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Tumor-associated macrophages (TAMs) are regarded as the most abundantly infiltrating
immune cells around the tumor microenvironment (TME) in head and neck squamous cell
carcinoma (HNSCC), which plays an essential role in immunosuppression and
tumorigenesis. In the TCGA HNSCC cohort, 500 patients with clinical-pathological
information and RNA sequence expression were randomly assigned to training for
lasso regression and validation for verification, respectively. A TAM-based ten-gene
signature (TBGs) was constructed, which divided the patients into high-risk and low-
risk groups, could predict overall survival (OS) of HNSCC patients in the training dataset
(p = 3.527e–05) and validation dataset (p = 3.785e–02). The result of Cox univariate and
multivariate regression analyses showed that the risk score of TBGs could be an
independent prognostic factor in HNSCC. ROC curve confirmed that the risk score of
TBGs has good sensitivity and specificity for prognosis prediction (AUC = 0.659) and was
also verified by the validation dataset (AUC = 0.621). We obtained key risk transcription
factors (TFs)—EHF and SNAI2—by correlation analysis with TBGs. Moreover, we ran a
gene set enrichment analysis (GSEA) to speculate that TBGs act on interstitial remodeling,
tumor killing, metabolic reprogramming, and tumor immune-related pathways. Finally, we
combined clinical–pathological features and risk score of TBGs to establish clinical
nomograms, and calibration curves verified the accuracy of long-term clinical prognosis
in the two datasets (C-index of 5-year OS = 0.721 and 0.716). In general, the TBGs we
obtained may accurately predict the prognosis of HNSCC patients to provide
personalized treatment.
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INTRODUCTION

The global incidence of head and neck squamous cell carcinoma
(HNSCC) continues to rise, which may be related to an increased
human papillomavirus (HPV) infection rate, not only due to
smoking and drinking (1, 2). Despite the continuous
advancement of surgery, radiotherapy, chemotherapy, and
immunotherapy, the 5-year survival rate of HNSCC has not
substantially improved due to uncontrolled tumor metastasis (3,
4). In recent years, the mechanism of the complex interaction
between tumors and immune cells on tumor progression has
been continuously explored in the tumor microenvironment
(TME) (5). Tumor-associated macrophages (TAMs) account
for about 50% of solid tumors and were related to the poor
prognosis of tumors, except colon cancer (6). TAMs directly or
indirectly affect tumor growth, invasion and metastasis,
angiogenesis, immunosuppression, and cancer treatment (7).
The heterogeneity of TAMs has always been a difficulty in the
study of tumor progression, and TAMs with different
phenotypes performed their functions. Scholars have classified
macrophages into M1-like type (pro-inflammatory and anti-
cancer) and M2-like type (immunosuppressive and pro-cancer)
(8). Previous researchers tend to define TAMs as M2-like type
(9). In recent years, researchers found that TAMs do not merely
express the specific indicators of M1 or M2 type, but more
showed the complex of them (10). Nevertheless, scholars still use
the M1/2 classification method for the convenience and
intuitiveness of research.

Giuseppe et al. (11) reviewed immunohistochemical studies
of HNSCC and showed that pan-macrophage indicator CD68
has no prognostic value, and M2 type indicator CD163 predicts a
poor prognosis. Ayan et al. (12) found that increased CD68+ and
CD163+ density were related to poor clinicopathological
indicators and outcome (advanced T stage, nodal metastasis,
higher rate of vascular invasion, higher rate of lymphatic
invasion, and poor differentiation of tumor). Marker genes of
macrophage (MGMs), including infiltration density and
polarization-related genes, are significant for the prognosis of
HNSCC patients.

In this article, we use bioinformatics to explore the
relationship between MGMs and the prognosis of patients in
The Cancer Genome Atlas (TCGA) HNSCC database. We found
that the lasso regression model based on MGMs can predict the
prognosis of HNSCC patients, and the survival time of patients
with high-risk coefficients was significantly shorter. Through the
verification of the segmentation database, we reckoned the ten-
MGMs to be biological prognostic indicators and potential
therapeutic targets for HNSCC.
MATERIALS AND METHODS

Data Collection and Analysis
The RNA sequence expression profile data (n = 547) and clinical
data (n = 530) of HNSCC were downloaded from the TCGA
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database (https://cancergenome.nih.gov/). The transcriptome
data included 501 tumor samples, 2 lymph node samples, and
44 paracancerous samples. After the patient ID deduplication, we
took the intersection with clinical-pathological data and obtained
500 patients for further analysis. All 500 patients were randomly
divided into two datasets via R package “caret”: training dataset
(n = 250) and validation dataset (n = 250). The corresponding
grouping information and clinical characteristics data are shown
in Supplementary File 1 and Table 1.

Sources of Macrophage-Related
Gene and TF Data
We extracted 54 M1-like type genes and 43 M2-like type genes
from differential expression genes of macrophage polarization by
Fernando et al. (13). From research on the immune system of
human cancer, 33 infiltration genes of TAMs were acquired (14).
We downloaded TF data from the Cistrome Project (http://
cistrome.org/). The 130 MGMs and 318 TFs are listed in
Supplementary File 2.

Construction of Prognostic Signature
for TCGA HNSCC Data and Prognostic
Value of Risk Score
All statistical analysis and model building are based on software R
(version 3.6.0), and all differentially expressed genes (DEGs) with
|log2 fold change (FC)| ≥ 1 and adjusted P values <0.05 after
judgment by R package “limma” were selected for subsequent
analysis. The visual heatmaps and the volcano maps of DGEs were
done using the R package “pheatmap” and “ggplot2.” Based on
univariate Cox regression, we established the best lasso model using
the screened MGMs (15). The risk score was calculated as follows:
risk score  = on

j=1Coefj  ∗Xj. Coefj is the coefficient and Xj is the
relative gene expression via z-score standardized reckon. The R
function “cor.test” was used to calculate and test the correlation
coefficient in which the filter conditions were cor >0.4 and pvalue
<0.001. According to the HR value calculated by R function “coxph,”
we assigned MGMs into two groups: HR > 1 were identified as risk
genes and HR < 1 were protective genes. The regulation network of
differentially expressed TFs on the risk or protective MGMs was
visualized by R package “ggalluvial.” Kaplan–Meier and log-rank
methods were used to analyze whether the risk score was related to
the prognosis of HNSCC patients. Univariate and multivariate Cox
tests were performed to investigate the correlation between risk curves
andOS. The receiver operating characteristic (ROC) curve was drawn
by the R package “survivalROC” to evaluate the sensitivity and
specificity of clinical parameters and the risk score for prognosis
prediction by the area under curve (AUC) value.

A Clinical Prognostic Prediction Model
As an excellent predictive model for tumor prognosis (16), a
nomogram can provide intuitive help for clinical prediction.
Based on clinical parameters (age, gender, grade, TNM stage, T,
N, andM classification) and risk score, we plotted the nomogram
to predict the probability of 1-, 3- and 5-year OS with the R
package “rms.” The accuracy of the 5-year survival rate
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prediction is verified by calculating the concordance index (C-
index) of the training dataset and the validation dataset. Value
0.5 and 1.0 of the C-index respectively predict the random and
excellent accuracy of the nomogram.

Gene Set Enrichment Analysis
We used software GSEA 4.0.3 to generate statistical differences
between two biological expression states according to the high-
and low-risk score. Results reveal the critical signaling pathways
and biological processes involved, providing the research
direction for the next mechanism experiment (17). Each gene
set was calculated 1000 times and then screened by their nominal
p-value and normalized enrichment score (NES).
RESULTS

Difference Analysis of Training Dataset
The flow chart of this research is shown in Figure 1. First, we got
all differentially expressed genes via the difference analysis of 250
tumor tissues and 24 tumor-adjacent tissues in the training
dataset. Then we extracted the differential gene expression
Frontiers in Oncology | www.frontiersin.org 3
profiles of 43 MGMs and 61 TFs (Supplementary File 3) to
draw the heatmaps and volcano plots (Figures 2A–D).

Prognosis-Related Macrophage Genes
Combined with the clinical information of the patients, Cox
univariate regression analysis was used to screen out the
prognostic MGMs associated with the OS of TCGA-HNSC
(Figure 3A) and determine their expression level in the
training dataset (Figure 3B).

Construction of Prognosis-Related
MGMs Lasso Regression Model
Based on the aforementioned twelve prognostic MGMs, we ran the
lasso regression model and calculated the regression coefficient. The
coefficient of MGMs is shown in Figure 4A. The model can achieve
the best fit when 10 of 12 MGMs are included (Figure 4B). The
function of the tenMGMs, including the role of TAMs in regulating
the TME through metabol i sm, inflammat ion , and
immunosuppression, the risk coefficient of which is shown in
Table 2. At the same time, we found the ten MGMs were altered
in 142 (28%) of the queried patients in the database (HNSC,
Firehose Legacy, http://www.cbioportal.org), indicating that the
ten MGMs play a vital role in the progress of HNSCC (Figure 4C).
TABLE 1 | HNSCC patients’ clinical characteristics of training dataset and validation dataset in TCGA (n = 500).

Characteristic Training dataset (n = 250) Validation dataset (n = 250) P value (chisq. test)

Age (year), n (%) 0.719
<60 113 (45.2) 108 (43.2)
≥60 137 (54.8) 142 (56.8)

Gender, n (%) 0.418
Female 71 (28.4) 62 (24.8)
Male 179 (71.6) 188 (75.2)

Histologic grade, n (%) 0.146
G1–2 191 (76.4) 172 (68.8)
G3–4 53 (21.2) 68 (27.2)
Gx 6 (2.4) 10 (4.0)

Clinical stage, n (%) 0.208
I–II 61 (24.4) 53 (21.2)
III–IV 185 (74.0) 187 (74.8)
NA 4 (1.6) 10 (4.0)

T classification, n (%) 0.424
T1–2 94 (37.6) 82 (32.8)
T3–4 151 (60.4) 158 (63.2)
Tx 4 (1.6) 7 (2.8)
NA 1 (0.4) 3 (1.2)

N classification, n (%) 0.797
N0 119 (47.6) 119 (47.6)
N1–3 121 (48.4) 119 (47.6)
Nx 9 (3.6) 9 (3.6)
NA 1 (0.4) 3 (1.2)

M classification, n (%) 0.308
M0 235 (94.0) 235 (94.0)
M1 4 (1.6) 1 (0.4)
Mx 10 (4.0) 10 (4.0)
NA 1 (0.4) 4 (1.6)

Vital status, n (%) 0.290
Alive 141 (56.4) 141 (56.4)
Dead 109 (43.6) 109 (43.6)
November 2020 | Volum
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Risk Prognostic Networks of Differentially
Expressed TFs and Differentially
Prognostic MGMs
The correlation between differentially expressed TFs and
prognostic MGMs can be seen in Supplementary File 4, in
which genes (CYBB, HS3ST1, INHBA, TGFB1) with HR > 1 are
considered to be risk genes, and genes (CCL5, IL2RA, PTGDS)
with HR < 1 were protective genes. We used the Sankey diagram
to depict the regulatory relationship between TFs on risk and
protective MGMs (Figure 5). Among them, EHF regulates risk
gene HS3ST1 and SNAI2 regulates risk genes INHBA and
TGFB1, while EOMES, ETS1, FOXP3, and STAT1 regulate
both risk genes and protective genes.

Survival Analysis, Risk Curve, and Risk
Gene Profiles of HNSCC Patients
By scoring each patient’s risk through the model and dividing the
training dataset into a high-risk group (n = 125) and a low-risk
group (n = 125), we found that the survival time of the high-risk
group was significantly lower (p = 3.527e−05) (Figure 6A). The risk
score, survival status distribution of the patients and the expression
of risk genes in the training data group are shown in Figure 6B. We
got consistent results (p = 3.785e–02) from the validation dataset that
verify the model consistency (Figures 6C, D).

Clinical Relevance and Independent
Prognosis Analysis
We analyzed the correlation between the ten MGMs and
clinicopathological characteristics (age, gender, grade, TNM
stage, T, N, and M classification). Results showed that GAS7
expression was associated with inhibition of tumor metastasis
(p = 3.906e−07), RAI14 expression was associated with high
pathological grade (p = 0.036) and advanced clinical stage (p =
0.046), and SLC2A6 expression was associated with high
Frontiers in Oncology | www.frontiersin.org 4
pathological grade (p = 9.835e−04) (Figures 7A–D). Cox
univariate and multivariate regression analysis showed that the
training dataset and validation dataset have different clinical
prognostic indicators, but the risk score can be used as potential
independent prognostic indicators in two datasets (P < 0.05)
(Figures 7E–H). The ROC curve is drawn to show that the
sensitivity and specificity of the risk score also have a relatively
good performance in prognostic prediction (AUC = 0.659 in
training dataset) and (AUC = 0.621 in validation dataset)
(Figures 7I, J). Overall, these results confirmed that this TBGs
based on the ten MGMs was also predictive of survival in the
independent validation HNSCC cohorts.

Construction of a Clinical Prognostic
Prediction Model
We integrated the risk score and established a nomogram to
facilitate our risk model application in clinical prognosis (Figure
8A). By calculating the score of each feature of patients, we can
predict the 1-, 3-, and 5-year OS probability, contributing to
precision treatment. In the calibration curves of the training
dataset and the validation dataset, the C-index of the 5-year OS
rate prediction is 0.721 and 0.716, respectively (Figures 8B, C).
We hold the opinion that the nomogram may have good
accuracy for long-term survival prediction in HNSCC.

GSEA Identifies MGMs-Related Signaling
Pathway
We used GSEA to analyze the differences in the pathways involved
in the groups with high- and low-risk scores to understand the
potential mechanism.We screened out enrichment results that meet
the criteria (FDR < 0.25, NOM p-value < 0.05) in the MSigDB gene
set (c2.cp.kegg.v6.2.symbols.gmt) (Table 3). Based on the NES
value, significantly enriched pathways are filtrated, mainly in four
fields related to TAM function: intercellular matrix remodeling,
FIGURE 1 | Workflow graph for this study. MGMs, marker genes of macrophage; TBGs, TAM-based ten-gene signatures; TFs, transcription factors; PPI, protein–
protein interaction; ROC, receiver operating characteristic; GSEA, gene set enrichment analysis.
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tumor killing, metabolic reprogramming, and tumor immune-
related pathways (Figures 9A–D).
DISCUSSION

Recent studies have found that TAMs cannot be categorized only
as M1-like or M2-like type, but as their complexes, so it is more
effective to integrate macrophage characteristics as prognostic
factors. Specific subtypes of TAMs in the TME of HNSCC have
their corresponding functions, and their respective divisions
facilitate tumors with phenotypic subsets of EMT, stemness,
and immunosuppression through cell–cell communication. In
the protein–protein interaction (PPI) between differentially
expressed TFs and the prognostic MGMs, we get the risk genes
Frontiers in Oncology | www.frontiersin.org 5
and the protective genes to maintain the accuracy of prognosis
prediction to provide precise treatment. Among the risk genes,
HS3ST1 and TGFB1 belong to M2-type marker genes, INHBA is
a M1-type marker gene, and CYBB is an infiltration density gene.
CCL5 and IL2RA are M1 marker genes; PTGDS is an infiltration
density gene in the protective genes.

Heparin sulfate (HS) proteoglycans are a vital part of the cell
microenvironment. The fine structure of the polysaccharide HS chain
plays an essential role in cell–cell interaction, adhesion, migration,
and signal transduction. Previous studies have confirmed that the HS
biosynthesis system is intimately involved in the carcinogenesis
process. The glycosylated protein HS3ST1 in ER-negative breast
cancers contributes to tumor metastasis (18) and is also a biological
prognostic indicator of glioma (19), prostate cancer (20), and acute
lymphocytic leukemia. The immunosuppressive gene TGFB1 is
A

B

D

C

FIGURE 2 | Identification of differentially expressed MGMs and TFs in the training dataset. (A, B) Heat map and volcanic map of 43 differentially expressed MGMs in
the training dataset. (C, D) Heatmap and volcanic map of 61 differentially expressed TFs in the training dataset.
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A

B

FIGURE 3 | Selection of 12 MGMs associated with the OS of HNSCC patients by univariate Cox regression analysis. (A) Univariate Cox regression analysis. Forest
plot of 12 MGMs associated with survival. (B) Differential expression of the 12 MGMs between 24 tumor-adjacent tissues and 250 HNSCC tissues. Note: *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.
A B

C

FIGURE 4 | Establishment of prognostic gene signature by LASSO regression analysis. (A) LASSO coefficient profiles of the 12 prognostic MGMs in the training
dataset. (B) A coefficient profile plot was generated against the log (lambda) sequence. (C) Genetic alteration of the ten genes in the TCGA-HNSCC cohort (TCGA,
Firehose Legacy).
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highly expressed in HNSCC, and the expression level is higher in
lymph nodes (21). In HPV+ HNSCC, TGFB1 is expressed higher in
HPV 33+ compared with HPV16+ patients with less CD8+ T cell
infiltration and worse prognosis (22). In HNSCC patients who
received chemoradiotherapy, regardless of the severity of
complications (mucosal inflammation), the single nucleotide
polymorphism (SNP) rs1982073 of the TGFB1 gene is associated
with prognosis (23). The higher expression of inhibin subunit beta A
(INHBA) is related to the poor disease-free survival of HNSCC
patients (24). Mechanism exploration found that INHBA can
accelerate the lymph node metastasis by regulating the RUNX2
signaling pathway (25). CYBB is a primary component of the
microbicidal oxidase system of phagocytes and associated with
smoking risk factors in patients with lung adenocarcinoma (26),
which is involved in encoding NOX2 to promote lung cancer
metastasis (27). Prostaglandin D2 (PGD2) synthase (PTGDS) and
its receptor PTGDR2 are negatively correlated with stem genes (Sall4
and Lgr5) in gastric cancer, which restricts tumor self-renewal,
Frontiers in Oncology | www.frontiersin.org 7
growth, and metastasis by relying on the PTGDR2 pathway to
inhibit STAT3 phosphorylation and nuclear expression (28). PGD2
in intestinal tumors also mediated the anti-cancer effect through its
receptor (29). Inflammatory factors produced by endothelial cells
promote PTGDS expression and release PGD2, which inhibited
malignant biological behavior of vascular permeability,
angiogenesis, EMT, and tumor apoptosis (30). CCL5, a specific
chemokine released by macrophages, regulates inflammation, of
which its role in tumor progression is controversial (31).
Knockdown of glycogen branching enzyme (GBE1) downstream of
HIF1 in lung adenocarcinoma led to an increase in CCL5 expression
and recruited more cytotoxic CD8+ T lymphocytes to contribute to
tumor regression (32). The IL2Ra level in serum may be meaningful
for prognosis after cancer treatment, which increased by 63.8% in
HNSCC patients (p = 0.032) after cisplatin chemoradiation in
Panagiota’s report (33).

The heterogeneity of TFs in different TMEs is enormous and
of great significance (34). Our correlation analysis revealed some
TABLE 2 | Functions of MGMs in the prognostic gene signatures.

No. Gene symbol Full name Function Risk coefficient

1 IL2RA The interleukin 2 (IL2) receptor alpha Result from extracellular proteolysis –0.0970655
2 CCL5 Chemokine ligand 5 Involved in immunoregulatory and inflammatory processes –0.0008015
3 SLC2A6 Solute carrier family 2 member 6 Hexose transport 0.01694515
4 PTX3 Pentraxin 3 Response to inflammatory stimuli 0.01096275
5 PDGFA Platelet-derived growth factor alpha polypeptide Regulates

developmental processes and alternative splicing
0.01629422

6 INHBA Inhibin beta A subunit Associated with cancer cachexia 0.00528319
7 HS3ST1 Heparan sulfate 3-O-sulfotransferase 1 Biosynthetic enzymes with biologic activities 0.11410459
8 TGFB1 Transforming growth factor beta-induced 68kDa Inhibit cell adhesion 0.00067328
9 GAS7 Growth arrest specific 7 Growth arrest –0.0204874
10 RAI14 Retinoic acid-induced protein 14 Development of different tumor types 0.00429914
November 2020 | Volume 10
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key TFs that regulate MGMs. We found that specific TFs can
regulate both risk genes and protective genes, which is consistent
with the conclusion in recent years that in vivo experiments
found that the activity of TAMs is regulated by multiple
transcription processes (35). However, EHF and SNAI2 only
regulate the expression of risk genes, which deserves attention.
TBGs may also be related to the pathological grade, TNM stage,
and metastasis of HNSCC, and may play a role in different
carcinogenic mechanisms. Results of GSEA suggested that
MGMs regulate intercellular substance remodeling, tumor
killing, metabolic reprogramming, and tumor immune-related
pathways to affect the progression of HNSCC.
Frontiers in Oncology | www.frontiersin.org 8
CONCLUSION

In summary, we found that a gene signature contains the ten
macrophage-related genes in HNSCC and analyzed their
possible independent prognostic value. Also, we built a risk
model based on the ten MGMs and a nomogram that can be
used to predict long-term survival in the clinic. The downside is
that we did not find a dataset in the GEO database for HNSCC
that contains complete RNA sequence information of TBGs,
which might lead to a lack of confidence in our model. Therefore,
more prospective studies need to be included in the future to
verify the predictive ability of this feature in clinical applications.
A B

DC

FIGURE 6 | Survival analysis and characteristics of the TBGs. (A, B) Kaplan–Meier survival curves of overall survival between the high-risk group and low-risk group
in the training dataset and validation dataset. (C, D) The distribution of risk score, patient’s survival time and status, as well as TBGs expression profiles for the
training dataset and validation dataset.
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A B

D

E F

G

I

H

J

C

FIGURE 7 | Clinical correlation analysis and independent prognosis analysis of TBGs and clinicopathologic characteristics. (A) Differentially expressed GAS7 in M
classification (M0 and M1). (B, C) Differentially expressed RAI14 in pathologic grade classification (G1–2 and G3–4) and TNM classification (Stage I–II and Stage III–
IV). (D) Differentially expressed SLC2A6 in pathologic grade classification (G1–2 and G3–4). (E, F) Univariate Cox regression analysis. Forest plot of the association
between risk factors and survival of training dataset and validation dataset. (G, H) Multivariate Cox regression analysis. Forest plot of the association between risk
factors and survival of training dataset and validation dataset. (I, J) Receiver operating characteristic (ROC) analysis of the sensitivity and specificity of the OS for the
ten-gene risk score in the training dataset and validation dataset. Note: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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A

B C

FIGURE 8 | The nomogram to anticipate prognostic probabilities in HNSCC dataset. (A) The nomogram for predicting OS development in the training dataset.
(B, C) The calibration plots for predicting 5-year in the training dataset and validation dataset. Notes: The x-axis and y-axis represent nomogram predicted and
actual survival, respectively. The solid line indicates the predicted nomogram, and the vertical bars represent a 95% confidence interval.
TABLE 3 | Gene sets enriched in risk model.

MSigDB collection Gene set name NES NOM p-val FDR q-val

c2.cp.kegg. v6.2.
symbols.gmt

KEGG_CELL_ADHESION_MOLECULES_ CAMS –1.857 0.010 0.024
KEGG_ECM_RECEPTOR_INTERACTION 1.708 0.019 0.235
KEGG_FOCAL_ADHESION 1.791 0.014 0.219
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 1.566 0.033 0.244
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION –2.131 0 0.006
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS –1.55 0.035 0.203
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY –1.902 0.011 0.032
KEGG_ALPHA_LINOLENIC_ACID_METABOLISM –1.586 0.022 0.174
KEGG_ARACHIDONIC_ACID_METABOLISM –1.879 0 0.030
KEGG_LINOLEIC_ACID_METABOLISM –1.553 0.039 0.194
KEGG_CHEMOKINE_SIGNALING_PATHWAY –1.716 0.018 0.086
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY –1.778 0.002 0.054
KEGG_JAK_STAT_SIGNALING_PATHWAY –1.519 0.042 0.218
KEGG_PATHWAYS_IN_CANCER 1.944 0.037 0.247
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY –1.823 0.014 0.040
Frontiers in Oncology | www.fron
tiersin.org 10
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Gene sets with NOM P-value <0.05 and FDR q-value <0.25 are considered as significant.
FDR, false discovery rate; NES, normalized enrichment score; NOM, nominal.
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