank and indeed, the 
algorithm now can significantly outperform indegree in terms of the correlation between fitness and 

Figure 4.  A comparison of PageRank and indegree correlation with fitness in the EFM data (N = 10,000, 
H = 250). The heatmap shows the ratio ( , )/ ( , )r p q r k qin . The white dotted line represents the contour where 
PageRank is not temporally biased (see Fig. S6, right).
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node score when PageRank is not temporally biased (blue area in Fig. 4). Nevertheless, PageRank still 
underperforms indegree in two extensive regions of the parameter plane θ θ( , )R A . As for the RM, these 
two regions correspond to the cases where activity and relevance decay timescales substantially differ. 
These results are again confirmed by using power-law aging instead of exponential (Fig. S10) and the 
precision metrics instead of the correlation coefficient (Fig. S11). Note that we introduced here the EFM 
to show that PageRank’s bias occurs also in a setting favorable to the algorithm; while it seems plausible 
that some nodes are more sensitive to fitness than others when making connections, we leave real data 
validation of the EFM for future research.

Comparing indegree and PageRank: results in real networks.  Algorithm evaluation in real data 
is made difficult by several factors. In general, it is impossible to objectively evaluate node importance 
in a system because it depends on many intangible and subjective elements6. To assess the performance 
of ranking algorithms on real data, we compare node score with total relevance = ∑ ( )T r ti t i  which is an 
estimate of node fitness (see ref. 26 and the Supplementary Note S4). Results on real data and the cor-
responding calibrated simulations with the RM are reported in Fig.  5. Our calibration procedure for 
simulations focuses on temporal decay of relevance and activity and is described in detail in the 
Supplementary Note S3; more accurate calibration is possible but goes beyond the scope of our work. 
Uncertainty of these results estimated by sample-to-sample fluctuations and non-parametric bootstrap38 
for model and real data, respectively, is of the order of −10 3 which is negligible in comparison with the 
observed differences between PageRank and indegree (see Supplementary Note S6).

In the Digg.com social network, the empirircal relevance and activity power-law decay exponents are 
not far from the parameter region where PageRank scores are maximally correlated with indegree in the 
simulations with the RM with power-law decay (see Fig. S10), which is in qualitative agreement with the 
observed high value of correlation between PageRank and indegree in the dataset ( ( , ) = .r k p 0 88in ); 
PageRank is outperformed by indegree in ranking nodes by their total relevance but the performances 
of the two metrics are relatively close to each other (see Fig. 5).

In citation data, where the use of PageRank and other algorithms inspired by PageRank has been 
much studied7,17,39, activity and relevance decays necessarily mismatch: relevance progressively decays 
with time26, whereas activity decays immediately. In the APS dataset we find that PageRank is signifi-
cantly biased towards old nodes (Fig. S3): this is because old papers can be pointed by papers of every 
age, while recent papers are pointed only by recent papers. This is the opposite time bias than that 
depicted in Fig. 1. Moreover, we find that PageRank and indegree are weakly correlated [ ( , ) = .r k p 0 52in ], 
and indegree is remarkably better correlated with total relevance than PageRank (see Fig. 5). These find-
ings are consistent with the outcomes of a calibrated numerical simulation with the RM (see Fig.  5), 
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Figure 5.  A comparison of PageRank and indegree correlation with total relevance in real data and in 
calibrated simulations with the RM. PageRank is outperformed by indegree in both datasets (and in the 
corresponding calibrated simulations). In the Digg.com social network, the fitted relevance and activity 
power-law decay exponents are not far from the parameter region where PageRank is maximally correlated 
with indegree in numerical simulations with the RM with power-law decay (see Fig. S10), and PageRank’s 
and indegree’s correlation with total relevance are close to each other. By contrast, in the APS dataset activity 
decays immediately, whereas relevance decays progressively (see Fig. S2); as a consequence, PageRank is 
strongly biased towards old nodes (see Fig. S3) and is outperformed by indegree by a factor 2.58 
[ ( , ) = .r p T 0 19 whereas ( , ) = .r k T 0 49in ]. We refer to the Supplementary Note S3 for details about the 
simulation calibration on real data and to the Supplementary Note S4 for details on the computation of 
empirical relevance in real and artificial data.
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where all outgoing links of a node are created when the node enters the system and the outdegree dis-
tribution is exponential as in the APS dataset (Fig. S4), see the Supplementary Note S3 for details about 
simulations calibrated on real data). Note that the age distribution of top nodes in indegree and PageRank 
ranking in the APS real network and the artificial network generated by the corresponding calibrated 
simulation have the same qualitative shape (Fig. S3). This confirms that our simulation calibration on 
real data, which is based only on the temporal patterns of the system, qualitatively captures the temporal 
bias of PageRank.

We conclude this paragraph with a consideration on total relevance T. Motivated by the high corre-
lation η( , )r T  between node total relevance and fitness found in the calibrated simulations (see 
Supplementary Note S4), in this work we use total relevance T as a proxy for node fitness in the real data. 
In the RM, we find that node total relevance outperforms indegree and PageRank in ranking nodes by 
fitness for a broad range of model parameters (Fig. S13). By contrast, the parameter region where total 
relevance outperforms indegree and PageRank is smaller in data produced with the EFM (Fig. S14). We 
leave for future research detailed investigation of how the performance of total relevance in ranking 
nodes by fitness depends on the assumptions and parameters of the underlying model. These findings 
might also motivate future study of the ranking of nodes by their total relevance in real data that are 
well-described by the RM.

Discussion
To summarize, our numerical simulations indicate that the mismatch between the timescales of relevance 
and activity decay makes PageRank scores biased towards recent nodes (when the decay of relevance is 
faster) or old nodes (when the decay of activity is faster). This temporal bias reduces PageRank’s capabil-
ity to rank nodes by fitness and causes it to underperform in comparison with the elementary ranking 
of nodes by indegree in the RM which is to our best knowledge the most accurate model for describing 
growing information networks28,30. Our findings are robust with respect to changes in the functional 
form of the time-decay function, in the distribution of fitness among the nodes, and in the metric used 
to evaluate the ability of an algorithm to rank nodes by their fitness. We also studied a model (the EFM) 
that provides a favorable setting for PageRank performance; PageRank can outperform indegree on the 
data produced by this model, but fails again when the two timescales mismatch. Moreover, we find indi-
cations of the influence of temporal patterns on PageRank’s performance also in real data. In citation 
data, PageRank is excessively biased towards old nodes and, as a consequence, is clearly outperformed by 
indegree in ranking nodes by their total relevance which is an estimate of node fitness (see ref. 26 and the 
Supplementary Note S4). By contrast, indegree and PageRank perform similarly in social network data 
where there is not a sharp mismatch between activity and relevance timescales. The results of real data 
analysis are in agreement with our model-based finding that PageRank can only perform well if the two 
system’s timescales (of activity and relevance decay, respectively) are of similar magnitude.

The methods developed and used in this article are general and can be applied to any growing directed 
network where nodes compete for incoming links and where preferential attachment and temporal 
effects influence the linking patterns, which includes a wide class of real networks. To diagnose whether 
a growing directed network is or not suitable for the application of PageRank, one can fit the empirical 
relevance decay and activity decay timescales on the data and run a corresponding calibrated simulation 
which reveals whether PageRank is or not able to rank nodes according to their fitness. We have not 
attempted to study how our findings are affected by further real-world phenomena, such as link dele-
tion29, popularity40 and activity bursts41, among others. Link time stamps are crucial for our analysis; in 
all the datasets where they are not reported, we cannot compute neither node relevance ( )r t  nor node 
activity ( )a t  which exclude these systems from the range of applicability of our analysis. We also stress 
that the framework introduced in this work is not applicable to undirected networks, such as collabora-
tion networks, scholar co-citation networks and road networks, among others. In undirected networks 
indeed there is no distinction between incoming and outgoing links and, as a consequence, relevance 
and activity cannot be defined as two separate node properties. The model-based evaluation of PageRank’s 
performance in networks without time information and undirected networks is certainly an interesting 
and largely unexplored problem but goes beyond the scope of this work.

The shortcoming of PageRank due to temporal effects is particularly worrying for applications of the 
algorithm to scientific citation data10,39,42. While PageRank can find old valuable papers underestimated 
by indegree7, the algorithm is biased towards old nodes and as a consequence is outperformed by inde-
gree in ranking papers by importance, which strongly discourage the use of the algorithm to rank sci-
entific papers. In this context, the need for including temporal effects in the algorithm has already been 
stressed in17,39; the model-based approach introduced in this article leads us to the same conclusion. How 
to best include the temporal dimension in ranking scientific publications remains an open issue. One 
could consider a self-consistent algorithm that takes time into account, such as CiteRank17, or resort to 
fitness estimates, such as total relevance or maximum likelihood estimates28; the model-based approach 
introduced in this article provides a simple yet effective method – the comparison of node scores with 
intrinsic fitness in calibrated simulations – which could be used to establish which algorithm is more 
suitable for a given system. Our findings also bring new insights into the study of the relation between 
node indegree and PageRank. Previous studies25,43 established a linear relationship between node degree 
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and the average PageRank score for uncorrelated networks, and considered any deviations from this 
behavior as fluctuations. We find that for a broad range of network parameters, much of these apparent 
fluctuations are in fact trends caused by the interplay between the network’s temporal features and the 
PageRank algorithm.

Our model-based evaluation of ranking algorithm is applicable also to the WWW. There is general 
agreement in recognizing the importance of PageRank in the success of Google’s search engine6,44, yet it 
remains unclear which properties make the Web a suitable network where to apply the algorithm. While 
ref. 14 emphasizes the role of the scale-free topology of the Web on PageRank’s success, our findings 
stress the importance of temporal patterns in determining the success or failure of PageRank. Further 
data analysis on Web data could reveal whether relevance and activity decay timescales are of similar 
magnitude in the WWW which would imply maximal correlation between PageRank score and node 
fitness, and thus provide a further explanation of PageRank’s success in this system.

In conclusion, PageRank, despite its popularity and robustness, can fail and thus it should not be used 
without carefully considering the temporal properties of the system to which it is to be applied. The con-
nection between PageRank’s failure and the temporal features of the analyzed networks indicates that the 
main reason for the reported failure is the static nature of the algorithm. We believe that a well-grounded 
ranking algorithm should be built on the temporal linking patterns of the system where it is intended to 
be applied and the dependence of its performance on system features should be exhaustively studied in 
model data where system’s structural and temporal properties can be modified simply by changing model 
parameters. We believe that the model-based theoretical evaluation of ranking algorithms developed in 
this work will open the door to systematic performance evaluation of algorithms in evolving systems, 
deepen our understanding of their limitations, and lead to the introduction of new improved algorithms.

Methods
Digg.com dataset.  Digg.com had been an online social news aggregator from December 2004 to July 
2012. Digg.com users were allowed to submit and vote (“digg”) stories. Interaction between users took 
place through comments and messages (see45 for a detailed description of the website). We studied the 
social network of users where nodes represent the users and a link from node i to node j means that user 
i is a follower of user j. The complete dataset in our possession covers the period from / /06 08 2005 to 

/ /08 07 2009. We analyzed a 3-years subset running from / /01 01 2006 to / /31 12 2008. The subset consists 
of = ,N 190 553 nodes and = , ,L 1 552 905 links.

APS dataset.  The APS (American Physical Society) dataset in our possession spans from year 1893 
until 2009 and contains = ,N 450 056 nodes (papers) and = , ,L 4 690 967 directed links (citations) 
between them. This dataset has been used in26 to validate the hypothesis of heterogeneous and decaying 
relevance.

PageRank.  In a directed monopartite network composed of N nodes, the vector of PageRank scores 
{pi} can be found as the stationary solution of the following set of recursive linear equations
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where A is the network’s adjacency matrix (Aji is one if node j points to node i and zero otherwise), kj
out 

is the outdegree of node j, c is the teleportation parameter, and t is the iteration number4. Eq. (5) repre-
sents the master equation of a diffusion process on the network, which converges to a unique stationary 
state independently of the initial condition 46. The PageRank score pi of node i can be interpreted as the 
average fraction of time spent on node i by a random walker who with probability c follows the network’s 
links and with probability − c1  teleports to a random node. We set = .c 0 85 which is the usual choice 
in practice46. Iterations are stopped when the modulus distance between the vectors of scores at two 
consecutive iterations becomes smaller than  = −10 8 46.

Simulation details.  We use the artificial models (RM and EFM) to build monopartite directed net-
works composed of = ,N 10 000 nodes. We start from a configuration with two nodes, node 0 and node 
1, and a link from node 1 to node 0. At each simulation step t, we add a new node t to the system and 
connect it to an already existing node. The target node is chosen according to the attachment rule (1) 
(RM) or (4) (EFM). If >t 10, we also sequentially add =m 10 links between the existing nodes. Their 
initial nodes are chosen according to the activity rule (2); the target nodes follow again Eqs (1) or (4), 
respectively. The creation of multiple links between a pair of nodes and self-loops are prohibited. Unless 
stated otherwise, results are averages over 6 realizations of the model. Error bars In Fig. 2 represent the 
standard error of the mean which is generally small. The same is true for Figs 3 and 4 where only the 
average values are displayed.
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Fitness and activity distributions in the RM.  When relevance decay is sufficiently fast to allow the 
normalization factor Ω( )t  of Πin to converge within the simulation time scale26, the average final indegree 
of a node in the RM depends exponentially on node fitness. Consequently, different fitness distributions 
yield different indegree distributions26,34. We use both exponential and uniform fitness distribution in our 
simulations; results for the latter are shown in Fig. S9. The outdegree distribution is only determined by 
the activity distribution ρ ( )A  (see Supplementary Note S7 for basic analytical results). In our simulations 
we use ρ ( ) = −A A2 3 for ∈ , ∞A [1 ] everywhere except for the calibrated APS data simulation where all 
outgoing links of a node are created when the node enters the system and we use ρ ( ) = . ( − . )k k8 33 exp 0 12  
for ∈ , ∞k [0 ] as the outdegree distribution, as found in the APS data (see Fig. S4).

Fitness and activity distribution in the EFM.  We choose here a fitness distribution that aims to 
emphasize the difference between the linking pattern of high- and low- fitness nodes without trying to 
reproduce structural features of real data. The set of fitness values consists of −N H  equidistant values 
within the interval η,[0 ]th  (low-fitness nodes) and H equidistant values from the range η , [ 1]th  (high-fitness 
nodes). These values are then bijectively assigned to the network’s N nodes at random. We set a small 
value of the threshold η = −10th

5 which implies that the low-fitness nodes are essentially insensitive to 
node fitness, while the high-fitness nodes range from little fitness-sensitive nodes to nodes almost unaf-
fected by popularity and mainly driven by fitness (when ∈ = 1j , we have τΠ ∼ ∈ ( − )f ti

in
i R i ). We run 

simulations with = = /H N250 40 for Fig.  4. this value is small in order to amplify the advantage of 
high-fitness nodes in connecting to other high-fitness nodes (see Fig. S5). As in the RM, we use 
ρ ( ) = −A A2 3 for ∈ ,∞A [1 ] to generate the node activity values.
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